-adding flex_string

git-svn-id: svn://svn.code.sf.net/p/loki-lib/code/trunk@214 7ec92016-0320-0410-acc4-a06ded1c099a
This commit is contained in:
syntheticpp 2005-08-27 10:20:46 +00:00
parent 7d639aff90
commit f994398a51
8 changed files with 2812 additions and 0 deletions

View file

@ -0,0 +1,274 @@
////////////////////////////////////////////////////////////////////////////////
// flex_string
// Copyright (c) 2001 by Andrei Alexandrescu
// Permission to use, copy, modify, distribute and sell this software for any
// purpose is hereby granted without fee, provided that the above copyright
// notice appear in all copies and that both that copyright notice and this
// permission notice appear in supporting documentation.
// The author makes no representations about the
// suitability of this software for any purpose. It is provided "as is"
// without express or implied warranty.
////////////////////////////////////////////////////////////////////////////////
#ifndef ALLOCATOR_STRING_STORAGE_INC_
#define ALLOCATOR_STRING_STORAGE_INC_
/* This is the template for a storage policy
////////////////////////////////////////////////////////////////////////////////
template <typename E, class A = @>
class StoragePolicy
{
typedef E value_type;
typedef @ iterator;
typedef @ const_iterator;
typedef A allocator_type;
typedef @ size_type;
StoragePolicy(const StoragePolicy& s);
StoragePolicy(const A&);
StoragePolicy(const E* s, size_type len, const A&);
StoragePolicy(size_type len, E c, const A&);
~StoragePolicy();
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
size_type size() const;
size_type max_size() const;
size_type capacity() const;
void reserve(size_type res_arg);
template <class ForwardIterator>
void append(ForwardIterator b, ForwardIterator e);
void resize(size_type newSize, E fill);
void swap(StoragePolicy& rhs);
const E* c_str() const;
const E* data() const;
A get_allocator() const;
};
////////////////////////////////////////////////////////////////////////////////
*/
#include <memory>
#include <algorithm>
#include <functional>
#include <cassert>
#include <limits>
#include <stdexcept>
#include "flex_string_details.h"
#include "simplestringstorage.h"
////////////////////////////////////////////////////////////////////////////////
// class template AllocatorStringStorage
// Allocates with your allocator
// Takes advantage of the Empty Base Optimization if available
////////////////////////////////////////////////////////////////////////////////
template <typename E, class A = std::allocator<E> >
class AllocatorStringStorage : public A
{
typedef typename A::size_type size_type;
typedef typename SimpleStringStorage<E, A>::Data Data;
void* Alloc(size_type sz, const void* p = 0)
{
return A::allocate(1 + (sz - 1) / sizeof(E),
static_cast<const char*>(p));
}
void* Realloc(void* p, size_type oldSz, size_type newSz)
{
void* r = Alloc(newSz);
flex_string_details::pod_copy(p, p + Min(oldSz, newSz), r);
Free(p, oldSz);
return r;
}
void Free(void* p, size_type sz)
{
A::deallocate(static_cast<E*>(p), sz);
}
Data* pData_;
void Init(size_type size, size_type cap)
{
assert(size <= cap);
if (cap == 0)
{
pData_ = const_cast<Data*>(
&SimpleStringStorage<E, A>::emptyString_);
}
else
{
pData_ = static_cast<Data*>(Alloc(
cap * sizeof(E) + sizeof(Data)));
pData_->pEnd_ = pData_->buffer_ + size;
pData_->pEndOfMem_ = pData_->buffer_ + cap;
}
}
public:
typedef E value_type;
typedef A allocator_type;
typedef typename A::pointer iterator;
typedef typename A::const_pointer const_iterator;
AllocatorStringStorage()
: A(), pData_(0)
{
}
AllocatorStringStorage(const AllocatorStringStorage& rhs)
: A(rhs.get_allocator())
{
const size_type sz = rhs.size();
Init(sz, sz);
if (sz) flex_string_details::pod_copy(rhs.begin(), rhs.end(), begin());
}
AllocatorStringStorage(const AllocatorStringStorage& s,
flex_string_details::Shallow)
: A(s.get_allocator())
{
pData_ = s.pData_;
}
AllocatorStringStorage(const A& a) : A(a)
{
pData_ = const_cast<Data*>(
&SimpleStringStorage<E, A>::emptyString_);
}
AllocatorStringStorage(const E* s, size_type len, const A& a)
: A(a)
{
Init(len, len);
flex_string_details::pod_copy(s, s + len, begin());
}
AllocatorStringStorage(size_type len, E c, const A& a)
: A(a)
