Loki/include/loki/yasli/yasli_vector.h
syntheticpp 092052ee93 svn propdel svn:executable -R *
git-svn-id: svn://svn.code.sf.net/p/loki-lib/code/trunk@739 7ec92016-0320-0410-acc4-a06ded1c099a
2006-10-17 18:16:19 +00:00

576 lines
18 KiB
C++

#include "platform.h"
#include "yasli_fill_iterator.h"
#include "yasli_memory.h"
#include "yasli_traits.h"
#include "yasli_protocols.h"
#include <iterator>
#include <cassert>
#include <stdexcept>
#include "../TypeManip.h"
namespace yasli
{
template <class T, class Allocator = allocator<T> >
class vector;
}
namespace yasli {
template <class T, class Allocator>
class vector
{
struct ebo : public Allocator
{
T *beg_;
ebo() {}
ebo(const Allocator& a) : Allocator(a) {}
} ebo_;
T *end_;
T *eos_;
public:
// types:
typedef vector<T, Allocator> this_type;//not standard
typedef typename Allocator::reference reference;
typedef typename Allocator::const_reference const_reference;
typedef typename Allocator::pointer iterator; // See 23.1
typedef typename Allocator::const_pointer const_iterator; // See 23.1
typedef typename Allocator::size_type size_type; // See 23.1
typedef typename Allocator::difference_type difference_type;// See 23.1
typedef T value_type;
typedef Allocator allocator_type;
typedef typename Allocator::pointer pointer;
typedef typename Allocator::const_pointer const_pointer;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
private:
void init_empty()
{
#if YASLI_UNDEFINED_POINTERS_COPYABLE == 1
end_ = ebo_.beg_;
eos_ = ebo_.beg_;
#else
ebo_.beg_ = 0;
end_ = 0;
eos_ = 0;
#endif
assert(empty());
}
void init_move(vector& temp)
{
ebo_ = temp.ebo_;
end_ = temp.end_;
eos_ = temp.eos_;
temp.init_empty();
}
void init_fill(size_type n, const T& value, const Allocator& a)
{
// Will avoid catch (...)
vector<T, Allocator> temp(a);
temp.insert(temp.end(), n, value);
init_move(temp);
assert(size() == n);
}
// 23.2.4.1 construct/copy/destroy:
template <class InputIterator, class looks_like_itr>
void init(InputIterator first, InputIterator last, looks_like_itr, const Allocator& a)
{
vector temp(a);
temp.insert(temp.end(), first, last);
init_move(temp);
}
template <class non_iterator>
void init(non_iterator n, non_iterator datum, Loki::Int2Type<false>,
const Allocator& a)
{
init_fill((size_type)n, (const T&)datum, a);
}
public:
vector()
{
init_empty();
}
explicit vector(const Allocator& a)
: ebo_(a)
{
init_empty();
}
explicit vector(size_type n, const T& value = T(),
const Allocator& a = Allocator())
{
init_fill(n, value, a);
}
//!! avoid enable_if
template <class InputIterator>
vector(InputIterator first, InputIterator last, const Allocator& a = Allocator())
{
init(first, last, Loki::Int2Type<
yasli_nstd::is_class<InputIterator>::value ||
yasli_nstd::is_pointer<InputIterator>::value >(), a);
}
public:
vector(const vector<T,Allocator>& x)
{
vector temp(x.begin(), x.end(), x.ebo_);
init_move(temp);
}
~vector()
{
yasli_nstd::destroy(ebo_, ebo_.beg_, size());
const size_type c = capacity();
if (c != 0) ebo_.deallocate(ebo_.beg_, c);
}
// Note pass by value
vector<T,Allocator>& operator=(vector<T,Allocator> temp)
{
temp.swap(*this);
return *this;
}
template <class InputIterator>
void assign(InputIterator first, InputIterator last)
{
assign_pre_impl(first, last, Loki::Int2Type<yasli_nstd::
is_class<InputIterator>::value||yasli_nstd::
is_pointer<InputIterator>::value>());
}
private://-------ASSIGN IMPLEMENTATION
template <class InputIterator, class looks_like_itr>
void assign_pre_impl(InputIterator first, InputIterator last, looks_like_itr)
{
assign_impl(first, last,
std::iterator_traits<InputIterator>::iterator_category());
}
template <class InputIterator>
void assign_pre_impl(InputIterator n, InputIterator datum, Loki::Int2Type<false>)
{
assign((size_type) n, (const T&) datum);
}
template <class InputIterator>
void assign_impl(InputIterator first, InputIterator last, std::input_iterator_tag)
{
for (iterator i = begin(); i != end(); ++i, ++first)
{
if (first == last)
{
resize(i - begin());
return;
}
*i = *first;
}
// we filled up the vector, now insert the rest
insert(end(), first, last);
}
template <class RanIt>
void assign_impl(RanIt first, RanIt last, std::random_access_iterator_tag)
{
const typename std::iterator_traits<RanIt>::difference_type d =
