Get rid of lexical_cast.

This stuff is quite old and I don't think I ever
felt confident enough to use it in real code.
This commit is contained in:
King_DuckZ 2020-08-13 20:46:58 +01:00
parent 7fb56e65ff
commit e6cef7e3ee
5 changed files with 1 additions and 464 deletions

1
.gitignore vendored
View file

@ -1,2 +1,3 @@
tags tags
compile_commands.json compile_commands.json
.clangd

View file

@ -1,39 +0,0 @@
/* Copyright 2016-2018 Michele Santullo
* This file is part of "duckhandy".
*
* "duckhandy" is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* "duckhandy" is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with "duckhandy". If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef idB123739E9F8846899541DB26BEA86386
#define idB123739E9F8846899541DB26BEA86386
#include "lexical_cast.hpp"
namespace dhandy {
namespace customize {
template<typename C, std::size_t S>
struct array_to_t<C, S, MaxSizedArray<C, S>> {
static MaxSizedArray<C, S> make (MaxSizedArray<C, S>&& parIn) {
return parIn;
}
};
} //namespace customize
template <typename C, template <typename> class Tag=tags::dec, typename F=void>
inline auto int_to_string_ary (const F& parFrom) -> MaxSizedArray<C, Tag<F>::count_digits_bt(sprout::numeric_limits<F>::max())> {
return dhandy::lexical_cast<MaxSizedArray<C, Tag<F>::count_digits_bt(sprout::numeric_limits<F>::max())>, Tag, F>(parFrom);
}
} //namespace dhandy
#endif

