Compare commits

...

8 commits

9 changed files with 1639 additions and 0 deletions

View file

@ -0,0 +1,64 @@
/* Copyright 2016-2020 Michele Santullo
* This file is part of "duckhandy".
*
* "duckhandy" is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* "duckhandy" is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with "duckhandy". If not, see <http://www.gnu.org/licenses/>.
*/
namespace duckmem {
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename K, typename V, typename Hasher>
ScapegoatMap<K, V, Hasher>::DerivedPair::DerivedPair() {
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename K, typename V, typename Hasher>
ScapegoatMap<K, V, Hasher>::DerivedPair::DerivedPair (typename Loki::TypeTraits<key_type>::ParameterType parKey, typename Loki::TypeTraits<value_type>::ParameterType parValue) :
parent_type(parKey, parValue)
{
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename K, typename V, typename Hasher>
ScapegoatMap<K, V, Hasher>::DerivedPair::~DerivedPair() {
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
// template <typename K, typename V, typename Hasher>
// bool ScapegoatMap<K, V, Hasher>::DerivedPair::operator< (const DerivedPair& parOther) const {
// const typename Hasher::HashType thisHash = Hasher::ComputeFullHash(this->first);
// const typename Hasher::HashType otherHash = Hasher::ComputeFullHash(parOther->first);
// if (thisHash == otherHash) {
// const bool typeMinor = (this->first < parOther.first);
//
// else
//wrong - this breaks total ordering condition return (thisHash < otherHash);
// }
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename K, typename V, typename Hasher>
bool ScapegoatMap<K, V, Hasher>::DerivedPair::operator== (const DerivedPair& parOther) const {
const typename Hasher::HashType thisHash = Hasher::ComputeFullHash(this->first);
const typename Hasher::HashType otherHash = Hasher::ComputeFullHash(parOther->first);
if (thisHash != otherHash)
return false;
else
return (this->first == parOther.first);
}
} //namespace duckmem

