Added functions to trim extra memory within allocator. Made a new_handler

function for allocator.  Added deallocator function for nothrow delete
operator to insure nothing is leaked when constructor throws.


git-svn-id: svn://svn.code.sf.net/p/loki-lib/code/trunk@229 7ec92016-0320-0410-acc4-a06ded1c099a
This commit is contained in:
rich_sposato 2005-09-09 00:25:00 +00:00
parent d740b86c0a
commit c78269f482
2 changed files with 198 additions and 9 deletions

View file

@ -59,10 +59,14 @@ namespace Loki
void Deallocate( void * p, std::size_t size );
void Deallocate( void * p );
inline std::size_t GetMaxObjectSize() const { return maxSmallObjectSize_; }
inline std::size_t GetAlignment() const { return objectAlignSize_; }
bool TrimExcessMemory( void );
private:
/// Copy-constructor is not implemented.
SmallObjAllocator( const SmallObjAllocator & );
@ -85,19 +89,39 @@ namespace Loki
template
<
template <class> class ThreadingModel,
std::size_t chunkSize,
std::size_t maxSmallObjectSize,
std::size_t objectAlignSize
template <class> class ThreadingModel = DEFAULT_THREADING_NO_OBJ_LEVEL,
std::size_t chunkSize = DEFAULT_CHUNK_SIZE,
std::size_t maxSmallObjectSize = MAX_SMALL_OBJECT_SIZE,
std::size_t objectAlignSize = LOKI_DEFAULT_OBJECT_ALIGNMENT,
template <class> class LifetimePolicy = Loki::NoDestroy
>
class AllocatorSingleton : public SmallObjAllocator
{
public:
/// Defines type of allocator.
typedef AllocatorSingleton< ThreadingModel, chunkSize,
maxSmallObjectSize, objectAlignSize, LifetimePolicy > MyAllocator;
/// Defines type for thread-safety locking mechanism.
typedef ThreadingModel< MyAllocator > MyThreadingModel;
/// Defines singleton made from allocator.
typedef Loki::SingletonHolder< MyAllocator, Loki::CreateStatic,
LifetimePolicy, ThreadingModel > MyAllocatorSingleton;
inline static AllocatorSingleton & Instance( void )
{
return MyAllocatorSingleton::Instance();
}
inline AllocatorSingleton() :
SmallObjAllocator( chunkSize, maxSmallObjectSize, objectAlignSize )
{}
inline ~AllocatorSingleton( void ) {}
static void ClearExtraMemory( void );
private:
/// Copy-constructor is not implemented.
AllocatorSingleton( const AllocatorSingleton & );
@ -105,6 +129,20 @@ namespace Loki
AllocatorSingleton & operator = ( const AllocatorSingleton & );
};
template
<
template <class> class TM,
std::size_t CS,
std::size_t MSOS,
std::size_t OAS,
template <class> class LP
>
void AllocatorSingleton< TM, CS, MSOS, OAS, LP >::ClearExtraMemory( void )
{
typename MyThreadingModel::Lock lock;
(void)lock; // get rid of warning
Instance().TrimExcessMemory();
}
////////////////////////////////////////////////////////////////////////////////
@ -174,12 +212,11 @@ namespace Loki
}
/// Non-throwing single-object delete.
static void operator delete ( void * p, std::size_t size,
const std::nothrow_t & ) throw()
static void operator delete ( void * p, const std::nothrow_t & ) throw()
{
typename MyThreadingModel::Lock lock;
(void)lock; // get rid of warning
MyAllocatorSingleton::Instance().Deallocate( p, size );
MyAllocatorSingleton::Instance().Deallocate( p );
}
/// Placement single-object delete.
@ -261,6 +298,11 @@ namespace Loki
// Nov. 26, 2004: re-implemented by Rich Sposato.
//
// $Log$
// Revision 1.8 2005/09/09 00:24:59 rich_sposato
// Added functions to trim extra memory within allocator. Made a new_handler
// function for allocator. Added deallocator function for nothrow delete
// operator to insure nothing is leaked when constructor throws.
//
// Revision 1.7 2005/09/01 22:01:33 rich_sposato
// Added #ifdef to deal with MSVC warning about exception specification lists.
//

