Compare commits

...
Sign in to create a new pull request.

4 commits

Author SHA1 Message Date
King_DuckZ
e3f902d6e3 Unit test for SmallObjectAllocator 2025-08-23 14:26:11 +01:00
King_DuckZ
3f633df74f Merge branch 'master' into scapegoat 2025-08-23 12:41:01 +01:00
King_DuckZ
e05386eafe Tree iterator first commit 2025-08-23 12:27:14 +01:00
King_DuckZ
5c4cacf286 Nonworking implementation attempt
I think the whole approach is wrong and this needs
to be re-architected
2025-08-23 12:26:16 +01:00
7 changed files with 933 additions and 0 deletions

View file

@ -0,0 +1,48 @@
/* Copyright 2016-2025 Michele Santullo
* This file is part of "duckhandy".
*
* "duckhandy" is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* "duckhandy" is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with "duckhandy". If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef id99DC0F782D0F4907A7768E8743A8BE74
#define id99DC0F782D0F4907A7768E8743A8BE74
#include <ciso646>
#include <cstdint>
#include <cstddef>
namespace dhandy {
template <unsigned int V>
concept is_pow_of_two = static_cast<bool>(V and not(V bitand (V - 1u)));
template <unsigned int V, typename T>
requires is_pow_of_two<V>
constexpr T align_to (T v) {
return (v + V-1) & ~(T{V-1});
}
template <unsigned int V, typename T>
requires is_pow_of_two<V>
constexpr T padding_to (T v) {
return (-v) & (V-1);
}
template <unsigned int V, typename T>
requires is_pow_of_two<V>
constexpr T* align_ptr_to (T* ptr, std::size_t add) {
return reinterpret_cast<T*>(align_to<V>(reinterpret_cast<std::uintptr_t>(ptr) + add));
}
} //namespace dhandy
#endif