View file

@ -0,0 +1,725 @@
/* Copyright 2016-2020 Michele Santullo
* This file is part of "duckhandy".
*
* "duckhandy" is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* "duckhandy" is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with "duckhandy". If not, see <http://www.gnu.org/licenses/>.
*/
namespace duckmem {
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename K>
ScapegoatTree<K>::ScapegoatTree() :
m_root(NULL),
m_count(0),
m_countMax(0),
m_reserved(0),
m_alpha(0.6f)
{
m_alphainvloginv = 1.0f / std::log(1.0f / m_alpha);
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename K>
ScapegoatTree<K>::ScapegoatTree (float parAlpha) :
m_root(NULL),
m_count(0),
m_countMax(0),
m_reserved(0),
m_alpha(parAlpha)
{
Assert(parAlpha < 1.0f);
Assert(parAlpha >= 0.5f);
m_alphainvloginv = 1.0f / std::log(1.0f / m_alpha);
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename K>
ScapegoatTree<K>::~ScapegoatTree() {
delete_nodes(m_root);
#if defined(DUCK_DEBUG)
m_root = NULL;
m_count = 0xDEADBEEF;
m_countMax = 0xDEADBEEF;
m_reserved = 0xDEADBEEF;
#endif
}
///-------------------------------------------------------------------------
///I can't really find a good optimization for this method, so I'll just
///ignore the hint and rely on the normal insert().
///-------------------------------------------------------------------------
template <typename K>
typename ScapegoatTree<K>::iterator ScapegoatTree<K>::insert (const iterator&, const K& parValue) {
std::pair<iterator, bool> retVal = insert(parValue);
return retVal.first;
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename K>
std::pair<typename ScapegoatTree<K>::iterator, bool> ScapegoatTree<K>::insert (const K& parKey) {
const size_type depthHint = get_max_balanced_depth(std::max<size_type>(m_reserved, m_count + 1), m_alphainvloginv) + 3;
#if defined(SCAPEGOATTREE_VERBOSE)
std::cout << "insert(): depthHint = " << depthHint << ", m_count = " << m_count << ", m_countMax = " << m_countMax << ", m_reserved = " << m_reserved << std::endl;
#endif
if (NULL == m_root) {
m_root = get_new_node(parKey);
m_root->left = m_root->right = NULL;
m_root->size = 1;
m_count = 1;
m_countMax = 1;
m_reserved = std::max(m_count, m_reserved);
IteratorOnPtr<NodeType**, NodeType*, false> rootWrapper(&m_root, 1);
return std::pair<iterator, bool>(iterator(rootWrapper, 1, depthHint), true);
}
else {
//Refuse to add a new item if the tree has more items than it
//can count
if (std::numeric_limits<size_type>::max() == m_count or std::numeric_limits<typename NodeType::size_type>::max() == m_root->size) {
AssertNotReached();
return std::pair<iterator, bool>(end(), false);
}
NodeStack stack;
stack.reserve(depthHint);
NodeType* const closestMatch = get_insert_parent(m_root, parKey, stack);
Assert(stack.size() <= depthHint);
if (closestMatch->content == parKey)
return std::pair<iterator, bool>(iterator(stack.begin(), stack.size(), depthHint), false);
Assert(NULL == closestMatch->left or closestMatch->left->content < parKey);
Assert(NULL == closestMatch->right or parKey < closestMatch->right->content);
NodeType* const newNode = get_new_node(parKey);
newNode->left = newNode->right = NULL;
newNode->size = 1;
if (parKey < closestMatch->content) {
Assert(NULL == closestMatch->left);
closestMatch->left = newNode;
}
else {
Assert(NULL == closestMatch->right);
closestMatch->right = newNode;
}
++m_count;
m_countMax = std::max(m_count, m_countMax);
m_reserved = std::max(m_reserved, m_count);
//Update the count of every node
for (auto& node : stack) {
++node->size;
}
//Add the new node to the stack
Assert(stack.capacity() > stack.size());
stack.push_back(newNode);
#if defined(SCAPEGOATTREE_PARANOID)
const size_type totalSize = AssertNodeSize(m_root);
Assert(totalSize == m_count);
Assert(m_root->size == duckcore::checked_numcast<typename NodeType::size_type>(m_count));
#endif
size_type newNodeDepth = stack.size() - 1;
//Rebalance if necessary
if (not is_alpha_height_balanced(newNodeDepth, this->size())) {
#if defined(SCAPEGOATTREE_PARANOID)
Assert(find_max_depth(m_root) == newNodeDepth);
#endif
Assert(get_max_balanced_depth(static_cast<size_type>(m_root->size), m_alphainvloginv) + 1 == newNodeDepth);
std::pair<NodeType*, NodeType*> scapegoatAndParent = find_scapegoat(stack);
AssertRelease(NULL != scapegoatAndParent.first);
NodeType* const newRoot = rebalance(scapegoatAndParent.first, newNodeDepth + 1);
NodeType* const parent = scapegoatAndParent.second;
if (parent == NULL) {
Assert(scapegoatAndParent.first == m_root);
m_root = newRoot;
m_countMax = m_count;
}
else {
Assert(newRoot != parent);
if (parent->left == scapegoatAndParent.first) {
parent->left = newRoot;
}
else {
Assert(parent->right == scapegoatAndParent.first);
parent->right = newRoot;
}
}
#if defined(SCAPEGOATTREE_PARANOID)
AssertNodeSize(m_root);
Assert(find_max_depth(m_root) <= get_max_balanced_depth(static_cast<size_type>(m_root->size), m_alphainvloginv));
#endif
//Rebuild the stack.
//TODO: this is ugly and slow, see if you can find a better way
stack.clear();
get_insert_parent(m_root, parKey, stack);
newNodeDepth = stack.size() - 1;
Assert(is_alpha_height_balanced(newNodeDepth, this->size()));
}
return std::pair<iterator, bool>(iterator(stack.begin(), newNodeDepth + 1, duckmath::log2_fast(m_reserved + 1)), true);
}
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename K>
typename ScapegoatTree<K>::NodeType* ScapegoatTree<K>::rebalance (NodeType* parSubtree, size_type parDepthHint) {
#if defined(SCAPEGOATTREE_VERBOSE)
std::cout << "Rebalancing subtree" << std::endl;
#endif
Assert(NULL != parSubtree);
NodeType* const newRoot = compress_first(parSubtree, parDepthHint);
NodeType* const retVal = compress(newRoot);
return retVal;
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename K>
typename ScapegoatTree<K>::NodeTypePair ScapegoatTree<K>::find_scapegoat (NodeStack& parParents) const {
Assert(not parParents.empty());
const size_type height = parParents.size();
for (size_type z = parParents.size() - 1; z > 0; --z) {
NodeType& currNode = *(parParents[z - 1]);
Assert(height - z > 0);
if (not is_alpha_height_balanced(height - z, static_cast<size_type>(currNode.size))) {
NodeType* parent;
if (z == 1)
parent = NULL;
else
parent = parParents[z - 2];
return NodeTypePair(&currNode, parent);
}
}
AssertNotReached();
__builtin_unreachable();
return NodeTypePair(NULL, NULL);
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename K>
typename ScapegoatTree<K>::NodeType* ScapegoatTree<K>::get_new_node (const K& parKey) {
return new NodeType(parKey);
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename K>
template <typename T>
T* ScapegoatTree<K>::find_closest_match (T* parTree, const K& parKey) {
Assert(NULL != parTree);
//if (parTree->left and parKey <= parTree->left->content)
if (parTree->left and not (parTree->left->content < parKey))
return FindClosestMatch(parTree->left, parKey);
//else if (parTree->right and parKey >= parTree->right->content)
else if (parTree->right and not (parKey < parTree->right->content))
return FindClosestMatch(parTree->right, parKey);
else
return parTree;
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename K>
typename ScapegoatTree<K>::NodeType* ScapegoatTree<K>::get_insert_parent (NodeType* parTree, const K& parKey, NodeStack& parRewind) {
Assert(NULL != parTree);
NodeType* retVal = parTree;
bool goLeft;
while ((goLeft = (retVal->left and parKey < retVal->content)) or (retVal->right and retVal->content < parKey)) {
parRewind.push_back(retVal);
if (goLeft) {
Assert(NULL != retVal->left);
Assert(parKey < retVal->content);
retVal = retVal->left;
}
else {
Assert(NULL != retVal->right);
Assert(retVal->content < parKey);
retVal = retVal->right;
}
}
Assert(NULL != retVal);
Assert(parRewind.empty() or parRewind.back() != retVal);
parRewind.push_back(retVal);
return retVal;