View file

@ -1,316 +0,0 @@
/* Copyright 2016-2018 Michele Santullo
* This file is part of "duckhandy".
*
* "duckhandy" is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* "duckhandy" is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with "duckhandy". If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef id942A6B5AB2AF443C82D4321775BFC9E8
#define id942A6B5AB2AF443C82D4321775BFC9E8
#include "compatibility.h"
#include "sequence_bt.hpp"
#include "MaxSizedArray.hpp"
#include "has_method.hpp"
#include <sprout/math/log10.hpp>
#include <sprout/math/log2.hpp>
#include <sprout/math/pow.hpp>
#include <sprout/math/abs.hpp>
#include <sprout/limits.hpp>
#include <type_traits>
#include <utility>
#include <cstdint>
#include <algorithm>
#include <string>
#include <ciso646>
#include <climits>
#include <cstddef>
#include <iterator>
namespace dhandy {
namespace customize {
template<typename T>
struct index_to_char;
template<typename C, typename T>
struct char_to_int;
template<typename C, std::size_t S, typename T>
struct array_to_t;
} //namespace customize
namespace implem {
template <typename T>
typename std::make_unsigned<T>::type abs ( T parValue ) a_pure;
template <typename T> int count_leading_zeroes ( typename std::enable_if<sprout::numeric_limits<T>::is_signed, T>::type parValue ) a_always_inline;
template <typename T> int count_leading_zeroes ( typename std::enable_if<not sprout::numeric_limits<T>::is_signed, T>::type parValue ) a_always_inline;
int count_leading_zeroes_overload ( unsigned char parValue ) a_always_inline;
int count_leading_zeroes_overload ( unsigned short int parValue ) a_always_inline;
int count_leading_zeroes_overload ( unsigned int parValue ) a_always_inline;
int count_leading_zeroes_overload ( unsigned long parValue ) a_always_inline;
int count_leading_zeroes_overload ( unsigned long long parValue ) a_always_inline;
template <std::size_t Base, std::size_t Val>
struct power {
enum { value = Base * power<Base, Val - 1>::value };
};
template <std::size_t Base>
struct power<Base, 0> {
enum { value = 1 };
};
template <typename T, bool=sprout::numeric_limits<T>::is_signed>
struct is_negative;
template <typename T>
struct is_negative<T, true> {
static int check (T parValue) { return (parValue < 0 ? 1 : 0); }
};
template <typename T>
struct is_negative<T, false> {
static constexpr int check (T) { return 0; }
};
template <template <typename> class Tag, typename F, typename C>
inline auto int_to_string (const F parFrom) -> MaxSizedArray<C, Tag<F>::count_digits_bt(sprout::numeric_limits<F>::max())> {
using ArrayRetType = MaxSizedArray<C, Tag<F>::count_digits_bt(sprout::numeric_limits<F>::max())>;
ArrayRetType retval;
F div = 1;
constexpr const std::size_t charset_offs = (Tag<F>::lower_case ? Tag<F>::base + 1 : 1);
const auto sign_length = (is_negative<F>::check(parFrom) and Tag<F>::sign_allowed ? 1 : 0);
for (std::size_t z = 0; z < Tag<F>::count_digits(parFrom) - sign_length; ++z) {
const uint8_t idx = static_cast<uint8_t>(((parFrom / div) % Tag<F>::base) + charset_offs);
retval.push_back(dhandy::customize::index_to_char<C>::make(idx));
div *= Tag<F>::base;
}
if (sign_length)
retval.push_back(dhandy::customize::index_to_char<C>::make(0));
std::reverse(retval.begin(), retval.end());
return retval;
};
template <template <typename> class Tag, typename T, typename F>
inline T string_to_int (const F& parFrom) {
T retval(0);
T mul(1);
const auto sgn = dhandy::customize::char_to_int<typename F::value_type, T>::sgn(parFrom);
for (auto it = std::rbegin(parFrom), itEND = std::rend(parFrom); it + (sgn < 0 ? 1 : 0) != itEND; ++it) {
auto chara = *it;
retval += dhandy::customize::char_to_int<decltype(chara), T>::make(chara) * mul;
mul *= Tag<T>::base;
}
return retval * sgn;
};