View file

@ -0,0 +1,252 @@
/* Copyright 2016-2024 Michele Santullo
* This file is part of "duckhandy".
*
* "duckhandy" is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* "duckhandy" is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with "duckhandy". If not, see <http://www.gnu.org/licenses/>.
*/
namespace dhandy {
namespace implem {
///---------------------------------------------------------------------
///---------------------------------------------------------------------
template <typename P>
bool TreeIterator_base<P>::Exhausted() const {
return m_stack.empty();
}
///---------------------------------------------------------------------
///---------------------------------------------------------------------
template <typename P>
TreeIterator_base<P>::TreeIterator_base (const TreeIterator_base& parOther) :
m_stack(parOther.m_stack)
{
}
///---------------------------------------------------------------------
///---------------------------------------------------------------------
template <typename P>
template <typename P1>
TreeIterator_base<P>::TreeIterator_base (const TreeIterator_base<P1>& parOther) {
typename TreeIterator_base<P1>::StackType otherStackCopy(parOther.m_stack);
std::vector<P> localCopy;
localCopy.reserve(parOther.m_stack.size());
while (not otherStackCopy.empty()) {
P convertedItem = otherStackCopy.top();
localCopy.push_back(convertedItem);
otherStackCopy.pop();
}
m_stack.reserve(parOther.m_stack.capacity());
for (typename std::vector<P>::reverse_iterator itRev = localCopy.rbegin(), itRevEnd = localCopy.rend(); itRev != itRevEnd; ++itRev) {
assert(m_stack.capacity() > m_stack.size());
m_stack.push(*itRev);
}
}
///---------------------------------------------------------------------
///---------------------------------------------------------------------
template <typename T, typename N>
typename TreeIterator_const_layer<T, N, false>::reference TreeIterator_const_layer<T, N, false>::operator* () {
assert(not this->Exhausted());
return this->m_stack.top()->content;
}
///---------------------------------------------------------------------
///---------------------------------------------------------------------
template <typename T, typename N>
typename TreeIterator_const_layer<T, N, false>::const_reference TreeIterator_const_layer<T, N, false>::operator* () const {
assert(not this->Exhausted());
return this->m_stack.top()->content;
}
///---------------------------------------------------------------------
///---------------------------------------------------------------------
template <typename T, typename N>
typename TreeIterator_const_layer<T, N, false>::pointer TreeIterator_const_layer<T, N, false>::operator-> () {
assert(not this->Exhausted());
return &this->m_stack.top()->content;
}
///---------------------------------------------------------------------
///---------------------------------------------------------------------
template <typename T, typename N>
typename TreeIterator_const_layer<T, N, false>::const_pointer TreeIterator_const_layer<T, N, false>::operator-> () const {
assert(not this->Exhausted());
return &this->m_stack.top()->content;
}
///---------------------------------------------------------------------
///---------------------------------------------------------------------
template <typename T, typename N>
N* TreeIterator_const_layer<T, N, false>::GetPointer() {
assert(not this->Exhausted());
return this->m_stack.top();
}
///---------------------------------------------------------------------
///---------------------------------------------------------------------
template <typename T, typename N>
const N* TreeIterator_const_layer<T, N, false>::GetPointer() const {
assert(not this->Exhausted());
return this->m_stack.top();
}
///---------------------------------------------------------------------
///---------------------------------------------------------------------
template <typename T, typename N>
typename TreeIterator_const_layer<T, N, true>::const_reference TreeIterator_const_layer<T, N, true>::operator* () const {
assert(not this->Exhausted());
return this->m_stack.top()->content;
}
///---------------------------------------------------------------------
///---------------------------------------------------------------------
