Loki/include/loki/SafeBits.h

531 lines
27 KiB
C
Raw Normal View History

////////////////////////////////////////////////////////////////////////////////
// The Loki Library
// Copyright (c) 2009 by Fedor Pikus & Rich Sposato
// The copyright on this file is protected under the terms of the MIT license.
//
// Code covered by the MIT License
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
////////////////////////////////////////////////////////////////////////////////
// $Id$
#ifndef LOKI_INCLUDED_SAFE_BIT_FIELDS_H
#define LOKI_INCLUDED_SAFE_BIT_FIELDS_H
#include <cstdlib>
#include <assert.h>
#include <loki/static_check.h>
namespace Loki
{
/*
==========================================================================================================================================
SafeBitField - type-safe class for bit fields.
SafeBitConst - type-safe class for bit constants.
SafeBitField is designed to be a [almost] drop-in replacement for integer flags and bit fields where individual bits are set and checked
using symbolic names for flags:
typedef unsigned long Labels_t;
Labels_t labels;
const Labels_t Label_A = 0x00000001;
const Labels_t Label_B = 0x00000002;
...
labels |= Label_B;
if ( labels & Label_A ) { ... }
Such code offers no protection against mismatching bit constants and bit fields:
typedef unsigned long Kinds_t;
Kinds_t kinds;
const Kinds_t Kind_A = 0x00000004;
...
if ( kinds & Label_A ) { ... } // Error but compiles
SafeBitField is a drop-in replacement which generates a unique type for each bit field. Bit fields of different types cannot be applied
to each other:
LOKI_BIT_FIELD( unsigned long ) Labels_t;
Labels_t labels;
LOKI_BIT_CONST( Labels_t, Label_A, 1 ); // 0x0001 - 1st bit is set
LOKI_BIT_CONST( Labels_t, Label_B, 2 ); // 0x0002 - 1st bit is set
...
LOKI_BIT_FIELD( unsigned long ) Kinds_t;
Kinds_t kinds;
LOKI_BIT_CONST( Kinds_t, Kind_A, 3 ); // 0x0004 - 1st bit is set
...
if ( kinds & Label_A ) { ... } // Does not compile
Several other kinds of bit field misuse are caught by safe bit fields:
if ( kinds & Kind_A == 0 ) { ... }
if ( kinds && Kind_A ) { ... }
There are few cases where drop-in replacement does not work:
1. Operations involving bit fields and unnamed integers. Usually the integer in question is 0:
Labels_t labels = 0; // No longer compiles
if ( ( labels & Label_A ) == 0 ) { ... } // Also does not compile
The solution is to use named bit constants, including the one for 0:
LOKI_BIT_CONST( Labels_t, Label_None, 0 ); // 0x0000 - No bit is set
Labels_t labels = Label_None; // Or just Labels_t labels; - constructor initializes to 0
if ( ( labels & Label_A ) == Label_None ) { ... } // // Or just if ( labels & Label_A ) { ... }
2. I/O and other operations which require integer variables and cannot be modified:
void write_to_db( unsigned int word );
Labels_t labels;
write_to_db( labels ); // No longer compiles
This problem is solved by reinterpreting the bit fields as an integer, the user is responsible for using the right
type of integer:
write_to_db( *((Labels_t::bit_word_t*)(&labels)) );
==========================================================================================================================================
*/
/// @par Non-Templated Initialization.
/// Not all compilers support template member functions where the template
/// arguments are not deduced but explicitly specified. For these broken
/// compilers, a non-template make_bit_const() function is provided instead of
/// the template one. The only downside is that instead of compile-time checking
/// of the index argument, it does runtime checking.
#if defined(__SUNPRO_CC) || ( defined(__GNUC__) && (__GNUC__ < 3) )
#define LOKI_BIT_FIELD_NONTEMPLATE_INIT
#endif
/// @par Forbidding Conversions.
/// This incomplete type prevents compilers from instantiating templates for
/// type conversions which should not happen. This incomplete type must be a
/// template: if the type is incomplete at the point of template definition,
/// the template is illegal (although the standard allows compilers to accept
/// or reject such code, §14.6/, so some compilers will not issue diagnostics
/// unless template is instantiated). The standard-compliant way is to defer
/// binding to the point of instantiation by making the incomplete type itself
/// a template.
template < typename > struct Forbidden_conversion; // This struct must not be defined!