{
Init(len, len);
flex_string_details::pod_fill(&*begin(), &*end(), c);
}
AllocatorStringStorage& operator=(const AllocatorStringStorage& rhs)
{
const size_type sz = rhs.size();
reserve(sz);
flex_string_details::pod_copy(&*rhs.begin(), &*rhs.end(), begin());
pData_->pEnd_ = &*begin() + rhs.size();
return *this;
}
~AllocatorStringStorage()
{
if (capacity())
{
Free(pData_,
sizeof(Data) + capacity() * sizeof(E));
}
}
iterator begin()
{ return pData_->buffer_; }
const_iterator begin() const
{ return pData_->buffer_; }
iterator end()
{ return pData_->pEnd_; }
const_iterator end() const
{ return pData_->pEnd_; }
size_type size() const
{ return size_type(end() - begin()); }
size_type max_size() const
{ return A::max_size(); }
size_type capacity() const
{ return size_type(pData_->pEndOfMem_ - pData_->buffer_); }
void resize(size_type n, E c)
{
reserve(n);
iterator newEnd = begin() + n;
iterator oldEnd = end();
if (newEnd > oldEnd)
{
// Copy the characters
flex_string_details::pod_fill(oldEnd, newEnd, c);
}
if (capacity()) pData_->pEnd_ = newEnd;
}
void reserve(size_type res_arg)
{
if (res_arg <= capacity())
{
// @@@ shrink to fit here
return;
}
A& myAlloc = *this;
AllocatorStringStorage newStr(myAlloc);
newStr.Init(size(), res_arg);
flex_string_details::pod_copy(begin(), end(), newStr.begin());
swap(newStr);
}
template <class ForwardIterator>
void append(ForwardIterator b, ForwardIterator e)
{
const size_type
sz = std::distance(b, e),
neededCapacity = size() + sz;
if (capacity() < neededCapacity)
{
static std::less_equal<const E*> le;
assert(!(le(begin(), &*b) && le(&*b, end())));
reserve(neededCapacity);
}
std::copy(b, e, end());
pData_->pEnd_ += sz;
}
void swap(AllocatorStringStorage& rhs)
{
// @@@ The following line is commented due to a bug in MSVC
//std::swap(lhsAlloc, rhsAlloc);
std::swap(pData_, rhs.pData_);
}
const E* c_str() const
{
if (pData_ != &SimpleStringStorage<E, A>::emptyString_)
{
*pData_->pEnd_ = E();
}
return &*begin();
}
const E* data() const
{ return &*begin(); }
A get_allocator() const
{ return *this; }
};
#endif // ALLOCATOR_STRING_STORAGE_INC_

275
include/loki/flex/cowstringopt.h Executable file
View file

@ -0,0 +1,275 @@
////////////////////////////////////////////////////////////////////////////////
// flex_string
// Copyright (c) 2001 by Andrei Alexandrescu
// Permission to use, copy, modify, distribute and sell this software for any
// purpose is hereby granted without fee, provided that the above copyright
// notice appear in all copies and that both that copyright notice and this
// permission notice appear in supporting documentation.
// The author makes no representations about the
// suitability of this software for any purpose. It is provided "as is"
// without express or implied warranty.
////////////////////////////////////////////////////////////////////////////////
#ifndef COW_STRING_OPT_INC_
#define COW_STRING_OPT_INC_
////////////////////////////////////////////////////////////////////////////////
// class template CowStringOpt
// Implements Copy on Write over any storage
////////////////////////////////////////////////////////////////////////////////
/* This is the template for a storage policy
////////////////////////////////////////////////////////////////////////////////
template <typename E, class A = @>
class StoragePolicy
{
typedef E value_type;
typedef @ iterator;
typedef @ const_iterator;
typedef A allocator_type;
typedef @ size_type;
StoragePolicy(const StoragePolicy& s);
StoragePolicy(const A&);
StoragePolicy(const E* s, size_type len, const A&);
StoragePolicy(size_type len, E c, const A&);
~StoragePolicy();
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
size_type size() const;
size_type max_size() const;
size_type capacity() const;
void reserve(size_type res_arg);
void append(const E* s, size_type sz);
template <class InputIterator>
void append(InputIterator b, InputIterator e);
void resize(size_type newSize, E fill);
void swap(StoragePolicy& rhs);
const E* c_str() const;
const E* data() const;
A get_allocator() const;
};
////////////////////////////////////////////////////////////////////////////////
*/
#include <memory>
#include <algorithm>
#include <functional>
#include <cassert>
#include <limits>