last - first;
assert(d >= 0);
size_type newSize = size_type(d);
assert(newSize == d); // no funky iterators
reserve(newSize);
if (newSize >= size())
{
const size_t delta = newSize - size();
RanIt i = last - delta;
copy(first, i, ebo_.beg_);
insert(end(), i, last);
}
else
{
copy(first, last, ebo_.beg_);
resize(newSize);
}
assert(size() == newSize);
}
public:
void assign(size_type n, const T& u)
{
const size_type s = size();
if (n <= s)
{
T* const newEnd = ebo_.beg_ + n;
fill(ebo_.beg_, newEnd, u);
yasli_nstd::destroy(ebo_, newEnd, s - n);
end_ = newEnd;
}
else
{
reserve(n);
T* const newEnd = ebo_.beg_ + n;
fill(ebo_.beg_, end_, u);
uninitialized_fill(end_, newEnd, u);
end_ = newEnd;
}
assert(size() == n);
assert(empty() || front() == back());
}
allocator_type get_allocator() const
{
return ebo_;
}
// iterators:
iterator begin() { return ebo_.beg_; }
const_iterator begin() const { return ebo_.beg_; }
iterator end() { return end_; }
const_iterator end() const { return end_; }
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); }
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const { return const_reverse_iterator(begin()); }
// 23.2.4.2 capacity:
size_type size() const { return end_ - ebo_.beg_; }
size_type max_size() const { return ebo_.max_size(); }
void resize(size_type sz, T c = T())
{
const size_type oldSz = size();
if (oldSz >= sz)
{
erase(ebo_.beg_ + sz, end_);
}
else
{
reserve(sz);
uninitialized_fill(end_, end_ + (sz - oldSz), c);
end_ = ebo_.beg_ + sz;
}
assert(size() == sz);
}
private:
template<class is>
void resize_impl(size_type sz, T c)
{
}
public:
size_type capacity() const
{
return eos_ - ebo_.beg_;
}
bool empty() const
{
return ebo_.beg_ == end_;
}
void reserve(size_type n)
{
const size_type
s = size(),
c = capacity();
if (c >= n) return;
if (capacity() == 0)
{
ebo_.beg_ = ebo_.allocate(n);
}
else
{
ebo_.beg_ = yasli_nstd::allocator_traits<Allocator>::reallocate(
ebo_, ebo_.beg_, end_, n);
}
end_ = ebo_.beg_ + s;
eos_ = ebo_.beg_ + n;
assert(capacity() >= n);
assert(size() == s);
}
bool reserve_inplace_nstd(size_type n)
{
if (capacity() >= n) return true;
if (!yasli_nstd::allocator_traits<Allocator>::reallocate_inplace(
ebo_, ebo_.beg_, n))
{
return false;
}
eos_ = ebo_.beg_ + n;
return true;
}
// element access:
reference operator[](size_type n)
{
assert(n < size());
return ebo_.beg_[n];
}
const_reference operator[](size_type n) const
{
assert(n < size());
return ebo_.beg_[n];
}
const_reference at(size_type n) const
{
// Fix by Joseph Canedo
if (n >= size()) throw std::range_error("vector<>::at");
return ebo_.beg_[n];
}
reference at(size_type n)
{
// Fix by Joseph Canedo
if (n >= size()) throw std::range_error("vector<>::at");
return ebo_.beg_[n];
}
reference front()
{
assert(!empty());
return *ebo_.beg_;
}
const_reference front() const
{
assert(!empty());
return *ebo_.beg_;
}
reference back()
{
assert(!empty());
return end_[-1];
}
const_reference back() const
{
assert(!empty());
return end_[-1];
}
private:
void prepare_growth(size_type delta)
{
const size_type s = size();
// @@@ todo: replace magic constant with something meaningful
const size_type smallThreshold = 8;
if (s < smallThreshold)
{
reserve(std::max(smallThreshold, delta));
}
else
{
const size_type multiply = 3;
const size_type divide = 2;
const size_type suggestedSize = (s * multiply) / divide;
reserve(std::max(s + delta, suggestedSize));
}
}
public:
// 23.2.4.3 modifiers:
void push_back(const T& x)
{
if (size() == capacity())
{
prepare_growth(1);
}
new(end_) T(x);
++end_;
}
void pop_back()
{
assert(!empty());
ebo_.destroy(--end_);
}
void move_back_nstd(T& x)
{
if (size() == capacity())
{
prepare_growth(1);
}
yasli_protocols::move_traits<T>::nondestructive_move(&x, &x + 1, end_);
}
// 23.2.4.3 modifiers:
iterator insert(iterator position, const T& x)
{
// @@@ be smarter about this reservation
reserve(size() + 1);
const size_type pos = position - begin();
insert(position, (size_type)1, x);
return ebo_.beg_ + pos;
}
void insert(iterator position, size_type n, const T& x)
{
insert(position,
yasli_nstd::fill_iterator<const T&>(x),
yasli_nstd::fill_iterator<const T&>(x, n)
);
}
template <class InputIterator>