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename K>
void ScapegoatTree<K>::delete_nodes (NodeType* parNode) {
if (parNode) {
delete_nodes(parNode->left);
delete_nodes(parNode->right);
delete parNode;
}
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename K>
bool ScapegoatTree<K>::is_alpha_height_balanced (size_type parHeight, size_type parSize) const {
const float sz = static_cast<float>(parSize);
const float ha = std::floor(std::log(sz) * m_alphainvloginv);
const float height = static_cast<float>(parHeight);
return height <= ha;
}
///-------------------------------------------------------------------------
///Stout/Warren vine to tree.
///This function destroys the links of the given subtree and creates a
///structure that is suitable for compress(). Input is treated as if it
///was a linked list.
///-------------------------------------------------------------------------
template <typename K>
typename ScapegoatTree<K>::NodeType* ScapegoatTree<K>::compress_first (NodeType* parFrom, size_type parDepthHint) {
const size_type vineSize = static_cast<size_type>(parFrom->size);
const size_type iteratorDepth = parDepthHint;
#if defined(SCAPEGOATTREE_VERBOSE)
std::cout << "compress_first(): vineSize = " << vineSize << ", iteratorDepth = " << iteratorDepth << std::endl;
#endif
iterator itFirstStep(parFrom, iteratorDepth);
struct DummyNode {
DummyNode ( void ) : right(NULL) {}
NodeType* right;
};
class NodeWrapper {
public:
NodeWrapper ( void ) {}
explicit NodeWrapper ( NodeType* parOther ) : m_current(parOther), m_right(&parOther->right) {}
explicit NodeWrapper ( DummyNode* parOther ) : m_current(NULL), m_right(&parOther->right) {}
void Replace ( NodeType* parOther ) { m_current = parOther; m_right = &parOther->right; }
void Replace ( NodeWrapper* parOther ) { m_current = parOther->m_current; m_right = parOther->m_right; }
NodeType*& left ( void ) { Assert(m_current); return m_current->left; }
NodeType*& right ( void ) { Assert(m_right); return *m_right; }
typename NodeType::size_type& size ( void ) { Assert(m_current); return m_current->size; }
NodeType* pointer ( void ) { return m_current; }
private:
NodeType* m_current;
NodeType** m_right;
};
DummyNode pseudorootMem;
NodeWrapper parent(&pseudorootMem);
NodeWrapper current;
NodeWrapper child(&pseudorootMem);
size_type iterationsCount;
if (implem::is_power_of_two(vineSize + 1))
iterationsCount = (1 << (duckmath::log2_fast(vineSize))) - 1;
else
iterationsCount = (vineSize - ((1 << duckmath::log2_fast(vineSize)) - 1));
#if defined(SCAPEGOATTREE_VERBOSE)
std::cout << "vineSize = " << vineSize << ", iterationsCount = " << iterationsCount << std::endl;
#endif
Assert(iterationsCount < vineSize); //Underflow error?
Assert(iterationsCount > 0);
for (size_type z = 0; z < iterationsCount; ++z) {
current.Replace(itFirstStep.GetPointer());
++itFirstStep;
child.Replace(itFirstStep.GetPointer());
++itFirstStep;
current.left() = NULL;
current.right() = NULL;
current.size() = 1;
parent.right() = child.pointer();
child.left() = current.pointer();
Assert(z * 2 < vineSize);
child.size() = static_cast<typename NodeType::size_type>(vineSize - z * 2);
Assert(child.size() >= 1);
parent.Replace(&child);
}
Assert(iterationsCount * 2 <= vineSize);
for (size_type z = iterationsCount * 2; z < vineSize; ++z) {
child.right() = itFirstStep.GetPointer();
child.Replace(itFirstStep.GetPointer());
++itFirstStep;
child.left() = NULL;
child.size() = static_cast<typename NodeType::size_type>(vineSize - z);
}
child.right() = NULL;
child.size() = (child.left() ? 2 : 1);
#if defined(SCAPEGOATTREE_VERBOSE)
std::cout << "Original size was " << vineSize << ", root's size is " << pseudorootMem.right->size << std::endl;
#endif
Assert(vineSize == static_cast<size_type>(pseudorootMem.right->size));
#if defined(SCAPEGOATTREE_PARANOID)
AssertNodeSize(pseudorootMem.right);
Assert(find_max_depth(pseudorootMem.right) <= vineSize);
#endif
return pseudorootMem.right;
}
///-------------------------------------------------------------------------
///Stout/Warren vine to tree.
///Performs the second and subsequent steps for compressing.
///-------------------------------------------------------------------------
template <typename K>
typename ScapegoatTree<K>::NodeType* ScapegoatTree<K>::compress (NodeType* parFrom) {
Assert(NULL != parFrom);
//We don't know if the tree is complete, so let's calculate its depth
//rounded up to the nearest complete tree
const size_type treeSize = static_cast<size_type>(parFrom->size);
const size_type m = duckmath::log2_fast(1 + treeSize);
const size_type treeHeight = duckmath::log2_fast(treeSize + (1 << m));
#if defined(SCAPEGOATTREE_PARANOID)
size_type maxDepthInTree = find_max_depth(parFrom);
{
//We know step 0 of compression has already been done, so on with
//the spine size at step 1 (the one we're willing to do)
const size_type vineSize = (1 << (treeHeight - 1)) - 1;
size_type count = 0;
NodeType* currNode = parFrom;
do {
++count;
currNode = currNode->right;
} while (currNode);
const size_type countedNodes = ((count + 1) bitand ~1) - 1;
#if defined(SCAPEGOATTREE_VERBOSE)
std::cout << "treeSize = " << treeSize << ", vineSize = " << vineSize << ", treeHeight = " << treeHeight << ", manually counted " << countedNodes << " nodes (" << count << ")\n";
#endif
Assert(implem::is_power_of_two(countedNodes + 1));
Assert(vineSize == countedNodes);
}
#endif
NodeType* retVal = parFrom;
Assert(treeHeight >= 2);
for (size_type k = 1; k < treeHeight - 1; ++k) {
#if defined(SCAPEGOATTREE_VERBOSE)
std::cout << "compress() step " << k << std::endl;
#endif
//The rebalanced tree takes treeHeight-1 steps. One step has been done
//already, so we perform the remaining treeHeight-2 steps.
NodeType* scanner;
NodeType* child = retVal;
retVal = child->right;
Assert(NULL != retVal);
const size_type spineSize = (1 << (treeHeight - k - 1)) - 1;
Assert(spineSize > 0);
for (size_type s = 0; s < spineSize; ++s) {
scanner = child->right;
Assert(NULL != scanner);
child->right = scanner->left;
scanner->left = child;
const typename NodeType::size_type leftBranchSize = (child->right ? child->right->size : 0);
child->size -= scanner->size - leftBranchSize;
scanner->size += child->size - leftBranchSize;
if (s + 1 < spineSize) {
child = scanner->right;
Assert(NULL != child);
scanner->right = child->right;
}
#if defined(SCAPEGOATTREE_VERBOSE)
const size_type subtreeSize = (1 << (k + 1)) - 1;
std::cout << "k=" << k << " - Scanner's size updated to " << scanner->size << ", calculated subtreeSize = " << subtreeSize << std::endl;
#endif
}
Assert(NULL != scanner);
Assert(NULL != retVal);
Assert(treeSize == static_cast<size_type>(retVal->size));
#if defined(SCAPEGOATTREE_PARANOID)
AssertNodeSize(retVal);
{
const size_type newDepth = find_max_depth(retVal);
Assert(newDepth <= maxDepthInTree);
maxDepthInTree = newDepth;
}
#endif
}
Assert(static_cast<size_type>(retVal->size) == treeSize);
return retVal;
}
#if defined(SCAPEGOATTREE_PARANOID)
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename K>
typename ScapegoatTree<K>::size_type ScapegoatTree<K>::assert_node_size (const NodeType* parSubtree) {
Assert(parSubtree);
typename NodeType::size_type localSize = 1;
if (parSubtree->left) {
localSize += AssertNodeSize(parSubtree->left);
}
if (parSubtree->right) {
localSize += AssertNodeSize(parSubtree->right);
}
Assert(parSubtree->size == localSize);
return localSize;
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename K>
typename ScapegoatTree<K>::size_type ScapegoatTree<K>::find_max_depth_rec (const NodeType* parSubtree) {
Assert(parSubtree);
typename NodeType::size_type depthLeft = 0;
typename NodeType::size_type depthRight = 0;
if (parSubtree->left) {
depthLeft = FindMaxDepth_rec(parSubtree->left);
}
if (parSubtree->right) {
depthRight = FindMaxDepth_rec(parSubtree->right);
}
return 1 + std::max(depthLeft, depthRight);
}
#endif