#include <stdexcept>
#include "flex_string_details.h"
////////////////////////////////////////////////////////////////////////////////
// class template CowStringOpt
// Implements Copy on Write over any storage
////////////////////////////////////////////////////////////////////////////////
template <class Storage, typename Align = typename Storage::value_type*>
class CowStringOpt
{
typedef typename Storage::value_type E;
typedef typename flex_string_details::get_unsigned<E>::result RefCountType;
public:
typedef E value_type;
typedef typename Storage::iterator iterator;
typedef typename Storage::const_iterator const_iterator;
typedef typename Storage::allocator_type allocator_type;
typedef typename allocator_type::size_type size_type;
typedef typename Storage::reference reference;
private:
union
{
mutable char buf_[sizeof(Storage)];
Align align_;
};
Storage& Data() const
{ return *reinterpret_cast<Storage*>(buf_); }
RefCountType GetRefs() const
{
const Storage& d = Data();
assert(d.size() > 0);
assert(*d.begin() > 0);
return *d.begin();
}
RefCountType& Refs()
{
Storage& d = Data();
assert(d.size() > 0);
return reinterpret_cast<RefCountType&>(*d.begin());
}
void MakeUnique() const
{
assert(GetRefs() >= 1);
if (GetRefs() == 1) return;
union
{
char buf_[sizeof(Storage)];
Align align_;
} temp;
new(buf_) Storage(
*new(temp.buf_) Storage(Data()),
flex_string_details::Shallow());
*Data().begin() = 1;
}
public:
CowStringOpt(const CowStringOpt& s)
{
if (s.GetRefs() == std::numeric_limits<RefCountType>::max())
{
// must make a brand new copy
new(buf_) Storage(s.Data()); // non shallow
Refs() = 1;
}
else
{
new(buf_) Storage(s.Data(), flex_string_details::Shallow());
++Refs();
}
assert(Data().size() > 0);
}
CowStringOpt(const allocator_type& a)
{
new(buf_) Storage(1, 1, a);
}
CowStringOpt(const E* s, size_type len, const allocator_type& a)
{
// Warning - MSVC's debugger has trouble tracing through the code below.
// It seems to be a const-correctness issue
//
new(buf_) Storage(a);
Data().reserve(len + 1);
Data().resize(1, 1);
Data().append(s, s + len);
}
CowStringOpt(size_type len, E c, const allocator_type& a)
{
new(buf_) Storage(len + 1, c, a);
Refs() = 1;
}
CowStringOpt& operator=(const CowStringOpt& rhs)
{
CowStringOpt(rhs).swap(*this);
return *this;
}
~CowStringOpt()
{
assert(Data().size() > 0);
if (--Refs() == 0) Data().~Storage();
}
iterator begin()
{
assert(Data().size() > 0);
MakeUnique();
return Data().begin() + 1;
}
const_iterator begin() const
{
assert(Data().size() > 0);
return Data().begin() + 1;
}
iterator end()
{
MakeUnique();
return Data().end();
}
const_iterator end() const
{
return Data().end();
}
size_type size() const
{
assert(Data().size() > 0);
return Data().size() - 1;
}
size_type max_size() const
{
assert(Data().max_size() > 0);
return Data().max_size() - 1;
}
size_type capacity() const
{
assert(Data().capacity() > 0);
return Data().capacity() - 1;
}
void resize(size_type n, E c)
{
assert(Data().size() > 0);
MakeUnique();
Data().resize(n + 1, c);
}
template <class FwdIterator>
void append(FwdIterator b, FwdIterator e)
{
MakeUnique();
Data().append(b, e);
}
void reserve(size_type res_arg)
{
if (capacity() > res_arg) return;
MakeUnique();
Data().reserve(res_arg + 1);
}
void swap(CowStringOpt& rhs)
{
Data().swap(rhs.Data());
}
const E* c_str() const
{
assert(Data().size() > 0);
return Data().c_str() + 1;
}
const E* data() const
{
assert(Data().size() > 0);
return Data().data() + 1;
}
allocator_type get_allocator() const
{
return Data().get_allocator();
}
};
#endif // COW_STRING_OPT_INC_

28
include/loki/flex/flex_string.h Executable file
View file

@ -0,0 +1,28 @@
////////////////////////////////////////////////////////////////////////////////
// flex_string
// Copyright (c) 2001 by Andrei Alexandrescu
// Permission to use, copy, modify, distribute and sell this software for any
// purpose is hereby granted without fee, provided that the above copyright
// notice appear in all copies and that both that copyright notice and this
// permission notice appear in supporting documentation.
// The author makes no representations about the
// suitability of this software for any purpose. It is provided "as is"
// without express or implied warranty.