template <typename T, bool LowerCase>
struct hex {
enum {
base = 16,
sign_allowed = 0,
lower_case = (LowerCase ? 1 : 0)
};
static std::size_t count_digits ( T parValue ) a_pure;
static constexpr std::size_t count_digits_bt (T parNum) {
return (parNum == 0 ? 0 : static_cast<std::size_t>(sprout::log10(sprout::abs(static_cast<long double>(parNum))) / sprout::log10(static_cast<double>(base)))) + 1;
}
};
define_has_typedef(char_type, CharType);
define_has_typedef(value_type, ValueType);
template <typename T, typename=void> struct get_char_type;
template <typename T> struct get_char_type<T, typename std::enable_if<HasCharTypeTypedef<T>::value>::type> {
typedef typename T::char_type value_type;
};
template <typename T> struct get_char_type<T, typename std::enable_if<HasValueTypeTypedef<T>::value && !HasCharTypeTypedef<T>::value>::type> {
typedef typename T::value_type value_type;
};
} //namespace implem
namespace tags {
template <typename T>
struct dec {
enum {
base = 10,
sign_allowed = 1,
lower_case = 0
};
template <std::size_t... Powers, std::size_t... Digits>
static std::size_t count_digits_implem (T parValue, dhandy::bt::index_seq<Powers...>, dhandy::bt::index_seq<Digits...>) a_pure;
static std::size_t count_digits (T parValue) a_pure;
static constexpr std::size_t count_digits_bt (T parNum) {
return (parNum == 0 ? 0 : static_cast<std::size_t>(sprout::log10(sprout::abs(static_cast<long double>(parNum))))) + 1 + (sprout::numeric_limits<T>::is_signed ? 1 : 0);
}
};
template <typename T>
using hex = dhandy::implem::hex<T, false>;
template <typename T>
using hexl = dhandy::implem::hex<T, true>;
template <typename T>
struct bin {
enum {
base = 2,
sign_allowed = 0,
lower_case = 0
};
static std::size_t count_digits ( T parValue ) a_pure;
static constexpr std::size_t count_digits_bt (T parNum) {
return (parNum == 0 ? 0 : static_cast<std::size_t>(sprout::log2(sprout::abs(static_cast<long double>(parNum))))) + 1;
}
};
//See: http://stackoverflow.com/questions/9721042/count-number-of-digits-which-method-is-most-efficient#9721113
template <typename T>
template <std::size_t... Powers, std::size_t... Digits>
std::size_t dec<T>::count_digits_implem (T parValue, dhandy::bt::index_seq<Powers...>, dhandy::bt::index_seq<Digits...>) {
static_assert(sizeof...(Digits) == CHAR_BIT * sizeof(T) + 1, "Too many values for Digits");
typedef typename std::make_unsigned<T>::type UT;
static constexpr UT powers[] = { 0, static_cast<UT>(dhandy::implem::power<10, Powers + 1>::value)... };
//the maxdigits table is [len(str(pow(2,b))) for b in range(0,MAX_BITS)]
static constexpr std::size_t maxdigits[] = { static_cast<std::size_t>(static_cast<double>(Digits) / sprout::log2(10.0)) + 1 ... };
static_assert(maxdigits[sizeof(maxdigits) / sizeof(maxdigits[0]) - 1] <= sprout::numeric_limits<T>::max(), "Last item in maxdigits overflows T");
const auto bits = sizeof(parValue) * CHAR_BIT - dhandy::implem::count_leading_zeroes<T>(dhandy::implem::abs(parValue));
static_assert(std::is_same<UT, decltype(dhandy::implem::abs(parValue))>::value, "Unexpected type");
assert(bits < sizeof(maxdigits) / sizeof(maxdigits[0]));
return (dhandy::implem::abs(parValue) < powers[maxdigits[bits] - 1] ? maxdigits[bits] - 1 : maxdigits[bits]) + dhandy::implem::is_negative<T>::check(parValue);
}
template <typename T>
std::size_t dec<T>::count_digits (T parValue) {
return count_digits_implem(
parValue,
dhandy::bt::index_range<0, count_digits_bt(sprout::numeric_limits<T>::max()) - (sprout::numeric_limits<T>::is_signed ? 1 : 0) - 1>(),
dhandy::bt::index_range<0, CHAR_BIT * sizeof(T) + 1>()
);
}
template <typename T>
std::size_t bin<T>::count_digits (T parValue) {
return std::max<std::size_t>((sizeof(parValue) * CHAR_BIT - dhandy::implem::count_leading_zeroes<T>(parValue)), 1);
