1
0
Fork 0
mirror of https://github.com/bolero-MURAKAMI/Sprout synced 2024-11-12 21:09:01 +00:00
Sprout/example/perceptron/g3.cpp
2016-02-25 18:48:28 +09:00

204 lines
6.1 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*=============================================================================
Copyright (c) 2011-2016 Bolero MURAKAMI
https://github.com/bolero-MURAKAMI/Sprout
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
=============================================================================*/
#include <cstddef>
#include <sprout/config.hpp>
#include <sprout/array.hpp>
#include <sprout/algorithm/copy.hpp>
#include <sprout/iterator/operation.hpp>
#include <sprout/container/functions.hpp>
#include <sprout/math/sigmoid.hpp>
#include <sprout/random/uniform_01.hpp>
#include <sprout/random/generate_array.hpp>
#include <sprout/assert.hpp>
//
// perceptron
//
template<typename FloatType, std::size_t In, std::size_t Hid, std::size_t Out>
class perceptron {
public:
typedef FloatType value_type;
private:
struct worker {
public:
// 入力
sprout::array<value_type, In + 1> xi1;
sprout::array<value_type, Hid + 1> xi2;
sprout::array<value_type, Out> xi3;
// 出力
sprout::array<value_type, In + 1> o1;
sprout::array<value_type, Hid + 1> o2;
sprout::array<value_type, Out> o3;
};
private:
// 誤差
sprout::array<value_type, Hid + 1> d2;
sprout::array<value_type, Out> d3;
// 重み
sprout::array<value_type, (In + 1) * Hid> w1;
sprout::array<value_type, (Hid + 1) * Out> w2;
private:
// 順伝播
template<typename ForwardIterator>
SPROUT_CXX14_CONSTEXPR void
forward_propagation(ForwardIterator in_first, ForwardIterator in_last, worker& work) const {
// 入力層の順伝播
sprout::copy(in_first, in_last, sprout::begin(work.xi1));
work.xi1[In] = 1;
sprout::copy(sprout::begin(work.xi1), sprout::end(work.xi1), sprout::begin(work.o1));
// 隠れ層の順伝播
for (std::size_t i = 0; i != Hid; ++i) {
work.xi2[i] = 0;
for (std::size_t j = 0; j != In + 1; ++j) {
work.xi2[i] += w1[j * Hid + i] * work.o1[j];
}
work.o2[i] = sprout::math::sigmoid(work.xi2[i]);
}
work.o2[Hid] = 1;
// 出力層の順伝播
for (std::size_t i = 0; i != Hid; ++i) {
work.xi3[i] = 0;
for (std::size_t j = 0; j != In + 1; ++j) {
work.xi3[i] += w2[j * Out + i] * work.o2[j];
}
work.o3[i] = work.xi3[i];
}
}
public:
template<typename RandomNumberGenerator>
explicit SPROUT_CXX14_CONSTEXPR perceptron(RandomNumberGenerator& rng)
: d2{{}}, d3{{}}
, w1(sprout::random::generate_array<(In + 1) * Hid>(rng, sprout::random::uniform_01<value_type>()))
, w2(sprout::random::generate_array<(Hid + 1) * Out>(rng, sprout::random::uniform_01<value_type>()))
{}
// ニューラルネットの訓練
// [in_first, in_last) : 訓練データ (N*In 個)
// [t_first, t_last) : 教師データ (N 個)
template<typename ForwardIterator1, typename ForwardIterator2>
SPROUT_CXX14_CONSTEXPR void
train(
ForwardIterator1 in_first, ForwardIterator1 in_last,
ForwardIterator2 t_first, ForwardIterator2 t_last,
std::size_t repeat = 1000, value_type eta = value_type(0.1)
)
{
SPROUT_ASSERT(sprout::distance(in_first, in_last) % In == 0);
SPROUT_ASSERT(sprout::distance(in_first, in_last) / In == sprout::distance(t_first, t_last));
worker work{};
for (std::size_t times = 0; times != repeat; ++times) {
ForwardIterator1 in_it = in_first;
ForwardIterator2 t_it = t_first;
for (; in_it != in_last; sprout::advance(in_it, In), ++t_it) {
// 順伝播
forward_propagation(in_it, sprout::next(in_it, In), work);
// 出力層の誤差計算
for (std::size_t i = 0; i != Out; ++i) {
d3[i] = *t_it == i ? work.o3[i] - 1
: work.o3[i]
;
}
// 出力層の重み更新
for (std::size_t i = 0; i != Hid + 1; ++i) {
for (std::size_t j = 0; j != Out; ++j) {
w2[i * Out + j] -= eta * d3[j] * work.o2[i];
}
}
// 隠れ層の誤差計算
for (std::size_t i = 0; i != Hid + 1; ++i) {
d2[i] = 0;
for (std::size_t j = 0; j != Out; ++j) {
d2[i] += w2[i * Out + j] * d3[j];
}
d2[i] *= sprout::math::d_sigmoid(work.xi2[i]);
}
// 隠れ層の重み更新
for (std::size_t i = 0; i != In + 1; ++i) {
for (std::size_t j = 0; j != Hid; ++j) {
w1[i * Hid + j] -= eta * d2[j] * work.o1[i];
}
}
}
}
}
// 与えられたデータに対して最も可能性の高いクラスを返す
template<typename ForwardIterator>
SPROUT_CXX14_CONSTEXPR std::size_t
predict(ForwardIterator in_first, ForwardIterator in_last) const {
SPROUT_ASSERT(sprout::distance(in_first, in_last) == In);
worker work{};
// 順伝播による予測
forward_propagation(in_first, in_last, work);
// 出力が最大になるクラスを判定
return sprout::distance(
sprout::begin(work.o3),
sprout::max_element(sprout::begin(work.o3), sprout::end(work.o3))
);
}
};
#include <cstddef>
#include <iostream>
#include <sprout/config.hpp>
#include <sprout/random/default_random_engine.hpp>
#include <sprout/random/unique_seed.hpp>
#include <sprout/static_assert.hpp>
// 訓練データ
SPROUT_CONSTEXPR auto train_data = sprout::make_array<double>(
# include "g3_train.csv"
);
// 教師データ
SPROUT_CONSTEXPR auto teach_data = sprout::make_array<std::size_t>(
# include "g3_teach.csv"
);
SPROUT_STATIC_ASSERT(train_data.size() % 2 == 0);
SPROUT_STATIC_ASSERT(train_data.size() / 2 == teach_data.size());
// 訓練済みパーセプトロンを生成
template<typename FloatType, std::size_t In, std::size_t Hid, std::size_t Out>
SPROUT_CXX14_CONSTEXPR ::perceptron<FloatType, In, Hid, Out>
make_trained_perceptron() {
// 乱数生成器
sprout::random::default_random_engine rng(SPROUT_UNIQUE_SEED);
// パーセプトロン
::perceptron<FloatType, In, Hid, Out> per(rng);
// 訓練
per.train(
train_data.begin(), train_data.end(),
teach_data.begin(), teach_data.end(),
500, 0.1
);
return per;
}
int main() {
// パーセプトロンを生成入力2 隠れ3 出力3
SPROUT_CXX14_CONSTEXPR auto per = ::make_trained_perceptron<double, 2, 3, 3>();
// 結果の表示
for (auto it = train_data.begin(), last = train_data.end(); it != last; it += 2) {
std::cout << per.predict(it, it + 2) << std::endl;
}
}