/// Forward declaration of the field type.
template <
unsigned int unique_index,
typename word_t = unsigned long
> class SafeBitField;
////////////////////////////////////////////////////////////////////////////////
/// \class SafeBitConst Bit constants.
/// This class defines a bit-field constant - a collection of unchanging bits
/// used to compare to bit-fields. Instances of this class are intended to act
/// as labels for bit-fields.
///
/// \par Safety
/// - This class provides operations used for comparisons and conversions, but
/// no operations which may modify the value.
/// - As a templated class, it provides type-safety so bit values and constants
/// used for different reasons may not be unknowingly compared to each other.
/// - The unique_index template parameter insures the unique type of each bit
/// bit-field. It shares the unique_index with a similar SafeBitField.
/// - Its operations only allow comparisons to other bit-constants and
/// bit-fields of the same type.
////////////////////////////////////////////////////////////////////////////////
template
<
unsigned int unique_index,
typename word_t = unsigned long
>
class SafeBitConst
{
public:
/// Type of the bit field is available if needed.
typedef word_t bit_word_t;
/// Corresponding field type.
typedef SafeBitField< unique_index, word_t > field_t;
/// Typedef is not allowed in friendship declaration.
friend class SafeBitField< unique_index, word_t >;
// Static factory constructor, creates a bit constant with one bit set. The position of the bit is given by the template parameter,
// bit 1 is the junior bit, i.e. make_bit_const<1>() returns 1. Bit index 0 is a special case and returns 0.
// This function should be used only to initialize the static bit constant objects.
// This function will not compile if the bit index is outside the vaild range.
// There is also a compile-time assert to make sure the size of the class is the same as the size of the underlaying integer type.
// This assert could go into the constructor, but aCC does not seem to understand sizeof(SafeBitConst) in the constructor.
//
#ifndef LOKI_BIT_FIELD_NONTEMPLATE_INIT
template < unsigned int i > static SafeBitConst make_bit_const()
{
LOKI_STATIC_CHECK( i <= ( 8 * sizeof(word_t) ), Index_is_beyond_size_of_data );
LOKI_STATIC_CHECK( sizeof(SafeBitConst) == sizeof(word_t), Object_size_does_not_match_data_size );
// Why check for ( i > 0 ) again inside the shift if the shift
// can never be evaluated for i == 0? Some compilers see shift by ( i - 1 )
// and complain that for i == 0 the number is invalid, without
// checking that shift needs evaluating.
return SafeBitConst( ( i > 0 ) ? ( word_t(1) << ( ( i > 0 ) ? ( i - 1 ) : 0 ) ) : 0 );
}
#else
static SafeBitConst make_bit_const( unsigned int i )
{
LOKI_STATIC_CHECK( sizeof(SafeBitConst) == sizeof(word_t), Object_size_does_not_match_data_size );
assert( i <= ( 8 * sizeof(word_t) ) ); // Index is beyond size of data.
// Why check for ( i > 0 ) again inside the shift if the shift
// can never be evaluated for i == 0? Some compilers see shift by ( i - 1 )
// and complain that for i == 0 the number is invalid, without
// checking that shift needs evaluating.
return SafeBitConst( ( i > 0 ) ? ( word_t(1) << ( ( i > 0 ) ? ( i - 1 ) : 0 ) ) : 0 );
}
#endif
/// Default constructor allows client code to construct bit fields on the stack.
SafeBitConst() : word( 0 ) {}
/// Copy constructor.