}
} //namespace tags
namespace implem {
template <template <typename> class Tag>
struct lexical_cast {
template <typename T, typename F>
static T convert ( const typename std::enable_if<std::is_integral<F>::value, F>::type& parFrom ) {
auto indices = int_to_string<Tag, F, typename implem::get_char_type<T>::value_type>(parFrom);
return dhandy::customize::array_to_t<typename decltype(indices)::value_type, decltype(indices)::MAX_SIZE, T>::make(std::move(indices));
}
template <typename T, typename F>
static typename std::enable_if<std::is_integral<T>::value, T>::type convert ( const F& parFrom ) {
return string_to_int<Tag, T, F>(parFrom);
}
};
template <typename T>
inline int count_leading_zeroes (typename std::enable_if<sprout::numeric_limits<T>::is_signed, T>::type parValue) {
return count_leading_zeroes<decltype(dhandy::implem::abs(parValue))>(dhandy::implem::abs(parValue));
}
template <typename T>
inline int count_leading_zeroes (typename std::enable_if<not sprout::numeric_limits<T>::is_signed, T>::type parValue) {
return count_leading_zeroes_overload(parValue) + sizeof(T) * CHAR_BIT;
}
inline int count_leading_zeroes_overload (unsigned char parValue) {
return __builtin_clz(parValue) - sizeof(unsigned int) * CHAR_BIT;
}
inline int count_leading_zeroes_overload (unsigned short int parValue) {
return __builtin_clz(parValue) - sizeof(unsigned int) * CHAR_BIT;
}
inline int count_leading_zeroes_overload (unsigned int parValue) {
return __builtin_clz(parValue) - sizeof(unsigned int) * CHAR_BIT;
}
inline int count_leading_zeroes_overload (unsigned long parValue) {
return __builtin_clzl(parValue) - sizeof(unsigned long) * CHAR_BIT;
}
inline int count_leading_zeroes_overload (unsigned long long parValue) {
return __builtin_clzll(parValue) - sizeof(unsigned long long) * CHAR_BIT;
}
//See: http://stackoverflow.com/questions/16101062/why-does-stdabs-return-signed-types
template <typename T>
typename std::make_unsigned<T>::type abs (T parValue) {
//We need to cast before negating x to avoid the overflow.
return (parValue < 0 ? -static_cast<typename std::make_unsigned<T>::type>(parValue) : parValue);
}
template <typename T, bool LowerCase>
std::size_t hex<T, LowerCase>::count_digits (T parValue) {
return std::max<std::size_t>(((sizeof(parValue) * CHAR_BIT - dhandy::implem::count_leading_zeroes<T>(parValue)) + (CHAR_BIT / 2 - 1)) / (CHAR_BIT / 2), 1);
}
} //namespace implem
template <typename T, template <typename> class Tag=tags::dec, typename F=void>
inline T lexical_cast (const F& parFrom) {
return dhandy::implem::lexical_cast<Tag>::template convert<T, F>(parFrom);
}
namespace customize {
template<>
struct index_to_char<char> {
static char make (uint8_t parIndex) {
static const char symbols[] = {
'-',
'0', '1', '2', '3', '4', '5',
'6', '7', '8', '9', 'A', 'B',
'C', 'D', 'E', 'F',
'0', '1', '2', '3', '4', '5',
'6', '7', '8', '9', 'a', 'b',
'c', 'd', 'e', 'f'
};
return symbols[parIndex];
}
};
template<typename T>
struct char_to_int<char, T> {
static T make (char parChar) {
if (parChar >= '0' and parChar <= '9')
return parChar - '0';
else if (parChar >= 'a' and parChar <= 'f')
return 10 + parChar - 'a';
else if (parChar >= 'A' and parChar <= 'F')
return 10 + parChar - 'A';
else if (parChar == '-')
return 0;
return 0;
}
template <typename Container>
static T sgn (const Container& parString) {
return static_cast<T>(sprout::numeric_limits<T>::is_signed and std::begin(parString) != std::end(parString) and *std::begin(parString) == '-' ? -1 : 1);
}
};
template<typename C, std::size_t S>
struct array_to_t<C, S, std::string> {
static std::string make (MaxSizedArray<C, S>&& parIn) {
return std::string(parIn.begin(), parIn.end());
}
};
} //namespace customize
} //namespace dhandy
#endif