template <typename T, typename N>
typename TreeIterator_const_layer<T, N, true>::const_pointer TreeIterator_const_layer<T, N, true>::operator-> () const {
assert(not this->Exhausted());
return &this->m_stack.top()->content;
}
///---------------------------------------------------------------------
///---------------------------------------------------------------------
template <typename T, typename N>
const N* TreeIterator_const_layer<T, N, true>::GetPointer() const {
assert(not this->Exhausted());
return this->m_stack.top();
}
} //namespace implem
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename T, typename N>
TreeIterator<T, N>::TreeIterator() {
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename T, typename N>
TreeIterator<T, N>::TreeIterator (const TreeIterator& parOther) :
parent_type(parOther)
{
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename T, typename N>
template <typename T1>
TreeIterator<T, N>::TreeIterator (const TreeIterator<T1, N>& parOther) :
parent_type(parOther)
{
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename T, typename N>
template <typename S>
TreeIterator<T, N>::TreeIterator (S parCopyStackBottomUp, size_type parStackLen, size_type parMaxDepthHint) {
assert(parStackLen > 0);
this->m_stack.reserve(std::max(parStackLen, parMaxDepthHint));
typename StackType::value_type prevNode = *parCopyStackBottomUp;
++parCopyStackBottomUp;
this->m_stack.push(prevNode);
for (size_type z = 1; z < parStackLen; ++z) {
typename StackType::value_type currNode = *parCopyStackBottomUp;
if (prevNode->left == currNode) {
assert(this->m_stack.capacity() > this->m_stack.size());
this->m_stack.push(currNode);
}
else {
//If you get this assertion make sure the iterator you are
//passing in is reversed (ie: from leaf to root)
assert(currNode == prevNode->right);
}
prevNode = currNode;
++parCopyStackBottomUp;
}
assert(not this->Exhausted());
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename T, typename N>
TreeIterator<T, N>::TreeIterator (NodeTypePointer parRoot, size_type parMaxDepthHint) {
if (parMaxDepthHint > 0)
this->m_stack.reserve(parMaxDepthHint);
RecurseLeft(parRoot);
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename T, typename N>
TreeIterator<T, N>::~TreeIterator() {
}
///-------------------------------------------------------------------------
///Post-increment
///-------------------------------------------------------------------------
template <typename T, typename N>
TreeIterator<T, N> TreeIterator<T, N>::operator++ (int) {
assert(not this->Exhausted());
TreeIterator<T, N> retVal = *this;
++(*this);
return retVal;
}
///-------------------------------------------------------------------------
///Pre-increment
///-------------------------------------------------------------------------
template <typename T, typename N>
TreeIterator<T, N>& TreeIterator<T, N>::operator++() {
assert(not this->Exhausted());
NodeTypePointer currNode = this->m_stack.top();
#if defined(ASSERTIONSENABLED)
const size_type stackCapacity = this->m_stack.capacity();
#endif
this->m_stack.pop();
#if defined(ASSERTIONSENABLED)
//It shouldn't normally happen, but it's just to make sure
assert(stackCapacity == this->m_stack.capacity());
#endif
RecurseLeft(currNode->right);
return *this;
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename T, typename N>
const TreeIterator<T, N>& TreeIterator<T, N>::operator= (const TreeIterator& parOther) {
this->m_stack = parOther.m_stack;
assert(this->m_stack.capacity() >= parOther.m_stack.capacity());
return *this;
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename T, typename N>
bool TreeIterator<T, N>::operator== (const TreeIterator& parOther) const {
return this->m_stack.size() == parOther.m_stack.size() and (this->m_stack.empty() or parOther.m_stack.top() == this->m_stack.top());
}
///-------------------------------------------------------------------------
///-------------------------------------------------------------------------
template <typename T, typename N>
void TreeIterator<T, N>::RecurseLeft (NodeTypePointer parFrom) {
NodeTypePointer currNode = parFrom;
while (NULL != currNode) {
assert(this->m_stack.capacity() > this->m_stack.size());
this->m_stack.push(currNode);
currNode = currNode->left;
}
}
} //namespace dhandy