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename K>
typename ScapegoatTree<K>::size_type ScapegoatTree<K>::get_max_balanced_depth (size_type parSize, float parAlphaInvLogInv) {
const float ha = std::log(static_cast<float>(parSize)) * parAlphaInvLogInv;
return static_cast<size_type>(ha);
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename K>
typename ScapegoatTree<K>::iterator ScapegoatTree<K>::begin() {
if (NULL == m_root)
return iterator();
const size_type depthHint = get_tree_min_depth_ib(m_reserved, m_alphainvloginv) + 1;
#if defined(SCAPEGOATTREE_PARANOID)
Assert(is_alpha_height_balanced(find_max_depth(m_root), static_cast<size_type>(m_root->size)));
Assert(find_max_depth(m_root) + 1 <= depthHint);
#endif
return iterator(m_root, depthHint + 1);
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename K>
typename ScapegoatTree<K>::const_iterator ScapegoatTree<K>::begin() const {
if (NULL == m_root)
return iterator();
const size_type depthHint = get_tree_min_depth_ib(m_count, m_alphainvloginv) + 1;
#if defined(SCAPEGOATTREE_PARANOID)
Assert(is_alpha_height_balanced(find_max_depth(m_root), static_cast<size_type>(m_root->size)));
Assert(find_max_depth(m_root) + 1 <= depthHint);
#endif
return const_iterator(m_root, depthHint + 1);
}
///-------------------------------------------------------------------------
///Get min tree depth if balanced
///-------------------------------------------------------------------------
template <typename K>
typename ScapegoatTree<K>::size_type ScapegoatTree<K>::get_tree_min_depth_ib (size_type parSize, float parAlphaInvLogInv) {
const float sz = static_cast<float>(parSize);
const size_type roundedDownDepthBase2 = duckmath::log2_fast(parSize + 1);
const float nodesAtLastLevel = (roundedDownDepthBase2 == 0 ? 0 : static_cast<float>(1 << roundedDownDepthBase2) - 1.0f);
const float retVal = std::log(sz + nodesAtLastLevel) * parAlphaInvLogInv;
return static_cast<size_type>(retVal);
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename K>
void ScapegoatTree<K>::clear() {
delete_nodes(m_root);
m_count = 0;
m_countMax = 0;
m_root = NULL;
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename K>
typename ScapegoatTree<K>::NodeType* ScapegoatTree<K>::find_ifp (NodeType* parTree, const K& parKey) {
while (parTree) {
if (parKey < parTree->content)
parTree = parTree->left;
else if (parTree->content < parKey)
parTree = parTree->right;
else
break;
}
return parTree;
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename K>
typename ScapegoatTree<K>::NodeType* ScapegoatTree<K>::find_parent_ifp (NodeType* parTree, const NodeType* parSearchNodeAddr) {
if (parTree == parSearchNodeAddr)
return NULL;
NodeType* parent = parTree;
while (parTree and (parTree->left != parSearchNodeAddr and parTree->right != parSearchNodeAddr)) {
if (parSearchNodeAddr->content < parTree->content)
parTree = parTree->left;
else if (parTree->content < parSearchNodeAddr->content)
parTree = parTree->right;
else
break;
parent = parTree;
}
return parent;
}
///-------------------------------------------------------------------------
///Set parSuccessor to true to get the in-order successor, or false to
///get the in-order predecessor.
///-------------------------------------------------------------------------
template <typename K>
typename ScapegoatTree<K>::NodeType* ScapegoatTree<K>::detach_bottom_node (NodeType* parTree, bool parSuccessor) {
AssertRelease(NULL != parTree);
AssertRelease(NULL != parTree->left and NULL != parTree->right);
if (parSuccessor) {
NodeType* inorderSuccessor = parTree->right;
NodeType* successorsParent = parTree;
while (NULL != inorderSuccessor->left) {
successorsParent = inorderSuccessor;
inorderSuccessor = inorderSuccessor->left;
}
Assert(inorderSuccessor == successorsParent->left and inorderSuccessor != successorsParent->right);
Assert(NULL == inorderSuccessor->left);
Assert(NULL == inorderSuccessor->right or inorderSuccessor->right->content < successorsParent->content);
successorsParent->left = inorderSuccessor->right;
Assert(inorderSuccessor);
return inorderSuccessor;
}
else {
NodeType* inorderPredecessor = parTree->left;
NodeType* predecessorsParent = parTree;
while (NULL != inorderPredecessor->right) {
predecessorsParent = inorderPredecessor;
inorderPredecessor = inorderPredecessor->right;
}
Assert(inorderPredecessor == predecessorsParent->right and inorderPredecessor != predecessorsParent->left);
Assert(NULL == inorderPredecessor->right);
Assert(NULL == inorderPredecessor->left or predecessorsParent->content < inorderPredecessor->left->content);
predecessorsParent->right = inorderPredecessor->left;
Assert(inorderPredecessor);
return inorderPredecessor;
}
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename K>
bool ScapegoatTree<K>::include (const K& parSearch) const {
const NodeType* const found = find_ifp(m_root, parSearch);
Assert(not found or not (parSearch < found->content or found->content < parSearch));
return static_cast<bool>(NULL != found);
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename K>
void ScapegoatTree<K>::rebalance_after_deletion_ifn() {
const float sz = static_cast<float>(m_count);
const float m = static_cast<float>(m_countMax);
if (sz < m_alpha * m) {
const size_type sizeHint = static_cast<size_type>(std::ceil(std::log(sz) * m_alphainvloginv)) + 1;
rebalance(m_root, sizeHint);
m_countMax = m_count;
}
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename K>
void ScapegoatTree<K>::erase (iterator parItem) {
NodeType* const dele = parItem.GetPointer();
AssertRelease(NULL != dele);
Assert(m_count > 0);
NodeType* parent;
if (dele == m_root)
parent = m_root;
else
parent = find_parent_ifp(m_root, dele);
Assert(NULL != parent);
if (parent) {
Assert(dele == parent->left or dele == parent->right or dele == parent);
NodeType*& parentChildRef = (dele == m_root ? m_root : (dele == parent->left ? parent->left : parent->right));
if (NULL == dele->left and NULL == dele->right) {
parentChildRef = NULL;
}
else if (NULL == dele->left xor NULL == dele->right) {
parentChildRef = (dele->left ? dele->left : dele->right);
}
else {
NodeType* const inorderSuccessor = detach_bottom_node(dele, true);
parentChildRef = inorderSuccessor;
inorderSuccessor->left = dele->left;
inorderSuccessor->right = dele->right;
}
Assert(NULL == parent->left or parent->left->content < parent->content);
Assert(NULL == parent->right or parent->content < parent->right->content);
}
--m_count;
delete dele;
rebalance_after_deletion_ifn();
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename K>
inline typename ScapegoatTree<K>::iterator ScapegoatTree<K>::find (const K& parSearch) {
NodeStack stack;
const size_type depthHint = get_max_balanced_depth(std::max<size_type>(m_reserved, m_count + 1), m_alphainvloginv) + 3;
stack.reserve(depthHint);
NodeType* const closestMatch = get_insert_parent(m_root, parSearch, stack);
Assert(stack.size() <= depthHint);
if (closestMatch->content == parSearch)
return iterator(stack.begin(), stack.size(), depthHint);
else
return this->end();
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename K>
inline typename ScapegoatTree<K>::const_iterator ScapegoatTree<K>::find (const K& parSearch) const {
return const_cast<ScapegoatTree<K>*>(this)->find(parSearch);
}
// ///-------------------------------------------------------------------------
// ///-------------------------------------------------------------------------
// template <typename K>
// void ScapegoatTree<K>::erase (iterator parFrom, iterator parLast) {
// }
//
// ///-------------------------------------------------------------------------
// ///-------------------------------------------------------------------------
// template <typename K>
// typename ScapegoatTree<K>::size_type ScapegoatTree<K>::erase (typename Loki::TypeTraits<value_type>::ParameterType parKey) {
// }
} //namespace duckmem