////////////////////////////////////////////////////////////////////////////////
#ifndef FLEX_STRING_INC_
#define FLEX_STRING_INC_
// <THE> string
#include "flex_string_shell.h"
// Storage policies
#include "simplestringstorage.h"
#include "allocatorstringstorage.h"
#include "vectorstringstorage.h"
#include "smallstringopt.h"
#include "cowstringopt.h"
//#include "utf16encoding.h"
#endif // FLEX_STRING_INC_

View file

@ -0,0 +1,99 @@
////////////////////////////////////////////////////////////////////////////////
// flex_string
// Copyright (c) 2001 by Andrei Alexandrescu
// Permission to use, copy, modify, distribute and sell this software for any
// purpose is hereby granted without fee, provided that the above copyright
// notice appear in all copies and that both that copyright notice and this
// permission notice appear in supporting documentation.
// The author makes no representations about the
// suitability of this software for any purpose. It is provided "as is"
// without express or implied warranty.
////////////////////////////////////////////////////////////////////////////////
#ifndef FLEX_STRING_DETAILS_INC_
#define FLEX_STRING_DETAILS_INC_
#include <memory>
namespace flex_string_details
{
template <class InIt, class OutIt>
OutIt copy_n(InIt b, typename std::iterator_traits<InIt>::difference_type n, OutIt d)
{
for (; n != 0; --n, ++b, ++d)
{
*d = *b;
}
return d;
}
template <class Pod, class T>
inline void pod_fill(Pod* b, Pod* e, T c)
{
switch ((e - b) & 7)
{
case 0:
while (b != e)
{
*b = c; ++b;
case 7: *b = c; ++b;
case 6: *b = c; ++b;
case 5: *b = c; ++b;
case 4: *b = c; ++b;
case 3: *b = c; ++b;
case 2: *b = c; ++b;
case 1: *b = c; ++b;
}
}
}
template <class Pod>
inline void pod_move(const Pod* b, const Pod* e, Pod* d)
{
using namespace std;
memmove(d, b, (e - b) * sizeof(*b));
}
template <class Pod>
inline Pod* pod_copy(const Pod* b, const Pod* e, Pod* d)
{
const size_t s = e - b;
using namespace std;
memcpy(d, b, s * sizeof(*b));
return d + s;
}
template <typename T> struct get_unsigned
{
typedef T result;
};
template <> struct get_unsigned<char>
{
typedef unsigned char result;
};
template <> struct get_unsigned<signed char>
{
typedef unsigned char result;
};
template <> struct get_unsigned<short int>
{
typedef unsigned short int result;
};
template <> struct get_unsigned<int>
{
typedef unsigned int result;
};
template <> struct get_unsigned<long int>
{
typedef unsigned long int result;
};
enum Shallow {};
}
#endif // FLEX_STRING_DETAILS_INC_

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,281 @@
////////////////////////////////////////////////////////////////////////////////
// flex_string
// Copyright (c) 2001 by Andrei Alexandrescu
// Permission to use, copy, modify, distribute and sell this software for any
// purpose is hereby granted without fee, provided that the above copyright
// notice appear in all copies and that both that copyright notice and this
// permission notice appear in supporting documentation.
// The author makes no representations about the
// suitability of this software for any purpose. It is provided "as is"
// without express or implied warranty.
////////////////////////////////////////////////////////////////////////////////
#ifndef SIMPLE_STRING_STORAGE_INC_
#define SIMPLE_STRING_STORAGE_INC_
/* This is the template for a storage policy
////////////////////////////////////////////////////////////////////////////////
template <typename E, class A = @>
class StoragePolicy
{
typedef E value_type;
typedef @ iterator;
typedef @ const_iterator;
typedef A allocator_type;
typedef @ size_type;
StoragePolicy(const StoragePolicy& s);
StoragePolicy(const A&);
StoragePolicy(const E* s, size_type len, const A&);
StoragePolicy(size_type len, E c, const A&);
~StoragePolicy();
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
size_type size() const;
size_type max_size() const;
size_type capacity() const;
void reserve(size_type res_arg);
template <class ForwardIterator>
void append(ForwardIterator b, ForwardIterator e);
void resize(size_type newSize, E fill);
void swap(StoragePolicy& rhs);
const E* c_str() const;
const E* data() const;
A get_allocator() const;
};
////////////////////////////////////////////////////////////////////////////////
*/
#include <memory>
#include <algorithm>
#include <functional>
#include <cassert>
#include <limits>
#include <stdexcept>
////////////////////////////////////////////////////////////////////////////////
// class template SimpleStringStorage
// Allocates memory with malloc
////////////////////////////////////////////////////////////////////////////////
