1
0
Fork 0
mirror of https://github.com/bolero-MURAKAMI/Sprout synced 2024-11-12 21:09:01 +00:00
Sprout/sprout/complex/sqrt.hpp

86 lines
4 KiB
C++
Raw Normal View History

/*=============================================================================
Copyright (c) 2011-2014 Bolero MURAKAMI
https://github.com/bolero-MURAKAMI/Sprout
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
=============================================================================*/
#ifndef SPROUT_COMPLEX_SQRT_HPP
#define SPROUT_COMPLEX_SQRT_HPP
#include <sprout/config.hpp>
#include <sprout/limits.hpp>
#include <sprout/math/isnan.hpp>
#include <sprout/math/isinf.hpp>
#include <sprout/math/copysign.hpp>
#include <sprout/math/signbit.hpp>
#include <sprout/math/abs.hpp>
#include <sprout/math/sqrt.hpp>
#include <sprout/complex/complex.hpp>
#include <sprout/complex/abs.hpp>
namespace sprout {
//
// sqrt
//
// G.6.4.2 The csqrt functions
// csqrt(conj(z)) = conj(csqrt(z)).
// csqrt(<28>}0 + i0) returns +0 + i0.
// csqrt(x + i<><69>) returns +<2B><>+ i<><69>, for all x (including NaN).
// csqrt(x + iNaN) returns NaN + iNaN and optionally raises the <20>e<EFBFBD>einvalid<69>f<EFBFBD>f floating-point exception, for finite x.
// csqrt(-<2D><>+ iy) returns +0 + i<><69>, for finite positive-signed y.
// csqrt(+<2B><>+ iy) returns +<2B><>+ i0, for finite positive-signed y.
// csqrt(-<2D><>+ iNaN) returns NaN <20>} i<><69> (where the sign of the imaginary part of the result is unspecified).
// csqrt(+<2B><>+ iNaN) returns +<2B><>+ iNaN.
// csqrt(NaN + iy) returns NaN + iNaN and optionally raises the <20>e<EFBFBD>einvalid<69>f<EFBFBD>f floating-point exception, for finite y.
// csqrt(NaN + iNaN) returns NaN + iNaN.
//
namespace detail {
template<typename T>
inline SPROUT_CONSTEXPR sprout::complex<T>
sqrt_impl_1(sprout::complex<T> const& x, T const& t) {
return sprout::complex<T>(t, sprout::math::signbit(x.imag()) ? -t : t);
}
template<typename T>
inline SPROUT_CONSTEXPR sprout::complex<T>
sqrt_impl_2_1(sprout::complex<T> const& x, T const& t, T const& u) {
return x.real() > T(0) ? sprout::complex<T>(u, x.imag() / t)
: sprout::complex<T>(sprout::math::abs(x.imag()) / t, sprout::math::signbit(x.imag()) ? -u : u)
;
}
template<typename T>
inline SPROUT_CONSTEXPR sprout::complex<T>
sqrt_impl_2(sprout::complex<T> const& x, T const& t) {
return sprout::detail::sqrt_impl_2_1(x, t, t / T(2));
}
} // namespace detail
template<typename T>
inline SPROUT_CONSTEXPR sprout::complex<T>
sqrt(sprout::complex<T> const& x) {
typedef sprout::complex<T> type;
return sprout::math::isinf(x.imag()) ? type(sprout::numeric_limits<T>::infinity(), x.imag())
: sprout::math::isnan(x.real())
? sprout::math::isnan(x.imag()) ? type(sprout::numeric_limits<T>::quiet_NaN(), sprout::numeric_limits<T>::quiet_NaN())
: type(sprout::numeric_limits<T>::quiet_NaN(), sprout::numeric_limits<T>::quiet_NaN())
: sprout::math::isnan(x.imag())
? x.real() == sprout::numeric_limits<T>::infinity()
? type(sprout::numeric_limits<T>::infinity(), sprout::math::copysign(sprout::numeric_limits<T>::quiet_NaN(), x.imag()))
: x.real() == -sprout::numeric_limits<T>::infinity()
? type(
sprout::math::copysign(sprout::numeric_limits<T>::quiet_NaN(), x.imag()),
sprout::math::copysign(sprout::numeric_limits<T>::infinity(), x.imag())
)
: type(sprout::numeric_limits<T>::quiet_NaN(), sprout::numeric_limits<T>::quiet_NaN())
: x.real() == sprout::numeric_limits<T>::infinity()
? type(sprout::numeric_limits<T>::infinity(), (x.imag() == 0 ? x.imag() : sprout::math::copysign(T(0), x.imag())))
: x.real() == -sprout::numeric_limits<T>::infinity()
? type(T(0), sprout::math::copysign(T(0), x.imag()))
: x.real() == 0 && x.imag() == 0 ? type(T(0), x.imag())
: x.real() == 0 ? sprout::detail::sqrt_impl_1(x, sprout::math::sqrt(sprout::math::abs(x.imag()) / T(2)))
: sprout::detail::sqrt_impl_2(x, sprout::math::sqrt(T(2) * (sprout::abs(x) + sprout::math::abs(x.real()))))
;
}
} // namespace sprout
#endif // #ifndef SPROUT_COMPLEX_SQRT_HPP