SafeBitConst( const SafeBitConst& rhs ) : word( rhs.word ) {}
/// Comparison operators which take a constant bit value.
bool operator == ( const SafeBitConst & rhs ) const { return word == rhs.word; }
bool operator != ( const SafeBitConst & rhs ) const { return word != rhs.word; }
bool operator < ( const SafeBitConst & rhs ) const { return word < rhs.word; }
bool operator > ( const SafeBitConst & rhs ) const { return word > rhs.word; }
bool operator <= ( const SafeBitConst & rhs ) const { return word <= rhs.word; }
bool operator >= ( const SafeBitConst & rhs ) const { return word >= rhs.word; }
/// Comparision operators for mutable bit fields.
bool operator == ( const field_t & rhs ) const { return word == rhs.word; }
bool operator != ( const field_t & rhs ) const { return word != rhs.word; }
bool operator < ( const field_t & rhs ) const { return word < rhs.word; }
bool operator > ( const field_t & rhs ) const { return word > rhs.word; }
bool operator <= ( const field_t & rhs ) const { return word <= rhs.word; }
bool operator >= ( const field_t & rhs ) const { return word >= rhs.word; }
/// Bitwise operations. Operation-assignment operators are not needed,
/// since bit constants cannot be changed after they are initialized.
const SafeBitConst operator | ( const SafeBitConst & rhs ) const { return SafeBitConst( word | rhs.word ); }
const SafeBitConst operator & ( const SafeBitConst & rhs ) const { return SafeBitConst( word & rhs.word ); }
const SafeBitConst operator ^ ( const SafeBitConst & rhs ) const { return SafeBitConst( word ^ rhs.word ); }
const SafeBitConst operator ~ ( void ) const { return SafeBitConst( ~word ); }
/// These bitwise operators return a bit-field instead of a bit-const.
field_t operator | ( const field_t & rhs ) const { return field_t( word | rhs.word ); }
field_t operator & ( const field_t & rhs ) const { return field_t( word & rhs.word ); }
field_t operator ^ ( const field_t & rhs ) const { return field_t( word ^ rhs.word ); }
/// The shift operators move bits inside the bit field. These are useful in
/// loops which act over bit fields and increment them.
const SafeBitConst operator << ( unsigned int s ) const { return SafeBitConst( word << s ); }
const SafeBitConst operator >> ( unsigned int s ) const { return SafeBitConst( word >> s ); }
/// Word size is also the maximum number of different bit fields for a given word type.
static size_t size() { return ( 8 * sizeof( word_t ) ); }
private:
/// Copy-assignment operator is not implemented since it does not make sense
/// for a constant object.
SafeBitConst operator = ( const SafeBitConst & rhs );
// Private constructor from an integer type.
explicit SafeBitConst( word_t init ) : word( init ) {}
/// This data stores a single bit value. It is declared const to enforce
// constness for all functions of this class.
const word_t word;
// Here comes the interesting stuff: all the operators designed to
// trap unintended conversions and make them not compile.
// Operators below handle code like this:
// SafeBitField<1> label1;
// SafeBitField<2> label2;
// if ( label1 & label2 ) { ... }
// These operators are private, and will not instantiate in any
// event because of the incomplete Forbidden_conversion struct.
template < typename T > SafeBitConst & operator|( T ) const { Forbidden_conversion< T > wrong; return *this; }
template < typename T > SafeBitConst & operator&( T ) const { Forbidden_conversion< T > wrong; return *this; }
template < typename T > SafeBitConst & operator^( T ) const { Forbidden_conversion< T > wrong; return *this; }
template < typename T > SafeBitConst & operator|=( T ) const { Forbidden_conversion< T > wrong; return *this; }
template < typename T > SafeBitConst & operator&=( T ) const { Forbidden_conversion< T > wrong; return *this; }
template < typename T > SafeBitConst & operator^=( T ) const { Forbidden_conversion< T > wrong; return *this; }
// And the same thing for comparisons: private and unusable.
// if ( label1 == label2 ) { ... }
template < typename T > bool operator==( const T ) const { Forbidden_conversion< T > wrong; return true; }
template < typename T > bool operator!=( const T ) const { Forbidden_conversion< T > wrong; return true; }
template < typename T > bool operator<( const T ) const { Forbidden_conversion< T > wrong; return true; }
template < typename T > bool operator>( const T ) const { Forbidden_conversion< T > wrong; return true; }
template < typename T > bool operator<=( const T ) const { Forbidden_conversion< T > wrong; return true; }
template < typename T > bool operator>=( const T ) const { Forbidden_conversion< T > wrong; return true; }
};
////////////////////////////////////////////////////////////////////////////////
/// \class SafeBitConst Bit constants.
/// This class defines a bit-field constant - a collection of unchanging bits
/// used to compare to bit-fields. Instances of this class are intended to
/// store bit values.