template <typename E, class A = std::allocator<E> >
class SimpleStringStorage
{
// The "public" below exists because MSVC can't do template typedefs
public:
struct Data
{
Data() : pEnd_(buffer_), pEndOfMem_(buffer_) { buffer_[0] = E(0); }
E* pEnd_;
E* pEndOfMem_;
E buffer_[1];
};
static const Data emptyString_;
typedef typename A::size_type size_type;
private:
Data* pData_;
void Init(size_type size, size_type capacity)
{
assert(size <= capacity);
if (capacity == 0)
{
pData_ = const_cast<Data*>(&emptyString_);
}
else
{
// 11-17-2000: comment added:
// No need to allocate (capacity + 1) to
// accomodate the terminating 0, because Data already
// has one one character in there
pData_ = static_cast<Data*>(
malloc(sizeof(Data) + capacity * sizeof(E)));
if (!pData_) throw std::bad_alloc();
pData_->pEnd_ = pData_->buffer_ + size;
pData_->pEndOfMem_ = pData_->buffer_ + capacity;
}
}
private:
// Warning - this doesn't initialize pData_. Used in reserve()
SimpleStringStorage()
{ }
public:
typedef E value_type;
typedef E* iterator;
typedef const E* const_iterator;
typedef A allocator_type;
typedef typename A::reference reference;
SimpleStringStorage(const SimpleStringStorage& rhs)
{
const size_type sz = rhs.size();
Init(sz, sz);
if (sz) flex_string_details::pod_copy(rhs.begin(), rhs.end(), begin());
}
SimpleStringStorage(const SimpleStringStorage& s,
flex_string_details::Shallow)
: pData_(s.pData_)
{
}
SimpleStringStorage(const A&)
{ pData_ = const_cast<Data*>(&emptyString_); }
SimpleStringStorage(const E* s, size_type len, const A&)
{
Init(len, len);
flex_string_details::pod_copy(s, s + len, begin());
}
SimpleStringStorage(size_type len, E c, const A&)
{
Init(len, len);
flex_string_details::pod_fill(begin(), end(), c);
}
SimpleStringStorage& operator=(const SimpleStringStorage& rhs)
{
const size_type sz = rhs.size();
reserve(sz);
flex_string_details::pod_copy(&*rhs.begin(), &*rhs.end(), begin());
pData_->pEnd_ = &*begin() + sz;
return *this;
}
~SimpleStringStorage()
{
assert(begin() <= end());
if (pData_ != &emptyString_) free(pData_);
}
iterator begin()
{ return pData_->buffer_; }
const_iterator begin() const
{ return pData_->buffer_; }
iterator end()
{ return pData_->pEnd_; }
const_iterator end() const
{ return pData_->pEnd_; }
size_type size() const
{ return pData_->pEnd_ - pData_->buffer_; }
size_type max_size() const
{ return size_t(-1) / sizeof(E) - sizeof(Data) - 1; }
size_type capacity() const
{ return pData_->pEndOfMem_ - pData_->buffer_; }
void reserve(size_type res_arg)
{
if (res_arg <= capacity())
{
// @@@ insert shrinkage here if you wish
return;
}
if (pData_ == &emptyString_)
{
Init(0, res_arg);
}
else
{
const size_type sz = size();
void* p = realloc(pData_,
sizeof(Data) + res_arg * sizeof(E));
if (!p) throw std::bad_alloc();
if (p != pData_)
{
pData_ = static_cast<Data*>(p);
pData_->pEnd_ = pData_->buffer_ + sz;
}
pData_->pEndOfMem_ = pData_->buffer_ + res_arg;
}
}
template <class InputIterator>
void append(InputIterator b, InputIterator e)
{
const size_type
sz = std::distance(b, e),
neededCapacity = size() + sz;
if (capacity() < neededCapacity)
{
static std::less_equal<const E*> le;
assert(!(le(begin(), &*b) && le(&*b, end()))); // no aliasing
reserve(neededCapacity);
}
std::copy(b, e, end());
pData_->pEnd_ += sz;
}
void resize(size_type newSize, E fill)
{
const int delta = int(newSize - size());
if (delta == 0) return;
if (delta > 0)
{
if (newSize > capacity())
{
reserve(newSize);
}
E* e = &*end();
flex_string_details::pod_fill(e, e + delta, fill);
}
pData_->pEnd_ = pData_->buffer_ + newSize;
}
void swap(SimpleStringStorage& rhs)
{
std::swap(pData_, rhs.pData_);
}
const E* c_str() const
{
if (pData_ != &emptyString_) *pData_->pEnd_ = E();
return pData_->buffer_;
}
const E* data() const
{ return pData_->buffer_; }
A get_allocator() const
{ return A(); }
};
template <typename E, class A>
const typename SimpleStringStorage<E, A>::Data
SimpleStringStorage<E, A>::emptyString_;
//{
// const_cast<E*>(SimpleStringStorage<E, A>::emptyString_.buffer_),
// const_cast<E*>(SimpleStringStorage<E, A>::emptyString_.buffer_),
// { E() }
//};
#endif // SIMPLE_STRING_STORAGE_INC_

View file

@ -0,0 +1,392 @@
////////////////////////////////////////////////////////////////////////////////
// flex_string
// Copyright (c) 2001 by Andrei Alexandrescu
// Permission to use, copy, modify, distribute and sell this software for any
// purpose is hereby granted without fee, provided that the above copyright
// notice appear in all copies and that both that copyright notice and this
// permission notice appear in supporting documentation.