View file

@ -0,0 +1,268 @@
/* Copyright 2016-2024 Michele Santullo
* This file is part of "duckhandy".
*
* "duckhandy" is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* "duckhandy" is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with "duckhandy". If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef idE77208CAFC79452DA12757DD0F6692D3
#define idE77208CAFC79452DA12757DD0F6692D3
#include "alignment.hpp"
#include <type_traits>
#include <cassert>
#include <climits>
#include <cstdint>
#include <ciso646>
#include <memory>
#include <strings.h>
#include <cstddef>
#include <cstring>
#include <iterator>
#include <vector>
#include <algorithm>
#if !defined(NDEBUG) && !defined(DEBUG_SMALL_OBJECT_ALLOCATOR)
# define DEBUG_SMALL_OBJECT_ALLOCATOR
#endif
#if defined(DEBUG_SMALL_OBJECT_ALLOCATOR)
# include "tiger_bt.hpp"
# include "lengthof.h"
#endif
namespace dhandy {
namespace implem {
[[gnu::pure,gnu::always_inline]]
unsigned int ffs (unsigned int val) { return static_cast<unsigned int>(::ffs(static_cast<int>(val))); }
[[gnu::pure,gnu::always_inline]]
unsigned int ffs (unsigned long val) { return static_cast<unsigned int>(::ffsl(static_cast<long>(val))); }
[[gnu::pure,gnu::always_inline]]
unsigned int ffs (unsigned long long val) { return static_cast<unsigned int>(::ffsll(static_cast<long long>(val))); }
#if defined(DEBUG_SMALL_OBJECT_ALLOCATOR)
template <typename T, template <class> typename A>
consteval std::uint32_t make_signature() {
return static_cast<std::uint32_t>(
bt::tiger(__PRETTY_FUNCTION__, lengthof(__PRETTY_FUNCTION__), bt::TigerPaddingV2).a & 0xFFFFFFFF
);
}
#endif
} //namespace implem
template <typename T>
struct AllocatorFunction {
std::unique_ptr<T> operator()() {
return std::make_unique<T>();
}
};
template <typename T, template <class> typename A=AllocatorFunction>
class SmallObjectAllocator {
public:
typedef T value_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef std::true_type propagate_on_container_move_assignment;
private:
typedef std::uint_fast32_t uint_freelist_t;
typedef std::uint32_t index_t;
struct TAndPtrFakeStruct { //only used for sizeof()
TAndPtrFakeStruct() = delete;
T t;
#if defined(DEBUG_SMALL_OBJECT_ALLOCATOR)
std::uint32_t signature;
#endif
index_t block_index; //index in a lookup table so that lookup[index-1]->next == owner
};
static constexpr std::uint32_t signature = implem::make_signature<T, A>();
static constexpr size_type size = sizeof(TAndPtrFakeStruct);
static constexpr size_type align = alignof(TAndPtrFakeStruct);
static constexpr size_type object_size = sizeof(T); //(size < sizeof(T*) ? sizeof(T*) : size);
static constexpr size_type object_align = alignof(T); //(align < alignof(T*) ? alignof(T*) : align);
static constexpr size_type block_ptr_offset = offsetof(TAndPtrFakeStruct, block);
public:
static constexpr size_type objects_per_block = CHAR_BIT * sizeof(uint_freelist_t);
private:
struct Block {
typedef typename std::aligned_storage<size, align>::type raw_t;
raw_t data[objects_per_block];
std::unique_ptr<Block> next;
uint_freelist_t freelist{0};
};
public:
SmallObjectAllocator() = default;
~SmallObjectAllocator() noexcept = default;
[[nodiscard]] constexpr pointer allocate (size_type size);
//[[nodiscard]] constexpr std::allocation_result<pointer, size_type> allocate_at_least (size_type size);
constexpr void deallocate (pointer ptr, size_type size);
//template <typename T1, typename T2>
//constexpr bool operator== (const allocator<T1& lh, const allocator<T2>& rhs) noexcept;
private:
static index_t* fetch_block_index (Block::raw_t* in_ptr);
static void set_block_indices (Block* block, index_t new_index);
static void set_debug_signatures (Block* block);
std::vector<Block*> m_block_list;
std::unique_ptr<Block> m_head;
index_t m_prev_index;
index_t m_curr_index{0};
};
template <typename T, template <class> typename A>
constexpr auto SmallObjectAllocator<T, A>::allocate (size_type size) -> pointer {
assert(object_size == size);
#if defined(NDEBUG)
static_cast<void>(size);