View file

@ -0,0 +1,258 @@
/* Copyright 2016-2020 Michele Santullo
* This file is part of "duckhandy".
*
* "duckhandy" is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* "duckhandy" is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with "duckhandy". If not, see <http://www.gnu.org/licenses/>.
*/
namespace duckmem {
namespace Implem {
///---------------------------------------------------------------------
///---------------------------------------------------------------------
template <typename P>
bool TreeIterator_base<P>::Exhausted() const {
return m_stack.empty();
}
///---------------------------------------------------------------------
///---------------------------------------------------------------------
template <typename P>
TreeIterator_base<P>::TreeIterator_base (const TreeIterator_base& parOther) :
m_stack()
{
m_stack.reserve(parOther.m_stack.capacity());
m_stack = parOther.m_stack;
Assert(m_stack.capacity() == parOther.m_stack.capacity());
}
///---------------------------------------------------------------------
///---------------------------------------------------------------------
template <typename P>
template <typename P1>
TreeIterator_base<P>::TreeIterator_base (const TreeIterator_base<P1>& parOther) {
typename TreeIterator_base<P1>::StackType otherStackCopy(parOther.m_stack);
std::vector<P> localCopy;
localCopy.reserve(parOther.m_stack.size());
while (not otherStackCopy.empty()) {
P convertedItem = otherStackCopy.back();
localCopy.push_back(convertedItem);
otherStackCopy.pop_back();
}
m_stack.reserve(parOther.m_stack.capacity());
for (typename std::vector<P>::reverse_iterator itRev = localCopy.rbegin(), itRevEnd = localCopy.rend(); itRev != itRevEnd; ++itRev) {
Assert(m_stack.capacity() > m_stack.size());
m_stack.push_back(*itRev);
}
}
///---------------------------------------------------------------------
///---------------------------------------------------------------------
template <typename T, typename N>
typename TreeIterator_const_layer<T, N, false>::reference TreeIterator_const_layer<T, N, false>::operator* () {
AssertRelease(not this->Exhausted());
return this->m_stack.back()->content;
}
///---------------------------------------------------------------------
///---------------------------------------------------------------------
template <typename T, typename N>
typename TreeIterator_const_layer<T, N, false>::const_reference TreeIterator_const_layer<T, N, false>::operator* () const {
AssertRelease(not this->Exhausted());
return this->m_stack.back()->content;
}
///---------------------------------------------------------------------
///---------------------------------------------------------------------
template <typename T, typename N>
typename TreeIterator_const_layer<T, N, false>::pointer TreeIterator_const_layer<T, N, false>::operator-> () {
AssertRelease(not this->Exhausted());
return &this->m_stack.back()->content;
}
///---------------------------------------------------------------------
///---------------------------------------------------------------------
template <typename T, typename N>
typename TreeIterator_const_layer<T, N, false>::const_pointer TreeIterator_const_layer<T, N, false>::operator-> () const {
AssertRelease(not this->Exhausted());
return &this->m_stack.back()->content;
}
///---------------------------------------------------------------------
///---------------------------------------------------------------------
template <typename T, typename N>
N* TreeIterator_const_layer<T, N, false>::GetPointer() {
AssertRelease(not this->Exhausted());
return this->m_stack.back();
}
///---------------------------------------------------------------------
///---------------------------------------------------------------------
template <typename T, typename N>
const N* TreeIterator_const_layer<T, N, false>::GetPointer() const {
AssertRelease(not this->Exhausted());
return this->m_stack.back();
}
///---------------------------------------------------------------------
///---------------------------------------------------------------------
template <typename T, typename N>
typename TreeIterator_const_layer<T, N, true>::const_reference TreeIterator_const_layer<T, N, true>::operator* () const {
AssertRelease(not this->Exhausted());
return this->m_stack.back()->content;
}
///---------------------------------------------------------------------
///---------------------------------------------------------------------
template <typename T, typename N>
typename TreeIterator_const_layer<T, N, true>::const_pointer TreeIterator_const_layer<T, N, true>::operator-> () const {
AssertRelease(not this->Exhausted());
return &this->m_stack.back()->content;
}
///---------------------------------------------------------------------
///---------------------------------------------------------------------
template <typename T, typename N>
const N* TreeIterator_const_layer<T, N, true>::GetPointer() const {
AssertRelease(not this->Exhausted());
return this->m_stack.back();
}
} //namespace Implem
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename T, typename N>
TreeIterator<T, N>::TreeIterator() {
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename T, typename N>
TreeIterator<T, N>::TreeIterator (const TreeIterator& parOther) :
parent_type(parOther)
{
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename T, typename N>
template <typename T1>
TreeIterator<T, N>::TreeIterator (const TreeIterator<T1, N>& parOther) :
parent_type(parOther)
{
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename T, typename N>
template <typename S>
TreeIterator<T, N>::TreeIterator (S parCopyStackBottomUp, size_type parStackLen, size_type parMaxDepthHint) {
AssertRelease(parStackLen > 0);
this->m_stack.reserve(std::max(parStackLen, parMaxDepthHint));
typename StackType::value_type prevNode = *parCopyStackBottomUp;
++parCopyStackBottomUp;
this->m_stack.push_back(prevNode);
for (size_type z = 1; z < parStackLen; ++z) {
typename StackType::value_type currNode = *parCopyStackBottomUp;
if (prevNode->left == currNode) {
Assert(this->m_stack.capacity() > this->m_stack.size());
this->m_stack.push_back(currNode);
}
else {
//If you get this assertion make sure the iterator you are
//passing in is reversed (ie: from leaf to root)
AssertRelease(currNode == prevNode->right);
this->m_stack.pop_back();
this->m_stack.push_back(currNode);
}
prevNode = currNode;
++parCopyStackBottomUp;
}
Assert(not this->Exhausted());
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename T, typename N>
TreeIterator<T, N>::TreeIterator (NodeTypePointer parRoot, size_type parMaxDepthHint) {
if (parMaxDepthHint > 0)
this->m_stack.reserve(parMaxDepthHint);
RecurseLeft(parRoot);
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename T, typename N>
TreeIterator<T, N>::~TreeIterator() {
}
///-------------------------------------------------------------------------
///Post-increment
///-------------------------------------------------------------------------
template <typename T, typename N>
TreeIterator<T, N> TreeIterator<T, N>::operator++ (int) {
AssertRelease(not this->Exhausted());
TreeIterator<T, N> retVal = *this;
++(*this);
return retVal;
}
///-------------------------------------------------------------------------
///Pre-increment
///-------------------------------------------------------------------------
template <typename T, typename N>
TreeIterator<T, N>& TreeIterator<T, N>::operator++() {
AssertRelease(not this->Exhausted());
NodeTypePointer currNode = this->m_stack.back();
#if defined(ASSERTIONSENABLED)
const size_type stackCapacity = this->m_stack.capacity();
#endif
AssertRelease(not this->m_stack.empty());
this->m_stack.pop_back();
#if defined(ASSERTIONSENABLED)
//It shouldn't normally happen, but it's just to make sure
Assert(stackCapacity == this->m_stack.capacity());
#endif
RecurseLeft(currNode->right);
return *this;
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename T, typename N>
const TreeIterator<T, N>& TreeIterator<T, N>::operator= (const TreeIterator& parOther) {
this->m_stack = parOther.m_stack;
Assert(this->m_stack.capacity() >= parOther.m_stack.capacity());
return *this;
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename T, typename N>
bool TreeIterator<T, N>::operator== (const TreeIterator& parOther) const {
return this->m_stack.size() == parOther.m_stack.size() and (this->m_stack.empty() or parOther.m_stack.back() == this->m_stack.back());
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename T, typename N>
void TreeIterator<T, N>::RecurseLeft (NodeTypePointer parFrom) {
NodeTypePointer currNode = parFrom;
while (NULL != currNode) {
Assert(this->m_stack.capacity() > this->m_stack.size());
this->m_stack.push_back(currNode);
currNode = currNode->left;
}
}
} //namespace duckmem