View file

@ -100,6 +100,12 @@ namespace Loki
inline std::size_t BlockSize() const
{ return blockSize_; }
bool TrimEmptyChunk( void );
std::size_t CountEmptyChunks( void ) const;
bool HasBlock( void * p ) const;
};
@ -251,6 +257,85 @@ void FixedAllocator::Initialize( std::size_t blockSize, std::size_t pageSize )
assert(numBlocks_ == numBlocks);
}
// FixedAllocator::CountEmptyChunks -------------------------------------------
/// Returns count of number of empty Chunks inside the chunk list.
std::size_t FixedAllocator::CountEmptyChunks( void ) const
{
std::size_t count = 0;
for ( ChunkCIter it( chunks_.begin() ); it != chunks_.end(); ++it )
{
const Chunk & chunk = *it;
if ( chunk.HasAvailable( numBlocks_ ) )
++count;
}
return count;
}
// FixedAllocator::HasBlock ---------------------------------------------------
/// Determines if any Chunk inside FixedAllocator has a block at address p.
/// @return True if Chunk owned by this has the block, else false.
bool FixedAllocator::HasBlock( void * p ) const
{
const std::size_t chunkLength = numBlocks_ * blockSize_;
unsigned char * pc = static_cast< unsigned char * >( p );
for ( ChunkCIter it( chunks_.begin() ); it != chunks_.end(); ++it )
{
const Chunk & chunk = *it;
if ( chunk.HasBlock( pc, chunkLength ) )
return true;
}
return false;
}
////////////////////////////////////////////////////////////////////////////////
// FixedAllocator::TrimEmptyChunk
// Releases the memory used by the empty Chunk.
////////////////////////////////////////////////////////////////////////////////
bool FixedAllocator::TrimEmptyChunk( void )
{
// prove either emptyChunk_ points nowhere, or points to a truly empty Chunk.
assert( ( NULL == emptyChunk_ ) || ( emptyChunk_->HasAvailable( numBlocks_ ) ) );
if ( NULL == emptyChunk_ ) return false;
// If emptyChunk_ points to valid Chunk, then chunk list is not empty.
assert( !chunks_.empty() );
// And there should be exactly 1 empty Chunk.
assert( 1 == CountEmptyChunks() );
Chunk * lastChunk = &chunks_.back();
if ( lastChunk != emptyChunk_ )
std::swap( *emptyChunk_, *lastChunk );
assert( lastChunk->HasAvailable( numBlocks_ ) );
lastChunk->Release();
chunks_.pop_back();
assert( 0 == CountEmptyChunks() );
if ( chunks_.empty() )
{
allocChunk_ = NULL;
deallocChunk_ = NULL;
}
else
{
if ( deallocChunk_ == emptyChunk_ )
{
deallocChunk_ = &chunks_.front();
assert( deallocChunk_->blocksAvailable_ < numBlocks_ );
}
if ( allocChunk_ == emptyChunk_ )
{
allocChunk_ = &chunks_.back();
assert( allocChunk_->blocksAvailable_ < numBlocks_ );
}
}
emptyChunk_ = NULL;
return true;
}
////////////////////////////////////////////////////////////////////////////////
// FixedAllocator::MakeNewChunk
// Allocates a new Chunk for a FixedAllocator.
@ -295,6 +380,7 @@ void * FixedAllocator::Allocate( void )
{
// prove either emptyChunk_ points nowhere, or points to a truly empty Chunk.
assert( ( NULL == emptyChunk_ ) || ( emptyChunk_->HasAvailable( numBlocks_ ) ) );
assert( CountEmptyChunks() < 2 );
if ( ( NULL == allocChunk_ ) || allocChunk_->IsFilled() )
{
@ -331,8 +417,9 @@ void * FixedAllocator::Allocate( void )
assert( !allocChunk_->IsFilled() );
void *place = allocChunk_->Allocate(blockSize_);
// prove either emptyChunk_ points nowhere, or points to a truly empty Chunk.
assert( ( NULL == emptyChunk_ ) || ( emptyChunk_->HasAvailable( numBlocks_ ) ) );