#endif
assert(0 == m_curr_index or m_curr_index <= m_block_list.size());
assert(m_head or m_block_list.empty());
if (!m_curr_index or !~m_block_list[m_curr_index-1]->freelist) {
A<Block> alloc_function{};
auto new_block = alloc_function();
set_debug_signatures(new_block.get());
new_block->next = std::move(m_head);
m_head.swap(new_block);
m_block_list.push_back(m_head.get());
m_prev_index = m_curr_index;
m_curr_index = static_cast<index_t>(m_block_list.size());
if (m_head->next)
set_block_indices(m_head->next.get(), m_curr_index);
}
Block*const block = m_block_list[m_curr_index-1];
assert(block != nullptr);
const uint_freelist_t neg_freelist = static_cast<uint_freelist_t>(~block->freelist);
assert(neg_freelist != 0);
const unsigned int object_num = implem::ffs(neg_freelist);
assert(object_num);
const unsigned int object_index = object_num - 1;
assert(object_index < objects_per_block);
constexpr uint_freelist_t one = 1;
block->freelist |= one << object_index;
index_t* const index_ptr = fetch_block_index(block->data + object_index);
assert(index_ptr);
*index_ptr = m_prev_index;
return reinterpret_cast<pointer>(block->data + object_index);
}
template <typename T, template <class> typename A>
constexpr void SmallObjectAllocator<T, A>::deallocate (pointer ptr, size_type size) {
assert(object_size == size);
auto* const block_ptr = reinterpret_cast<Block::raw_t*>(ptr);
const index_t owner_prev_index = *fetch_block_index(block_ptr);
Block* const owner = (0 == owner_prev_index ? m_head.get() : m_block_list[owner_prev_index-1]->next.get());
assert(owner);
const auto flag_index = std::distance(owner->data, block_ptr);
assert(flag_index >= 0);
assert(flag_index < objects_per_block);
constexpr uint_freelist_t one = 1;
const uint_freelist_t mask = one << flag_index;
assert((owner->freelist & mask) != 0);
owner->freelist &= ~mask;
if (0 == owner->freelist) {
if (owner_prev_index) {
Block& prev = *m_block_list[owner_prev_index-1];
auto found = std::find(m_block_list.begin(), m_block_list.end(), owner);
assert(m_block_list.end() != found);
it's all fucked up here, I can't delete the item because that would
invalidate all the subsequent indices. It means all blocks following
the one being deleted would have to get set_block_indices() invoked
on them which is insane so this whole approach is fucke'
auto empty_block = std::move(prev.next);
assert(!prev.next);
prev.next = std::move(empty_block->next);
set_block_indices(prev.next.get(), owner_prev_index);
}
else {
assert(m_block_list.empty());
m_head.reset();
m_curr_index = 0;
}
}
}
template <typename T, template <class> typename A>
auto SmallObjectAllocator<T, A>::fetch_block_index (Block::raw_t* in_ptr) -> index_t* {
assert(in_ptr);
char* ptr = reinterpret_cast<char*>(in_ptr);
#if defined(DEBUG_SMALL_OBJECT_ALLOCATOR)
ptr = align_ptr_to<alignof(std::uint32_t)>(ptr, object_size);
{
std::uint32_t read_signature;
std::memcpy(&read_signature, ptr, sizeof(signature));
assert(signature == read_signature);
}
ptr = align_ptr_to<alignof(index_t)>(ptr, sizeof(signature));
#else
ptr = align_ptr_to<alignof(index_t)>(ptr, object_size);
#endif
index_t* const retval = reinterpret_cast<index_t*>(ptr);
return retval;
}
template <typename T, template <class> typename A>
void SmallObjectAllocator<T, A>::set_block_indices (Block* block, index_t new_index) {
uint_freelist_t flag = 1;
for (unsigned int z = 0; z < objects_per_block; ++z, flag<<=1) {
if (flag & block->freelist) {
index_t* const dst_index = fetch_block_index(block->data + z);
assert(dst_index);
*dst_index = new_index;
}
}
}
template <typename T, template <class> typename A>
void SmallObjectAllocator<T, A>::set_debug_signatures (Block* block) {
#if defined(DEBUG_SMALL_OBJECT_ALLOCATOR)
const auto sig = signature;
for (unsigned int z = 0; z < objects_per_block; ++z) {
std::memcpy(align_ptr_to<alignof(std::uint32_t)>(block->data + z, object_size), &sig, sizeof(signature));
}
#else
static_cast<void>(block);
#endif
}
} //namespace dhandy
#endif