///
/// \par Safety
/// - This class provides operations used for comparisons and conversions, and
/// also operations which may safely modify the value.
/// - As a templated class, it provides type-safety so bit values and constants
/// used for different reasons may not be unknowingly compared to each other.
/// - The unique_index template parameter insures the unique type of each bit
/// bit-field. It shares the unique_index with a similar SafeBitConst.
/// - Its operations only allow comparisons to other bit-constants and
/// bit-fields of the same type.
////////////////////////////////////////////////////////////////////////////////
template
<
unsigned int unique_index,
typename word_t
>
class SafeBitField
{
public:
/// Type of the bit field is available if needed.
typedef word_t bit_word_t;
/// Corresponding field type.
typedef SafeBitConst< unique_index, word_t > const_t;
/// Typedef is not allowed in friendship declaration.
friend class SafeBitConst<unique_index, word_t>;
/// Default constructor allows client code to construct bit fields on the stack.
SafeBitField() : word( 0 ) {}
/// Copy constructor and assignment operators.
SafeBitField( const SafeBitField & rhs ) : word( rhs.word ) {}
SafeBitField & operator = ( const SafeBitField & rhs ) { word = rhs.word; return *this; }
/// Copy constructor and assignment operators from constant bit fields.
SafeBitField( const const_t & rhs ) : word( rhs.word ) {}
SafeBitField & operator = ( const const_t & rhs ) { word = rhs.word; return *this; }
/// These comparison operators act on bit-fields of the same type.
bool operator == ( const SafeBitField & rhs ) const { return word == rhs.word; }
bool operator != ( const SafeBitField & rhs ) const { return word != rhs.word; }
bool operator < ( const SafeBitField & rhs ) const { return word < rhs.word; }
bool operator > ( const SafeBitField & rhs ) const { return word > rhs.word; }
bool operator <= ( const SafeBitField & rhs ) const { return word <= rhs.word; }
bool operator >= ( const SafeBitField & rhs ) const { return word >= rhs.word; }
/// These comparison operators act on bit-constants of a similar type.
bool operator == ( const const_t & rhs ) const { return word == rhs.word; }
bool operator != ( const const_t & rhs ) const { return word != rhs.word; }
bool operator < ( const const_t & rhs ) const { return word < rhs.word; }
bool operator > ( const const_t & rhs ) const { return word > rhs.word; }
bool operator <= ( const const_t & rhs ) const { return word <= rhs.word; }
bool operator >= ( const const_t & rhs ) const { return word >= rhs.word; }
/// Bitwise operations that use bit-fields.
SafeBitField operator | ( const SafeBitField & rhs ) const { return SafeBitField( word | rhs.word ); }
SafeBitField operator & ( const SafeBitField & rhs ) const { return SafeBitField( word & rhs.word ); }
SafeBitField operator ^ ( const SafeBitField & rhs ) const { return SafeBitField( word ^ rhs.word ); }
SafeBitField operator ~ ( void ) const { return SafeBitField( ~word ); }
SafeBitField & operator |= ( const SafeBitField & rhs ) { word |= rhs.word; return *this; }
SafeBitField & operator &= ( const SafeBitField & rhs ) { word &= rhs.word; return *this; }
SafeBitField & operator ^= ( const SafeBitField & rhs ) { word ^= rhs.word; return *this; }
/// Bitwise operators that use bit-constants.
SafeBitField operator | ( const_t rhs ) const { return SafeBitField( word | rhs.word ); }
SafeBitField operator & ( const_t rhs ) const { return SafeBitField( word & rhs.word ); }
SafeBitField operator ^ ( const_t rhs ) const { return SafeBitField( word ^ rhs.word ); }
SafeBitField & operator |= ( const_t rhs ) { word |= rhs.word; return *this; }
SafeBitField & operator &= ( const_t rhs ) { word &= rhs.word; return *this; }
SafeBitField & operator ^= ( const_t rhs ) { word ^= rhs.word; return *this; }
// Conversion to bool.
// This is a major source of headaches, but it's required to support code like this:
// const static SafeBitConst<1> Label_value = SafeBitConst<1>::make_bit_const<1>();
// SafeBitField<1> label;
// if ( label & Label_value ) { ... } // Nice...