// prove emptyChunk_ points nowhere.
assert( NULL == emptyChunk_ );
assert( 0 == CountEmptyChunks() );
return place;
}
@ -352,6 +439,7 @@ bool FixedAllocator::Deallocate( void * p, bool doChecks )
assert(&chunks_.back() >= deallocChunk_);
assert( &chunks_.front() <= allocChunk_ );
assert( &chunks_.back() >= allocChunk_ );
assert( CountEmptyChunks() < 2 );
}
Chunk * foundChunk = VicinityFind( p );
@ -364,6 +452,8 @@ bool FixedAllocator::Deallocate( void * p, bool doChecks )
deallocChunk_ = foundChunk;
DoDeallocate(p);
assert( CountEmptyChunks() < 2 );
return true;
}
@ -532,6 +622,23 @@ SmallObjAllocator::~SmallObjAllocator( void )
delete [] pool_;
}
////////////////////////////////////////////////////////////////////////////////
// SmallObjAllocator::TrimExcessMemory
// Trims excess memory within all FixedAllocators.
////////////////////////////////////////////////////////////////////////////////
bool SmallObjAllocator::TrimExcessMemory( void )
{
bool found = false;
const std::size_t allocCount = GetOffset( GetMaxObjectSize(), GetAlignment() );
for ( std::size_t i = 0; i < allocCount; ++i )
{
if ( pool_[ i ].TrimEmptyChunk() )
found = true;
}
return found;
}
////////////////////////////////////////////////////////////////////////////////
// SmallObjAllocator::Allocate
// Handles request to allocate numBytes for 1 object.
@ -556,6 +663,10 @@ void * SmallObjAllocator::Allocate( std::size_t numBytes, bool doThrow )
assert( allocator.BlockSize() >= numBytes );
assert( allocator.BlockSize() < numBytes + GetAlignment() );
void * place = allocator.Allocate();
if ( ( NULL == place ) && TrimExcessMemory() )
place = allocator.Allocate();
if ( ( NULL == place ) && doThrow )
{
#if _MSC_VER
@ -596,6 +707,37 @@ void SmallObjAllocator::Deallocate( void * p, std::size_t numBytes )
assert( found );
}
////////////////////////////////////////////////////////////////////////////////
// SmallObjAllocator::Deallocate
// Handles request to deallocate 1 object that was allocated by non-throwing
// new operator. This will act in linear-time. It will never throw.
////////////////////////////////////////////////////////////////////////////////
void SmallObjAllocator::Deallocate( void * p )
{
if ( NULL == p ) return;
assert( NULL != pool_ );
FixedAllocator * pAllocator = NULL;
const std::size_t allocCount = GetOffset( GetMaxObjectSize(), GetAlignment() );
for ( std::size_t ii = 0; ii < allocCount; ++ii )
{
if ( pool_[ ii ].HasBlock( p ) )
{
pAllocator = &pool_[ ii ];
break;
}
}
if ( NULL == pAllocator )
{
DefaultDeallocator( p );
return;
}
const bool found = pAllocator->Deallocate( p, true );
assert( found );
}
} // end namespace Loki
////////////////////////////////////////////////////////////////////////////////
@ -609,6 +751,11 @@ void SmallObjAllocator::Deallocate( void * p, std::size_t numBytes )
////////////////////////////////////////////////////////////////////////////////
// $Log$
// Revision 1.4 2005/09/09 00:25:00 rich_sposato
// Added functions to trim extra memory within allocator. Made a new_handler
// function for allocator. Added deallocator function for nothrow delete
// operator to insure nothing is leaked when constructor throws.
//
// Revision 1.3 2005/09/01 22:15:47 rich_sposato
// Changed Chunk list to double in size when adding new chunks instead of
// just incrementing by 1. Changes linear operation into amortized constant