void insert(iterator position, InputIterator first, InputIterator last)
{
insert_pre_impl(position, first, last,
Loki::Int2Type<yasli_nstd::is_class<InputIterator>::value||
yasli_nstd::is_pointer<InputIterator>::value>());
}
private:
template<class InputIterator, class looks_like_iterator>
void
insert_pre_impl(iterator position, InputIterator first, InputIterator last,
looks_like_iterator)
{
insert_impl(position, first, last,
typename std::iterator_traits<InputIterator>::iterator_category());
}
template <class non_iterator>
void insert_pre_impl(iterator position, non_iterator n, non_iterator x,
Loki::Int2Type<false>)
{ //used if e.g. T is int and insert(itr, 10, 6) is called
insert(position, static_cast<size_type>(n),
static_cast<value_type>(x));
}
template <class InputIterator>
void insert_impl(iterator position,
InputIterator first, InputIterator last, std::input_iterator_tag)
{
for (; first != last; ++first)
{
position = insert(position, *first) + 1;
}
}
template <class FwdIterator>
void insert_impl(iterator position,
FwdIterator first, FwdIterator last, std::forward_iterator_tag)
{
typedef yasli_protocols::move_traits<T> mt;
const typename std::iterator_traits<FwdIterator>::difference_type
count = std::distance(first, last);
if (eos_ - end_ > count || reserve_inplace_nstd(size() + count)) // there's enough room
{
if (count > end_ - &*position)
{
// Step 1: fill the hole between end_ and position+count
FwdIterator i1 = first;
std::advance(i1, end_ - &*position);
FwdIterator i2 = i1;
std::advance(i2, &*position + count - end_);//why not i2 = first; advance(i2,count);
T* const oldEnd = end_;
end_ = copy(i1, i2, end_);
assert(end_ == &*position + count);
// Step 2: move existing data to the end
mt::nondestructive_move(
position,
oldEnd,
end_);
end_ = oldEnd + count;
// Step 3: copy in the remaining data
copy(first, i1, position);
}
else // simpler case
{
mt::nondestructive_move(
end_ - count,
end_,
end_);
end_ += count;
mt::nondestructive_assign_move(
position,
end_ - count,
position + count);
copy(first, last, position);
}
}
else
{
vector<T, Allocator> temp(ebo_);
temp.reserve(size() + count);
// The calls below won't cause infinite recursion
// because they will fall on the other branch
// of the if statement
temp.insert(temp.end(), begin(), position);
temp.insert(temp.end(), first, last);
temp.insert(temp.end(), position, end());
assert(temp.size() == size() + count);
temp.swap(*this);
}
}
public:
iterator erase(iterator position)
{
erase(position, position + 1);
return position;
}
iterator erase(iterator first, iterator last)
{
yasli_protocols::move_traits<T>::nondestructive_assign_move(
last, end(), first);
Allocator& a = ebo_;
const size_type destroyed = last - first;
yasli_nstd::destroy(a, end_ - destroyed, destroyed);
end_ -= destroyed;
return first;
}
void swap(vector<T,Allocator>& rhs)//COULD DO THIS WITH LESS TEMPORARIES
{
std::swap(static_cast<Allocator&>(ebo_), static_cast<Allocator&>(rhs.ebo_));
std::swap(ebo_.beg_, rhs.ebo_.beg_);
std::swap(end_, rhs.end_);
std::swap(eos_, rhs.eos_);
}
void clear()
{
Allocator& a = ebo_;
yasli_nstd::destroy(a, ebo_.beg_, size());
end_ = ebo_.beg_;
}
};//vector
template <class T, class Allocator>
bool operator==(const vector<T,Allocator>& x,
const vector<T,Allocator>& y);
template <class T, class Allocator>
bool operator< (const vector<T,Allocator>& x,
const vector<T,Allocator>& y);
template <class T, class Allocator>
bool operator!=(const vector<T,Allocator>& x,
const vector<T,Allocator>& y);
template <class T, class Allocator>
bool operator> (const vector<T,Allocator>& x,
const vector<T,Allocator>& y);
template <class T, class Allocator>
bool operator>=(const vector<T,Allocator>& x,
const vector<T,Allocator>& y);
template <class T, class Allocator>
bool operator<=(const vector<T,Allocator>& x,
const vector<T,Allocator>& y);
// specialized algorithms:
template <class T, class Allocator>
void swap(vector<T,Allocator>& x, vector<T,Allocator>& y);
}//yasli
namespace yasli_protocols
{
template <class T, class A>
struct move_traits< yasli::vector<T, A> >:public
yasli_nstd::type_selector<
sizeof(yasli::vector<T, A>) != (3 * sizeof(T*)),
memmove_traits< std::complex<T> >,
safe_move_traits< std::complex<T> >
>::result
{
};
}