// The author makes no representations about the
// suitability of this software for any purpose. It is provided "as is"
// without express or implied warranty.
////////////////////////////////////////////////////////////////////////////////
#ifndef SMALL_STRING_OPT_INC_
#define SMALL_STRING_OPT_INC_
////////////////////////////////////////////////////////////////////////////////
// class template SmallStringOpt
// Builds the small string optimization over any other storage
////////////////////////////////////////////////////////////////////////////////
/* This is the template for a storage policy
////////////////////////////////////////////////////////////////////////////////
template <typename E, class A = @>
class StoragePolicy
{
typedef E value_type;
typedef @ iterator;
typedef @ const_iterator;
typedef A allocator_type;
typedef @ size_type;
StoragePolicy(const StoragePolicy& s);
StoragePolicy(const A&);
StoragePolicy(const E* s, size_type len, const A&);
StoragePolicy(size_type len, E c, const A&);
~StoragePolicy();
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
size_type size() const;
size_type max_size() const;
size_type capacity() const;
void reserve(size_type res_arg);
void append(const E* s, size_type sz);
template <class InputIterator>
void append(InputIterator b, InputIterator e);
void resize(size_type newSize, E fill);
void swap(StoragePolicy& rhs);
const E* c_str() const;
const E* data() const;
A get_allocator() const;
};
////////////////////////////////////////////////////////////////////////////////
*/
#include <memory>
#include <algorithm>
#include <functional>
#include <cassert>
#include <limits>
#include <stdexcept>
#include "flex_string_details.h"
////////////////////////////////////////////////////////////////////////////////
// class template SmallStringOpt
// Builds the small string optimization over any other storage
////////////////////////////////////////////////////////////////////////////////
template <class Storage, unsigned int threshold,
typename Align = typename Storage::value_type*>
class SmallStringOpt
{
public:
typedef typename Storage::value_type value_type;
typedef value_type* iterator;
typedef const value_type* const_iterator;
typedef typename Storage::allocator_type allocator_type;
typedef typename allocator_type::size_type size_type;
typedef typename Storage::reference reference;
private:
enum { temp1 = threshold * sizeof(value_type) > sizeof(Storage)
? threshold * sizeof(value_type)
: sizeof(Storage) };
enum { temp2 = temp1 > sizeof(Align) ? temp1 : sizeof(Align) };
public:
enum { maxSmallString =
(temp2 + sizeof(value_type) - 1) / sizeof(value_type) };
private:
enum { magic = maxSmallString + 1 };
union
{
mutable value_type buf_[maxSmallString + 1];
Align align_;
};
Storage& GetStorage()
{
assert(buf_[maxSmallString] == magic);
Storage* p = reinterpret_cast<Storage*>(&buf_[0]);
return *p;
}
const Storage& GetStorage() const
{
assert(buf_[maxSmallString] == magic);
const Storage *p = reinterpret_cast<const Storage*>(&buf_[0]);
return *p;
}
bool Small() const
{
return buf_[maxSmallString] != magic;
}
public:
SmallStringOpt(const SmallStringOpt& s)
{
if (s.Small())
{
flex_string_details::pod_copy(
s.buf_,
s.buf_ + s.size(),
buf_);
}
else
{
new(buf_) Storage(s.GetStorage());
}
buf_[maxSmallString] = s.buf_[maxSmallString];
}
SmallStringOpt(const allocator_type&)
{
buf_[maxSmallString] = maxSmallString;
}
SmallStringOpt(const value_type* s, size_type len, const allocator_type& a)
{
if (len <= maxSmallString)
{
flex_string_details::pod_copy(s, s + len, buf_);
buf_[maxSmallString] = value_type(maxSmallString - len);
}
else
{
new(buf_) Storage(s, len, a);
buf_[maxSmallString] = magic;
}
}
SmallStringOpt(size_type len, value_type c, const allocator_type& a)
{
if (len <= maxSmallString)
{
flex_string_details::pod_fill(buf_, buf_ + len, c);
buf_[maxSmallString] = value_type(maxSmallString - len);
}
else
{
new(buf_) Storage(len, c, a);
buf_[maxSmallString] = magic;
}
}
SmallStringOpt& operator=(const SmallStringOpt& rhs)
{
if (&rhs != this)
{
reserve(rhs.size());
resize(0, 0);
append(rhs.data(), rhs.data() + rhs.size());
}
return *this;
}
~SmallStringOpt()
{
if (!Small()) GetStorage().~Storage();
}
iterator begin()
{
if (Small()) return buf_;
return &*GetStorage().begin();
}
const_iterator begin() const
{