//
// The downside is that this allows all sorts of nasty conversions. Without additional precautions, bit fields of different types
// can be converted to bool and then compared or operated on:
// SafeBitField<1> label1;
// SafeBitField<2> label2;
// if ( label1 == label2 ) { ... } // Yuck!
// if ( label1 & label2 ) { ... } // Blech!
//
// It is somewhat safer to convert to a pointer, at least pointers to different types cannot be readilly compared, and there are no
// bitwise operations on pointers, but the conversion from word_t to a pointer can have run-time cost if they are of different size.
//
operator bool() const { return ( 0 != word ); }
// Shift operators shift bits inside the bit field. Does not make
// sense, most of the time, except perhaps to loop over labels and
// increment them.
SafeBitField operator << ( unsigned int s ) { return SafeBitField( word << s ); }
SafeBitField operator >> ( unsigned int s ) { return SafeBitField( word >> s ); }
SafeBitField & operator <<= ( unsigned int s ) { word <<= s; return *this; }
SafeBitField & operator >>= ( unsigned int s ) { word >>= s; return *this; }
// Word size is also the maximum number of different bit fields for
// a given word type.
static size_t size( void ) { return ( 8 * sizeof( word_t ) ); }
private:
/// Private constructor from an integer type. Don't put too much stock into
/// explicit declaration, it's better than nothing but does not solve all
/// problems with undesired conversions because SafeBitField coverts to bool.
explicit SafeBitField( word_t init ) : word( init ) {}
/// This stores the bits.
word_t word;
// Here comes the interesting stuff: all the operators designed to
// trap unintended conversions and make them not compile.
// Operators below handle code like this:
// SafeBitField<1> label1;
// SafeBitField<2> label2;
// if ( label1 & label2 ) { ... }
// These operators are private, and will not instantiate in any
// event because of the incomplete Forbidden_conversion struct.
template < typename T > SafeBitField & operator | ( T ) const { Forbidden_conversion< T > wrong; return *this; }
template < typename T > SafeBitField & operator & ( T ) const { Forbidden_conversion< T > wrong; return *this; }
template < typename T > SafeBitField & operator ^ ( T ) const { Forbidden_conversion< T > wrong; return *this; }
template < typename T > SafeBitField & operator |= ( T ) const { Forbidden_conversion< T > wrong; return *this; }
template < typename T > SafeBitField & operator &= ( T ) const { Forbidden_conversion< T > wrong; return *this; }
template < typename T > SafeBitField & operator ^= ( T ) const { Forbidden_conversion< T > wrong; return *this; }
// And the same thing for comparisons:
// if ( label1 == label2 ) { ... }
template < typename T > bool operator == ( const T ) const { Forbidden_conversion< T > wrong; return true; }
template < typename T > bool operator != ( const T ) const { Forbidden_conversion< T > wrong; return true; }
template < typename T > bool operator < ( const T ) const { Forbidden_conversion< T > wrong; return true; }
template < typename T > bool operator > ( const T ) const { Forbidden_conversion< T > wrong; return true; }
template < typename T > bool operator <= ( const T ) const { Forbidden_conversion< T > wrong; return true; }
template < typename T > bool operator >= ( const T ) const { Forbidden_conversion< T > wrong; return true; }
};
// The above template member operators catch errors when the first
// argument to a binary operator is a label, but they don't work when
// the first argument is an integer and the second one is a label: the
// label converts to bool and the operator is performed on two integers.
// These operators catch errors like this:
// SafeBitField<1> label1;
// SafeBitField<2> label2;
// if ( !label1 & label2 ) { ... }
// where the first label is converted to bool (these errors cannot be
// caught by member operators of SafeBitField class because the first
// argument is not SafeBitField but bool.