View file

@ -0,0 +1,152 @@
/* Copyright 2016-2024 Michele Santullo
* This file is part of "duckhandy".
*
* "duckhandy" is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* "duckhandy" is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with "duckhandy". If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef id6109D5EDE99D43C4909F084A231BF2C2
#define id6109D5EDE99D43C4909F084A231BF2C2
#include <vector>
#include <cstddef>
#include <stack>
#include <type_traits>
#include <cassert>
namespace dhandy {
namespace implem {
template <typename P>
class TreeIteratorStack : public std::stack<P, std::vector<P>> {
public:
void reserve (std::size_t size) {
std::stack<P, std::vector<P>>::c.reserve(size);
}
std::size_t capacity() const {
return std::stack<P, std::vector<P>>::c.capacity();
}
private:
};
template <typename P>
class TreeIterator_base {
template <typename P1> friend class TreeIterator_base;
public:
explicit TreeIterator_base ( void ) {}
TreeIterator_base ( const TreeIterator_base& parOther );
template <typename P1>
explicit TreeIterator_base ( const TreeIterator_base<P1>& parOther );
~TreeIterator_base ( void ) {}
protected:
typedef TreeIteratorStack<P> StackType;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
bool Exhausted ( void ) const;
StackType m_stack;
};
template <typename T, typename N, bool Const>
class TreeIterator_const_layer;
template <typename T, typename N>
class TreeIterator_const_layer<T, N, true> : protected TreeIterator_base<const N*> {
template <typename T1, typename N1, bool Const1> friend class TreeIterator_const_layer;
typedef TreeIterator_base<const N*> parent_type;
public:
typedef const T* pointer;
typedef const T* const_pointer;
typedef const T& reference;
typedef const T& const_reference;
typedef typename parent_type::size_type size_type;
typedef typename parent_type::difference_type difference_type;
typedef N NodeType;
typedef const N* NodeTypePointer;
enum { IS_CONST = 1 };
TreeIterator_const_layer ( void ) {}
TreeIterator_const_layer ( const TreeIterator_const_layer& parOther ) : parent_type(parOther) {}
template <typename T1, bool C1>
explicit TreeIterator_const_layer ( const TreeIterator_const_layer<T1, N, C1>& parOther ) : parent_type(parOther) {}
const_reference operator* ( void ) const;
const_pointer operator-> ( void ) const;
const N* GetPointer ( void ) const;
protected:
typedef typename parent_type::StackType StackType;
};
template <typename T, typename N>
class TreeIterator_const_layer<T, N, false> : protected TreeIterator_base<N*> {
template <typename T1, typename N1, bool Const1> friend class TreeIterator_const_layer;
typedef TreeIterator_base<N*> parent_type;
public:
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
typedef typename parent_type::size_type size_type;
typedef typename parent_type::difference_type difference_type;
typedef N NodeType;
typedef N* NodeTypePointer;
enum { IS_CONST = 0 };
TreeIterator_const_layer ( void ) {}
TreeIterator_const_layer ( const TreeIterator_const_layer& parOther ) : parent_type(parOther) {}
template <typename T1, bool C1>
explicit TreeIterator_const_layer ( const TreeIterator_const_layer<T1, N, C1>& parOther ) : parent_type(parOther) {}
reference operator* ( void );
const_reference operator* ( void ) const;
pointer operator-> ( void );
const_pointer operator-> ( void ) const;
const N* GetPointer ( void ) const;
N* GetPointer ( void );
protected:
typedef typename parent_type::StackType StackType;
};
} //namespace implem
template <typename T, typename N>
class TreeIterator : public implem::TreeIterator_const_layer<T, N, std::is_const<T>::value> {
typedef implem::TreeIterator_const_layer<T, N, std::is_const<T>::value> parent_type;
typedef typename parent_type::NodeTypePointer NodeTypePointer;
typedef typename parent_type::NodeType NodeType;
typedef typename parent_type::StackType StackType;
public:
typedef T value_type;
typedef std::forward_iterator_tag iterator_category;
typedef typename parent_type::difference_type difference_type;
typedef typename parent_type::size_type size_type;
typedef typename parent_type::pointer pointer;
typedef typename parent_type::const_pointer const_pointer;
typedef typename parent_type::reference reference;
typedef typename parent_type::const_reference const_reference;
TreeIterator ( void );
TreeIterator ( const TreeIterator& parOther );
TreeIterator ( NodeTypePointer parRoot, size_type parMaxDepthHint );
template <typename S>
TreeIterator ( S parCopyStackBottomUp, size_type parStackLen, size_type parMaxDepthHint );
template <typename T1>
TreeIterator ( const TreeIterator<T1, N>& parOther );
~TreeIterator ( void );
const TreeIterator& operator= ( const TreeIterator& parOther );
bool operator== ( const TreeIterator& parOther ) const;
bool operator!= ( const TreeIterator& parOther ) const { return not (*this == parOther); }
TreeIterator& operator++ ( void ); //pre
TreeIterator operator++ ( int ); //post
private:
void RecurseLeft ( NodeTypePointer parFrom );
};
} //namespace dhandy
#include "implem/tree_iterator.inl"
#endif

View file

@ -10,6 +10,8 @@ unit_test_prog = executable(meson.project_name(),
'version_test.cpp',
'tiger_test.cpp',
'infix_iterator.cpp',
'tree_iterator_test.cpp',
'small_object_allocator_test.cpp',
install: false,
dependencies: [sprout_dep, catch2_dep],
include_directories: [public_incl],