if (Small()) return buf_;
return &*GetStorage().begin();
}
iterator end()
{
if (Small()) return buf_ + maxSmallString - buf_[maxSmallString];
return &*GetStorage().end();
}
const_iterator end() const
{
if (Small()) return buf_ + maxSmallString - buf_[maxSmallString];
return &*GetStorage().end();
}
size_type size() const
{
assert(!Small() || maxSmallString >= buf_[maxSmallString]);
return Small()
? maxSmallString - buf_[maxSmallString]
: GetStorage().size();
}
size_type max_size() const
{ return get_allocator().max_size(); }
size_type capacity() const
{ return Small() ? maxSmallString : GetStorage().capacity(); }
void reserve(size_type res_arg)
{
if (Small())
{
if (res_arg <= maxSmallString) return;
SmallStringOpt temp(*this);
this->~SmallStringOpt();
new(buf_) Storage(temp.data(), temp.size(),
temp.get_allocator());
buf_[maxSmallString] = magic;
GetStorage().reserve(res_arg);
}
else
{
GetStorage().reserve(res_arg);
}
assert(capacity() >= res_arg);
}
template <class FwdIterator>
void append(FwdIterator b, FwdIterator e)
{
if (!Small())
{
GetStorage().append(b, e);
}
else
{
// append to a small string
const size_type
sz = std::distance(b, e),
neededCapacity = maxSmallString - buf_[maxSmallString] + sz;
if (maxSmallString < neededCapacity)
{
// need to change storage strategy
allocator_type alloc;
Storage temp(alloc);
temp.reserve(neededCapacity);
temp.append(buf_, buf_ + maxSmallString - buf_[maxSmallString]);
temp.append(b, e);
buf_[maxSmallString] = magic;
new(buf_) Storage(temp.get_allocator());
GetStorage().swap(temp);
}
else
{
std::copy(b, e, buf_ + maxSmallString - buf_[maxSmallString]);
buf_[maxSmallString] -= value_type(sz);
}
}
}
void resize(size_type n, value_type c)
{
if (Small())
{
if (n > maxSmallString)
{
// Small string resized to big string
SmallStringOpt temp(*this); // can't throw
// 11-17-2001: correct exception safety bug
Storage newString(temp.data(), temp.size(),
temp.get_allocator());
newString.resize(n, c);
// We make the reasonable assumption that an empty Storage
// constructor won't throw
this->~SmallStringOpt();
new(&buf_[0]) Storage(temp.get_allocator());
buf_[maxSmallString] = value_type(magic);
GetStorage().swap(newString);
}
else
{
// Small string resized to small string
// 11-17-2001: bug fix: terminating zero not copied
size_type toFill = n > size() ? n - size() : 0;
flex_string_details::pod_fill(end(), end() + toFill, c);
buf_[maxSmallString] = value_type(maxSmallString - n);
}
}
else
{
if (n > maxSmallString)
{
// Big string resized to big string
GetStorage().resize(n, c);
}
else
{
// Big string resized to small string
// 11-17=2001: bug fix in the assertion below
assert(capacity() > n);
SmallStringOpt newObj(data(), n, get_allocator());
newObj.swap(*this);
}
}
}
void swap(SmallStringOpt& rhs)
{
if (Small())
{
if (rhs.Small())
{
// Small swapped with small
std::swap_ranges(buf_, buf_ + maxSmallString + 1,
rhs.buf_);
}
else
{
// Small swapped with big
// Make a copy of myself - can't throw
SmallStringOpt temp(*this);
// Nuke myself
this->~SmallStringOpt();
// Make an empty storage for myself (likely won't throw)
new(buf_) Storage(0, value_type(), rhs.get_allocator());
buf_[maxSmallString] = magic;
// Recurse to this same function
swap(rhs);
// Nuke rhs
rhs.~SmallStringOpt();
// Build the new small string into rhs
new(&rhs) SmallStringOpt(temp);
}
}
else
{
if (rhs.Small())
{
// Big swapped with small
// Already implemented, recurse with reversed args
rhs.swap(*this);
}
else
{
// Big swapped with big
GetStorage().swap(rhs.GetStorage());
}
}
}
const value_type* c_str() const
{
if (!Small()) return GetStorage().c_str();
buf_[maxSmallString - buf_[maxSmallString]] = value_type();
return buf_;
}
const value_type* data() const
{ return Small() ? buf_ : GetStorage().data(); }
allocator_type get_allocator() const
{ return allocator_type(); }
};
#endif // SMALL_STRING_OPT_INC_

View file

@ -0,0 +1,189 @@
////////////////////////////////////////////////////////////////////////////////
// flex_string
// Copyright (c) 2001 by Andrei Alexandrescu
// Permission to use, copy, modify, distribute and sell this software for any
// purpose is hereby granted without fee, provided that the above copyright
// notice appear in all copies and that both that copyright notice and this
// permission notice appear in supporting documentation.