View file

@ -0,0 +1,76 @@
/* Copyright 2016-2020 Michele Santullo
* This file is part of "duckhandy".
*
* "duckhandy" is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* "duckhandy" is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with "duckhandy". If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef id28695193476D4A9499151FC175A49196
#define id28695193476D4A9499151FC175A49196
#include <cstdint>
#if defined(__linux)
# include <strings.h>
#endif
namespace duckmath {
namespace implem {
#if !defined(__linux)
[[gnu::pure]]
inline uint_fast32_t LowestBitSet ( uint_fast32_t x ) pure_function;
//Precomputed lookup table
const constexpr uint_fast32_t g_multiplyDeBruijnBitPosition[32] = {
0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
};
///---------------------------------------------------------------------
///Thanks to: http://bits.stephan-brumme.com/lowestBitSet.html
///---------------------------------------------------------------------
[[gnu::pure]]
inline uint_fast32_t LowestBitSet (uint_fast32_t x) {
//Leave only lowest bit
x &= -i32(x);
//DeBruijn constant
x *= 0x077CB531;
//Get upper 5 bits
x >>= 27;
//Convert to actual position
return g_multiplyDeBruijnBitPosition[x];
}
#endif
[[gnu::pure]]
inline uint32_t GetHighestBitOnly (uint32_t parIn) {
parIn |= (parIn >> 1);
parIn |= (parIn >> 2);
parIn |= (parIn >> 4);
parIn |= (parIn >> 8);
parIn |= (parIn >> 16);
return parIn - (parIn >> 1);
}
} //namespace implem
uint_fast32_t log2_fast (uint_fast32_t parX) {
const uint_fast32_t highestPow2 = implem::GetHighestBitOnly(parX);
#if defined(__linux)
const uint_fast32_t retVal = ffs(highestPow2) - 1;
#else
const uint_fast32_t retVal = LowestBitSet(highestPow2);
#endif
return retVal;
}
} //namespace duckmath
#endif

View file

@ -0,0 +1,51 @@
/* Copyright 2016-2020 Michele Santullo
* This file is part of "duckhandy".
*
* "duckhandy" is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* "duckhandy" is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with "duckhandy". If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef idDD2D1A57ABEB4BEEA0F7E46C347D1637
#define idDD2D1A57ABEB4BEEA0F7E46C347D1637
#include "scapegoat_tree.hpp"
namespace duckmem {
template <typename K, typename V, typename Hasher>
class ScapegoatMap {
public:
typedef K key_type;
typedef V value_type;
ScapegoatMap ( void );
~ScapegoatMap ( void );
private:
class DerivedPair : public std::pair<key_type, value_type> {
typedef std::pair<key_type, value_type> parent_type;
public:
DerivedPair ( void );
DerivedPair ( typename Loki::TypeTraits<key_type>::ParameterType parKey, typename Loki::TypeTraits<value_type>::ParameterType parValue );
~DerivedPair ( void );
bool operator< ( const DerivedPair& parOther ) const;
bool operator== ( const DerivedPair& parOther ) const;
};
ScapegoatTree<DerivedPair> m_tree;
};
} //namespace duckmem
#include "implem/scapegoat_map.inl"
#endif