View file

@ -0,0 +1,75 @@
/* Copyright 2016-2024 Michele Santullo
* This file is part of "duckhandy".
*
* "duckhandy" is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* "duckhandy" is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with "duckhandy". If not, see <http://www.gnu.org/licenses/>.
*/
#include "catch2/catch_test_macros.hpp"
#include "duckhandy/small_object_allocator.hpp"
#include <memory>
namespace {
static const void* g_alloc_last{nullptr};
static std::size_t g_alloc_count{0};
template <typename T>
struct TestAlloc {
std::unique_ptr<T> operator()() {
auto ret = std::make_unique<T>();
g_alloc_last = ret.get();
++g_alloc_count;
return ret;
}
};
} //unnamed namespace
TEST_CASE("Check SmallObjectAllocator", "[SmallObjectAllocator][containers][memory][allocators]") {
dhandy::SmallObjectAllocator<int, TestAlloc> soa;
CHECK(g_alloc_last == nullptr);
CHECK(g_alloc_count == 0u);
int* const int01 = soa.allocate(sizeof(int));
const void* old_block = g_alloc_last;
REQUIRE(int01 != nullptr);
CHECK(g_alloc_last != nullptr);
CHECK(g_alloc_count == 1);
int* const int02 = soa.allocate(sizeof(int));
REQUIRE(int02 != nullptr);
CHECK(int01 != int02);
CHECK(g_alloc_last == old_block);
CHECK(g_alloc_count == 1);
int* prev_int = int02;
for (std::size_t z = 2; z < dhandy::SmallObjectAllocator<int, TestAlloc>::objects_per_block; ++z) {
int* const new_int = soa.allocate(sizeof(int));
REQUIRE(new_int != nullptr);
CHECK(new_int != int01);
CHECK(new_int != prev_int);
prev_int = new_int;
CHECK(g_alloc_last == old_block);
CHECK(g_alloc_count == 1);
CHECK(reinterpret_cast<std::uintptr_t>(new_int) % alignof(int) == 0);
}
int* const int03 = soa.allocate(sizeof(int));
REQUIRE(int03 != nullptr);
CHECK(int03 != int02);
CHECK(int03 != int01);
CHECK(g_alloc_last != old_block);
old_block = g_alloc_last;
CHECK(g_alloc_count == 2);
soa.deallocate(int02, sizeof(int));
}

View file

@ -0,0 +1,136 @@
/* Copyright 2016-2024 Michele Santullo
* This file is part of "duckhandy".
*
* "duckhandy" is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* "duckhandy" is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with "duckhandy". If not, see <http://www.gnu.org/licenses/>.
*/
#include "catch2/catch_test_macros.hpp"
#include "duckhandy/tree_iterator.hpp"
namespace {
enum Letters : unsigned int {
A = 'a', B, C, D, E, F, G, H, I
};
struct TestNode {
TestNode (unsigned int val) : content(val) {}
TestNode* left{nullptr}, *right{nullptr};
unsigned int content{0};
};
} //unnamed namespace
TEST_CASE("Check TreeIterator", "[TreeIterator][containers][iterator]") {
typedef dhandy::TreeIterator<unsigned int, TestNode> TestIterator;
TestIterator empty;
{
TestNode root{0xDEADBEEFu};
TestIterator it{&root, 1};
CHECK(*it == 0xDEADBEEFu);
++it;
CHECK(it == empty);
}
{
TestNode root{A};
TestNode l{B}, ll{C}, lr{D};
TestNode r{E}, rl{F}, rr{G}, rll{H}, rrr{I};
root.left = &l;
root.right = &r;
l.left = &ll;
l.right = &lr;
r.left = &rl;
r.right = &rr;
rl.left = &rll;
rr.right = &rrr;
TestIterator it{&root, 4};
CHECK(*it == C); //ll
++it;
CHECK(*it == B); //l
it++;
CHECK(*it == D); //lr
it++;
CHECK(*it == A); //root
++it;
CHECK(*it == H); //rll
it++;
CHECK(*it == F); //rl
it++;
CHECK(*it == E); //r
++it;
CHECK(*it == G); //rr
++it;
CHECK(*it == I); //rrr
CHECK(it != empty);
it++;
CHECK(it == empty);
}
{
TestNode root{A};
TestNode l{B}, ll{C}, lll{D}, llll{E}, lllll{F};
root.left = &l;
l.left = &ll;
ll.left = &lll;
lll.left = &llll;
llll.left = &lllll;
TestIterator it{&root, 6};
CHECK(it != empty);
CHECK(*it == F);
++it;
CHECK(*it == E);
++it;
CHECK(*it == D);
++it;
CHECK(*it == C);
++it;
CHECK(*it == B);
++it;
CHECK(*it == A);
++it;
CHECK(it == empty);
}
{
TestNode root{A};
TestNode r{B}, rr{C}, rrr{D}, rrrr{E}, rrrrr{F};
root.right = &r;
r.right = &rr;
rr.right = &rrr;
rrr.right = &rrrr;
rrrr.right = &rrrrr;
TestIterator it{&root, 6};
CHECK(it != empty);
CHECK(*it == A);
++it;
CHECK(*it == B);
++it;
CHECK(*it == C);
++it;
CHECK(*it == D);
++it;
CHECK(*it == E);
++it;
CHECK(*it == F);
++it;
CHECK(it == empty);
}
}