View file

@ -2,7 +2,6 @@ project(dhandy_unit_test CXX)
add_executable(${PROJECT_NAME} add_executable(${PROJECT_NAME}
main.cpp main.cpp
lexical_cast_test.cpp
endianness_test.cpp endianness_test.cpp
int_conv_test.cpp int_conv_test.cpp
reversed_sized_array_test.cpp reversed_sized_array_test.cpp

View file

@ -1,108 +0,0 @@
/* Copyright 2016-2018 Michele Santullo
* This file is part of "duckhandy".
*
* "duckhandy" is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* "duckhandy" is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with "duckhandy". If not, see <http://www.gnu.org/licenses/>.
*/
#include "catch2/catch.hpp"
#include "duckhandy/lexical_cast.hpp"
#include "duckhandy/int_to_string_ary.hpp"
#include <cstdint>
#include <string>
#include <cstddef>
#include <climits>
template <std::size_t C, std::size_t E, bool B=static_cast<bool>(C==E)>
struct CountDigitsDebugger { static constexpr const bool value = true; };
template <std::size_t C, std::size_t E>
struct CountDigitsDebugger<C, E, false> {};
TEST_CASE ("Check string to int conversions", "[s2i][lexical_cast]") {
using dhandy::lexical_cast;
using dhandy::tags::dec;
using dhandy::tags::hex;
using dhandy::tags::bin;
static_assert(CountDigitsDebugger<bin<int32_t>::count_digits_bt(0), 1>::value, "Wrong digits count");
static_assert(CountDigitsDebugger<bin<int32_t>::count_digits_bt(1), 1>::value, "Wrong digits count");
static_assert(CountDigitsDebugger<bin<int32_t>::count_digits_bt(2), 2>::value, "Wrong digits count");
static_assert(CountDigitsDebugger<bin<int32_t>::count_digits_bt(3), 2>::value, "Wrong digits count");
static_assert(CountDigitsDebugger<bin<int32_t>::count_digits_bt(4), 3>::value, "Wrong digits count");
static_assert(CountDigitsDebugger<bin<int32_t>::count_digits_bt(5), 3>::value, "Wrong digits count");
static_assert(CountDigitsDebugger<bin<int32_t>::count_digits_bt(6), 3>::value, "Wrong digits count");
static_assert(CountDigitsDebugger<bin<int32_t>::count_digits_bt(7), 3>::value, "Wrong digits count");
static_assert(CountDigitsDebugger<bin<int32_t>::count_digits_bt(8), 4>::value, "Wrong digits count");
static_assert(CountDigitsDebugger<bin<int32_t>::count_digits_bt(9), 4>::value, "Wrong digits count");
static_assert(CountDigitsDebugger<bin<int32_t>::count_digits_bt(255), 8>::value, "Wrong digits count");
static_assert(CountDigitsDebugger<bin<int32_t>::count_digits_bt(256), 9>::value, "Wrong digits count");
static_assert(CountDigitsDebugger<bin<uint32_t>::count_digits_bt(255), 8>::value, "Wrong digits count");
static_assert(CountDigitsDebugger<bin<uint32_t>::count_digits_bt(256), 9>::value, "Wrong digits count");
static_assert(CountDigitsDebugger<bin<uint16_t>::count_digits_bt(255), 8>::value, "Wrong digits count");
static_assert(CountDigitsDebugger<bin<uint16_t>::count_digits_bt(256), 9>::value, "Wrong digits count");
static_assert(CountDigitsDebugger<bin<uint8_t>::count_digits_bt(255), 8>::value, "Wrong digits count");
static_assert(CountDigitsDebugger<bin<int64_t>::count_digits_bt(255), 8>::value, "Wrong digits count");
static_assert(CountDigitsDebugger<dec<int64_t>::count_digits_bt(-1), 2>::value, "Wrong digits count");
static_assert(CountDigitsDebugger<dec<int64_t>::count_digits_bt(-2), 2>::value, "Wrong digits count");
static_assert(CountDigitsDebugger<dec<int64_t>::count_digits_bt(-10), 3>::value, "Wrong digits count");
static_assert(CountDigitsDebugger<dec<int64_t>::count_digits_bt(-99), 3>::value, "Wrong digits count");
static_assert(static_cast<std::size_t>(sprout::log10(sprout::abs(-10000000.0))) == 7, "Wrong log10");
static_assert(CountDigitsDebugger<dec<int64_t>::count_digits_bt(-10000000), 9>::value, "Wrong digits count");
static_assert(CountDigitsDebugger<dec<int64_t>::count_digits_bt(-123456789), 10>::value, "Wrong digits count");
static_assert(CountDigitsDebugger<dec<int32_t>::count_digits_bt(INT_MAX), 11>::value, "Wrong digits count");
static_assert(CountDigitsDebugger<dec<int32_t>::count_digits_bt(INT_MIN), 11>::value, "Wrong digits count");
CHECK(lexical_cast<uint16_t>(std::string("0")) == 0);
CHECK(lexical_cast<uint16_t>(std::string("1")) == 1);
CHECK(lexical_cast<uint16_t>(std::string("9")) == 9);
CHECK(lexical_cast<uint16_t>(std::string("10")) == 10);
CHECK(lexical_cast<uint16_t>(std::string("11")) == 11);
CHECK(lexical_cast<uint16_t>(std::string("99")) == 99);
CHECK(lexical_cast<uint16_t>(std::string("512")) == 512);
CHECK(lexical_cast<uint16_t>(std::string("513")) == 513);
CHECK(lexical_cast<uint16_t>(std::string("15000")) == 15000);
CHECK(lexical_cast<int32_t>(std::string("-1")) == -1);
CHECK(lexical_cast<int32_t>(std::string("-2")) == -2);
CHECK(lexical_cast<int32_t>(std::string("-10")) == -10);
CHECK(lexical_cast<int32_t>(std::string("-100000")) == -100000);
}
TEST_CASE ("Check int to string conversions", "[i2s][lexical_cast]") {
using std::string;
using dhandy::lexical_cast;
using dhandy::tags::bin;
using dhandy::int_to_string_ary;
CHECK(lexical_cast<string>(1) == "1");
CHECK(lexical_cast<string>(static_cast<uint16_t>(0xFFFF)) == "65535");
CHECK(lexical_cast<string>(static_cast<long long>(0xFFFF)) == "65535");
CHECK((lexical_cast<string, bin>(static_cast<uint16_t>(0xFFFF)) == "1111111111111111"));
CHECK((lexical_cast<string, bin>(static_cast<int16_t>(0x7FFF)) == "111111111111111"));
CHECK((lexical_cast<string, bin>(static_cast<long>(0x0)) == "0"));
CHECK((lexical_cast<string, bin>(static_cast<long>(0x1)) == "1"));
{
auto fixed = int_to_string_ary<char>(1234);
std::string str = lexical_cast<std::string>(1234);
REQUIRE(fixed.size() == str.size());
CHECK(std::equal(fixed.begin(), fixed.end(), str.begin()));
}
{
auto fixed = int_to_string_ary<char>(-1234);
std::string str = lexical_cast<std::string>(-1234);
REQUIRE(fixed.size() == str.size());
CHECK(std::equal(fixed.begin(), fixed.end(), str.begin()));
}
}