View file

@ -0,0 +1,163 @@
/* Copyright 2016-2020 Michele Santullo
* This file is part of "duckhandy".
*
* "duckhandy" is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* "duckhandy" is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with "duckhandy". If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef id79CEDB2530B54204A6BEDCBE0B767EA1
#define id79CEDB2530B54204A6BEDCBE0B767EA1
#include "tree_iterator.hpp"
#include "implem/IteratorOnPtr.hpp"
#include "log2_fast.hpp"
#include <limits>
#include <utility>
#include <cmath>
#include <cassert>
#include <cstdint>
//#define SCAPEGOATTREE_VERBOSE
//#define SCAPEGOATTREE_PARANOID
#define SCAPEGOATTREE_DYNAMIC_SIZE_TYPE
#if defined(DUCK_FINAL)
# if defined(SCAPEGOATTREE_VERBOSE)
# undef(SCAPEGOATTREE_VERBOSE)
# endif
#endif
#if !defined(ASSERTIONSENABLED)
# if defined(SCAPEGOATTREE_PARANOID)
# undef(SCAPEGOATTREE_PARANOID)
# endif
#endif
namespace duckmem {
using dhandy::IteratorOnPtr;
namespace implem {
[[gnu::pure]]
inline bool is_power_of_two (unsigned int parValue) {
return (parValue != 0 and (parValue bitand (~parValue + 1)) == parValue);
}
} //namespace implem
//TODO: implement or remove
class SmallObject {
public:
protected:
SmallObject ( void )=default;
~SmallObject ( void ) noexcept =default;
private:
};
template <typename K>
class ScapegoatTree {
public:
typedef K value_type;
typedef size_t size_type;
private:
template <typename SizeType>
struct TreeNodeStruct : public SmallObject {
typedef SizeType size_type;
TreeNodeStruct ( void );
TreeNodeStruct ( const K& parContent ) : content(parContent) {}
K content;
TreeNodeStruct* left;
TreeNodeStruct* right;
size_type size;
};
#if defined(SCAPEGOATTREE_DYNAMIC_SIZE_TYPE)
typedef typename std::conditional<sizeof(TreeNodeStruct<size_type>) == sizeof(TreeNodeStruct<uint32_t>), size_type, uint32_t>::type TreeNodeSizeType;
typedef TreeNodeStruct<TreeNodeSizeType> TreeNode;
#else
typedef TreeNodeStruct<size_type> TreeNode;
#endif
static_assert(sizeof(typename TreeNode::size_type) <= sizeof(size_type), "Mismatching size_type size");
typedef TreeNode NodeType;
typedef std::vector<NodeType*> NodeStack;
typedef std::pair<NodeType*, NodeType*> NodeTypePair;
public:
typedef value_type* pointer;
typedef value_type& reference;
typedef const value_type* const_pointer;
typedef const value_type& const_reference;
typedef duckmem::TreeIterator<value_type, NodeType> iterator;
typedef duckmem::TreeIterator<const value_type, NodeType> const_iterator;
ScapegoatTree ( void );
explicit ScapegoatTree ( float parAlpha );
~ScapegoatTree ( void );
float get_alpha ( void ) const { return m_alpha; }
bool include ( const K& parSearch ) const;
std::pair<iterator, bool> insert ( const K& parKey );
iterator insert ( const iterator&, const K& parValue );
bool empty ( void ) const { return m_count == 0; }
size_type size ( void ) const { return m_count; }
void reserve ( size_type parSize ) { m_reserved = std::max(parSize, m_count); }
size_type capacity ( void ) const { return m_reserved; }
void clear ( void );
void erase ( iterator parItem );
void erase ( iterator parFrom, iterator parLast );
size_type erase ( const value_type& parKey );
iterator find ( const K& parSearch );
const_iterator find ( const K& parSearch ) const;
iterator begin ( void );
const_iterator begin ( void ) const;
iterator end ( void ) { return iterator(); }
const_iterator end ( void ) const { return const_iterator(); }
private:
template <typename T>
static T* find_closest_match ( T* parTree, const K& parKey );
static NodeType* get_insert_parent ( NodeType* parTree, const K& parKey, NodeStack& parRewind );
static NodeType* find_ifp ( NodeType* parTree, const K& parKey );
static NodeType* find_parent_ifp ( NodeType* parTree, const NodeType* parSearchNodeAddr );
static NodeType* get_new_node ( const K& parKey );
static void delete_nodes ( NodeType* parNode );
[[gnu::pure]] bool is_alpha_height_balanced ( size_type parHeight, size_type parSize ) const;
NodeTypePair find_scapegoat ( NodeStack& parParents ) const;
static NodeType* rebalance ( NodeType* parSubtree, size_type parDepthHint );
static NodeType* compress_first ( NodeType* parFrom, size_type parDepthHint );
static NodeType* compress ( NodeType* parFrom );
[[gnu::pure]] static size_type get_max_balanced_depth ( size_type parSize, float parAlphaInvLogInv );
[[gnu::pure]] static size_type get_tree_min_depth_ib ( size_type parSize, float parAlphaInvLogInv );
static NodeType* detach_bottom_node ( NodeType* parTree, bool parSuccessor );
void rebalance_after_deletion_ifn ( void );
#if defined(SCAPEGOATTREE_PARANOID)
static size_type assert_node_size ( const NodeType* parSubtree );
static size_type find_max_depth ( const NodeType* parSubtree ) { return FindMaxDepth_rec(parSubtree) - 1; }
static size_type find_max_depth_rec ( const NodeType* parSubtree );
#endif
NodeType* m_root;
size_type m_count;
size_type m_countMax;
size_type m_reserved;
float m_alpha;
float m_alphainvloginv;
};
} //namespace duckmem
#include "implem/scapegoat_tree.inl"
#endif

View file

@ -0,0 +1,149 @@
/* Copyright 2016-2020 Michele Santullo
* This file is part of "duckhandy".
*
* "duckhandy" is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* "duckhandy" is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with "duckhandy". If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef id6109D5EDE99D43C4909F084A231BF2C2
#define id6109D5EDE99D43C4909F084A231BF2C2
#include <vector>
#include <cstddef>
#include <type_traits>
#include <cassert>
#if !defined(AssertNotReached)
# define AssertNotReached() assert(false)
#endif
#if !defined(AssertRelease)
# define AssertRelease(a) assert(a)
#endif
#if !defined(Assert)
# define Assert(a) assert(a)
#endif
namespace duckmem {
namespace Implem {
template <typename P>
class TreeIterator_base {
template <typename P1> friend class TreeIterator_base;
public:
explicit TreeIterator_base ( void ) {}
TreeIterator_base ( const TreeIterator_base& parOther );
template <typename P1>
explicit TreeIterator_base ( const TreeIterator_base<P1>& parOther );
~TreeIterator_base ( void ) {}
protected:
typedef std::vector<P> StackType;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
bool Exhausted ( void ) const;
StackType m_stack;
};
template <typename T, typename N, bool Const>
class TreeIterator_const_layer;
template <typename T, typename N>
class TreeIterator_const_layer<T, N, true> : protected TreeIterator_base<const N*> {
template <typename T1, typename N1, bool Const1> friend class TreeIterator_const_layer;
typedef TreeIterator_base<const N*> parent_type;
public:
typedef const T* pointer;
typedef const T* const_pointer;
typedef const T& reference;
typedef const T& const_reference;
typedef typename parent_type::size_type size_type;
typedef typename parent_type::difference_type difference_type;
typedef N NodeType;
typedef const N* NodeTypePointer;
enum { IS_CONST = 1 };
TreeIterator_const_layer ( void ) {}
TreeIterator_const_layer ( const TreeIterator_const_layer& parOther ) : parent_type(parOther) {}
TreeIterator_const_layer ( TreeIterator_const_layer&& ) = default;
template <typename T1, bool C1>
explicit TreeIterator_const_layer ( const TreeIterator_const_layer<T1, N, C1>& parOther ) : parent_type(parOther) {}
const_reference operator* ( void ) const;
const_pointer operator-> ( void ) const;
const N* GetPointer ( void ) const;
protected:
typedef typename parent_type::StackType StackType;
};
template <typename T, typename N>
class TreeIterator_const_layer<T, N, false> : protected TreeIterator_base<N*> {
template <typename T1, typename N1, bool Const1> friend class TreeIterator_const_layer;
typedef TreeIterator_base<N*> parent_type;
public:
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
typedef typename parent_type::size_type size_type;
typedef typename parent_type::difference_type difference_type;
typedef N NodeType;
typedef N* NodeTypePointer;
enum { IS_CONST = 0 };
TreeIterator_const_layer ( void ) {}
TreeIterator_const_layer ( const TreeIterator_const_layer& parOther ) : parent_type(parOther) {}
template <typename T1, bool C1>
explicit TreeIterator_const_layer ( const TreeIterator_const_layer<T1, N, C1>& parOther ) : parent_type(parOther) {}
reference operator* ( void );
const_reference operator* ( void ) const;
pointer operator-> ( void );
const_pointer operator-> ( void ) const;
const N* GetPointer ( void ) const;
N* GetPointer ( void );
protected:
typedef typename parent_type::StackType StackType;
};
} //namespace Implem
template <typename T, typename N>
class TreeIterator : public Implem::TreeIterator_const_layer<T, N, std::is_const<T>::value> {
typedef Implem::TreeIterator_const_layer<T, N, std::is_const<T>::value> parent_type;
typedef typename parent_type::NodeTypePointer NodeTypePointer;
typedef typename parent_type::NodeType NodeType;
typedef typename parent_type::StackType StackType;
public:
typedef T value_type;
typedef std::forward_iterator_tag iterator_category;
typedef typename parent_type::difference_type difference_type;
typedef typename parent_type::size_type size_type;
typedef typename parent_type::pointer pointer;
typedef typename parent_type::const_pointer const_pointer;
typedef typename parent_type::reference reference;
typedef typename parent_type::const_reference const_reference;
TreeIterator ( void );
TreeIterator ( const TreeIterator& parOther );
TreeIterator ( NodeTypePointer parRoot, size_type parMaxDepthHint );
template <typename S>
TreeIterator ( S parCopyStackBottomUp, size_type parStackLen, size_type parMaxDepthHint );
template <typename T1>
TreeIterator ( const TreeIterator<T1, N>& parOther );
~TreeIterator ( void );
const TreeIterator& operator= ( const TreeIterator& parOther );
bool operator== ( const TreeIterator& parOther ) const;
bool operator!= ( const TreeIterator& parOther ) const { return not (*this == parOther); }
TreeIterator& operator++ ( void ); //pre
TreeIterator operator++ ( int ); //post
private:
void RecurseLeft ( NodeTypePointer parFrom );
};
} //namespace duckmem
#include "implem/tree_iterator.inl"
#endif