//
// If used, these operators will not instantiate because of the
// incomplete Forbidden_conversion struct.
template < unsigned int unique_index, typename word_t >
inline SafeBitField< unique_index, word_t > operator & ( bool, SafeBitField< unique_index, word_t > rhs )
{
Forbidden_conversion<word_t> wrong;
return rhs;
}
template < unsigned int unique_index, typename word_t >
inline SafeBitField< unique_index, word_t > operator | ( bool, SafeBitField< unique_index, word_t > rhs )
{
Forbidden_conversion< word_t > wrong;
return rhs;
}
template < unsigned int unique_index, typename word_t >
inline SafeBitField< unique_index, word_t > operator ^ ( bool, SafeBitField< unique_index, word_t > rhs )
{
Forbidden_conversion< word_t > wrong;
return rhs;
}
template < unsigned int unique_index, typename word_t >
inline SafeBitField< unique_index, word_t > operator == ( bool, SafeBitField< unique_index, word_t > rhs )
{
Forbidden_conversion< word_t > wrong;
return rhs;
}
template < unsigned int unique_index, typename word_t >
inline SafeBitField< unique_index, word_t > operator != ( bool, SafeBitField< unique_index, word_t > rhs )
{
Forbidden_conversion< word_t > wrong;
return rhs;
}
// Finally, few macros. All macros are conditionally defined to use the SafeBitField classes if LOKI_SAFE_BIT_FIELD is defined. Otherwise,
// the macros fall back on the use of typedefs and integer constants. This provides no addititonal safety but allows the code to support the
// mixture of compilers which are broken to different degrees.
#define LOKI_SAFE_BIT_FIELD
// The first macro helps to declare new bit field types:
// LOKI_BIT_FIELD( ulong ) field_t;
// This creates a typedef field_t for SafeBitField<unique_index, ulong> where index is the current line number. Since line numbers __LINE__ are counted
// separately for all header files, this ends up being the same type in all files using the header which defines field_t.
#ifdef LOKI_SAFE_BIT_FIELD
#ifdef __COUNTER__
#define LOKI_BIT_FIELD( word_t ) typedef ::Loki::SafeBitField<__COUNTER__, word_t>
#else
#define LOKI_BIT_FIELD( word_t ) typedef ::Loki::SafeBitField<__LINE__, word_t>
#endif
#else
#define LOKI_BIT_FIELD( word_t ) typedef word_t
#endif // LOKI_SAFE_BIT_FIELD
// The second macro helps to declare static bit constants:
// LOKI_BIT_CONST( field_t, Label_1, 1 );
// creates new bit field object named Label_1 of type field_t which represents the field with the 1st (junior) bit set.
#ifdef LOKI_SAFE_BIT_FIELD
#ifndef LOKI_BIT_FIELD_NONTEMPLATE_INIT
#define LOKI_BIT_CONST( field_t, label, bit_index ) \
static const field_t::const_t label = field_t::const_t::make_bit_const<bit_index>()
#else
#define LOKI_BIT_CONST( field_t, label, bit_index ) \
static const field_t::const_t label = field_t::const_t::make_bit_const( bit_index )
#endif // LOKI_BIT_FIELD_NONTEMPLATE_INIT
#else
inline size_t make_bit_const( size_t i ) { return ( i > 0 ) ? ( size_t(1) << ( ( i > 0 ) ? ( i - 1 ) : 0 ) ) : 0; }
#define LOKI_BIT_CONST( field_t, label, bit_index ) static const field_t label = make_bit_const( bit_index )
#endif // LOKI_SAFE_BIT_FIELD
// The third macro helps to declare complex bit constants which are combination of several bits:
// LOKI_BIT_CONSTS( field_t, Label12 ) = Label_1 | Label_2;
#ifdef LOKI_SAFE_BIT_FIELD
#define LOKI_BIT_CONSTS( field_t, label ) static const field_t::const_t label
#else
#define LOKI_BIT_CONSTS( field_t, label ) static const field_t label
#endif // LOKI_SAFE_BIT_FIELD
// The fourth macro helps to declare the maximum number of bit constants for a given type:
// static const size_t count = LOKI_BIT_FIELD_COUNT( field_t );
// declared a variable "count" initialized to field_t::size()
#ifdef LOKI_SAFE_BIT_FIELD
#define LOKI_BIT_FIELD_COUNT( field_t ) field_t::size()
#else
#define LOKI_BIT_FIELD_COUNT( field_t ) ( 8 * sizeof(field_t) )
#endif // LOKI_SAFE_BIT_FIELD
} // namespace Loki
#endif // LOKI_INCLUDED_SAFE_BIT_FIELDS_H