// The author makes no representations about the
// suitability of this software for any purpose. It is provided "as is"
// without express or implied warranty.
////////////////////////////////////////////////////////////////////////////////
#ifndef VECTOR_STRING_STORAGE_INC_
#define VECTOR_STRING_STORAGE_INC_
/* This is the template for a storage policy
////////////////////////////////////////////////////////////////////////////////
template <typename E, class A = @>
class StoragePolicy
{
typedef E value_type;
typedef @ iterator;
typedef @ const_iterator;
typedef A allocator_type;
typedef @ size_type;
StoragePolicy(const StoragePolicy& s);
StoragePolicy(const A&);
StoragePolicy(const E* s, size_type len, const A&);
StoragePolicy(size_type len, E c, const A&);
~StoragePolicy();
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
size_type size() const;
size_type max_size() const;
size_type capacity() const;
void reserve(size_type res_arg);
void append(const E* s, size_type sz);
template <class InputIterator>
void append(InputIterator b, InputIterator e);
void resize(size_type newSize, E fill);
void swap(StoragePolicy& rhs);
const E* c_str() const;
const E* data() const;
A get_allocator() const;
};
////////////////////////////////////////////////////////////////////////////////
*/
#include <memory>
#include <vector>
#include <algorithm>
#include <functional>
#include <cassert>
#include <limits>
#include <stdexcept>
////////////////////////////////////////////////////////////////////////////////
// class template VectorStringStorage
// Uses std::vector
// Takes advantage of the Empty Base Optimization if available
////////////////////////////////////////////////////////////////////////////////
template <typename E, class A = std::allocator<E> >
class VectorStringStorage : protected std::vector<E, A>
{
typedef std::vector<E, A> base;
public: // protected:
typedef E value_type;
typedef typename base::iterator iterator;
typedef typename base::const_iterator const_iterator;
typedef A allocator_type;
typedef typename A::size_type size_type;
typedef typename A::reference reference;
VectorStringStorage(const VectorStringStorage& s) : base(s)
{ }
VectorStringStorage(const A& a) : base(1, value_type(), a)
{ }
VectorStringStorage(const value_type* s, size_type len, const A& a)
: base(a)
{
base::reserve(len + 1);
base::insert(base::end(), s, s + len);
// Terminating zero
base::push_back(value_type());
}
VectorStringStorage(size_type len, E c, const A& a)
: base(len + 1, c, a)
{
// Terminating zero
base::back() = value_type();
}
VectorStringStorage& operator=(const VectorStringStorage& rhs)
{
base& v = *this;
v = rhs;
return *this;
}
iterator begin()
{ return base::begin(); }
const_iterator begin() const
{ return base::begin(); }
iterator end()
{ return base::end() - 1; }
const_iterator end() const
{ return base::end() - 1; }
size_type size() const
{ return base::size() - 1; }
size_type max_size() const
{ return base::max_size() - 1; }
size_type capacity() const
{ return base::capacity() - 1; }
void reserve(size_type res_arg)
{
assert(res_arg < max_size());
base::reserve(res_arg + 1);
}
template <class ForwardIterator>
void append(ForwardIterator b, ForwardIterator e)
{
const typename std::iterator_traits<ForwardIterator>::difference_type
sz = std::distance(b, e);
assert(sz >= 0);
if (sz == 0) return;
base::reserve(base::size() + sz);
const value_type & v = *b;
struct OnBlockExit
{
VectorStringStorage * that;
~OnBlockExit()
{
that->base::push_back(value_type());
}
} onBlockExit = { this };
assert(!base::empty());
assert(base::back() == value_type());
base::back() = v;
base::insert(base::end(), ++b, e);
}
void resize(size_type n, E c)
{
base::reserve(n + 1);
base::back() = c;
base::resize(n + 1, c);
base::back() = E();
}
void swap(VectorStringStorage& rhs)
{ base::swap(rhs); }
const E* c_str() const
{ return &*begin(); }
const E* data() const
{ return &*begin(); }
A get_allocator() const
{ return base::get_allocator(); }
};
#endif // VECTOR_STRING_STORAGE_INC_