View file

@ -7,6 +7,7 @@ add_executable(${PROJECT_NAME}
reversed_sized_array_test.cpp
bitfield_pack_test.cpp
resource_pool_test.cpp
scapegoat_tree_test.cpp
)
set_property(TARGET ${PROJECT_NAME} PROPERTY CXX_STANDARD 17)
set_property(TARGET ${PROJECT_NAME} PROPERTY CXX_STANDARD_REQUIRED ON)

View file

@ -0,0 +1,152 @@
/* Copyright 2016-2018 Michele Santullo
* This file is part of "duckhandy".
*
* "duckhandy" is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* "duckhandy" is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with "duckhandy". If not, see <http://www.gnu.org/licenses/>.
*/
#include "catch2/catch.hpp"
#include "duckhandy/scapegoat_tree.hpp"
#include <set>
TEST_CASE ("Insert values in a ScapegoatTree", "[Scapegoat][ScapegoatTree][containers]") {
using duckmem::ScapegoatTree;
ScapegoatTree<int> tree;
{
auto it = tree.insert(25);
CHECK(it.second == true);
CHECK(it.first != tree.end());
CHECK(*it.first == 25);
CHECK(tree.size() == 1);
}
{
auto it = tree.insert(25);
CHECK(tree.size() == 1);
CHECK(it.second == false);
CHECK(it.first != tree.end());
CHECK(*it.first == 25);
}
{
auto it = tree.insert(26);
CHECK(it.second == true);
CHECK(it.first != tree.end());
CHECK(*it.first == 26);
CHECK(tree.size() == 2);
}
{
for (std::size_t z = 0; z < 100; ++z) {
const int val = static_cast<int>(z);
auto it = tree.insert(val);
if (z < 25) {
CHECK(tree.size() == z + 2 + 1);
CHECK(it.second == true);
}
else if (z < 26) {
CHECK(tree.size() == z + 1 + 1);
CHECK(it.second == false);
}
else if (z < 27) {
CHECK(tree.size() == z + 1);
CHECK(it.second == false);
}
else {
CHECK(tree.size() == z + 1);
CHECK(it.second == true);
}
CHECK(*it.first == val);
}
}
{
auto end = tree.end();
int val = 0;
for (auto it = tree.begin(); it != end; ++it, ++val) {
CHECK(val == *it);
}
CHECK(static_cast<int>(tree.size()) == val);
val = 75;
for (auto it = tree.insert(val).first; it != end; ++it, ++val) {
CHECK(val == *it);
}
CHECK(static_cast<int>(tree.size()) == val);
}
}
TEST_CASE ("Erase values from a ScapegoatTree", "[Scapegoat][ScapegoatTree][containers]") {
using duckmem::ScapegoatTree;
//auto rand_num = std::bind(std::uniform_int_distribution<int>(1, 1000), std::mt19937(std::time(0)));
ScapegoatTree<int> tree;
for (int z = 0; z < 5000; ++z) {
tree.insert(z + 1);
}
CHECK(tree.size() == 5000);
std::set<int> cpy(tree.begin(), tree.end());
CHECK(cpy.size() == 5000);
{
auto it_num = tree.find(0);
CHECK(it_num == tree.end());
}
{
auto it_num = tree.find(1);
REQUIRE(it_num != tree.end());
CHECK(*it_num == 1);
CHECK(it_num == tree.begin());
tree.erase(it_num);
cpy.erase(1);
CHECK(tree.size() == 4999);
it_num = tree.find(1);
CHECK(it_num == tree.end());
CHECK(not tree.include(1));
}
{
auto it_num = tree.find(2345);
REQUIRE(it_num != tree.end());
CHECK(*it_num == 2345);
tree.erase(it_num);
cpy.erase(2345);
CHECK(tree.size() == 4998);
it_num = tree.find(2345);
CHECK(it_num == tree.end());
CHECK(not tree.include(2345));
}
{
auto it_num = tree.find(3000);
REQUIRE(it_num != tree.end());
int test_num = 3000;
for (; it_num != tree.end(); ++it_num) {
CHECK(*it_num == test_num);
test_num++;
}
CHECK(test_num == 5001);
}
{
const ScapegoatTree<int>& ref = tree;
auto it_num = ref.find(18);
REQUIRE(it_num != ref.end());
CHECK(*it_num == 18);
CHECK(ref.include(18));
}
REQUIRE(tree.size() == cpy.size());
CHECK(std::equal(tree.begin(), tree.end(), cpy.begin()));
}