libbpg/jctvc/TLibCommon/TComTU.cpp

255 lines
9 KiB
C++
Raw Permalink Normal View History

2015-01-16 12:46:18 +00:00
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2014, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "TComTU.h"
#include "TComRom.h"
#include "TComDataCU.h"
#include "TComPic.h"
//----------------------------------------------------------------------------------------------------------------------
/*static*/ const UInt TComTU::NUMBER_OF_SECTIONS[TComTU::NUMBER_OF_SPLIT_MODES] = { 1, 2, 4 };
static const UInt partIdxStepShift [TComTU::NUMBER_OF_SPLIT_MODES] = { 0, 1, 2 };
//----------------------------------------------------------------------------------------------------------------------
TComTU::TComTU(TComDataCU *pcCU, const UInt absPartIdxCU, const UInt cuDepth, const UInt initTrDepthRelCU)
: mChromaFormat(pcCU->getSlice()->getSPS()->getChromaFormatIdc()),
mbProcessLastOfLevel(true), // does not matter. the top level is not 4 quadrants.
mCuDepth(cuDepth),
mSection(0),
mSplitMode(DONT_SPLIT),
mAbsPartIdxCU(absPartIdxCU),
mAbsPartIdxTURelCU(0),
mAbsPartIdxStep(pcCU->getPic()->getNumPartitionsInCtu() >> (pcCU->getDepth(absPartIdxCU)<<1)),
mpcCU(pcCU),
mLog2TrLumaSize(0),
mpParent(NULL)
{
TComSPS *pSPS=pcCU->getSlice()->getSPS();
mLog2TrLumaSize = g_aucConvertToBit[pSPS->getMaxCUWidth() >> (mCuDepth+initTrDepthRelCU)]+2;
const UInt baseOffset444=pcCU->getPic()->getMinCUWidth()*pcCU->getPic()->getMinCUHeight()*absPartIdxCU;
for(UInt i=0; i<MAX_NUM_COMPONENT; i++)
{
mTrDepthRelCU[i] = initTrDepthRelCU;
const UInt csx=getComponentScaleX(ComponentID(i), mChromaFormat);
const UInt csy=getComponentScaleY(ComponentID(i), mChromaFormat);
mOrigWidth[i]=mRect[i].width = (i < getNumberValidComponents(mChromaFormat)) ? (pcCU->getWidth( absPartIdxCU) >> csx) : 0;
mRect[i].height = (i < getNumberValidComponents(mChromaFormat)) ? (pcCU->getHeight(absPartIdxCU) >> csy) : 0;
mRect[i].x0=0;
mRect[i].y0=0;
mCodeAll[i]=true;
mOffsets[i]=baseOffset444>>(csx+csy);
}
}
TComTURecurse::TComTURecurse( TComDataCU *pcCU,
const UInt absPartIdxCU)
: TComTU(pcCU, absPartIdxCU, pcCU->getDepth(absPartIdxCU), 0)
{ }
TComTU::TComTU(TComTU &parent, const Bool bProcessLastOfLevel, const TU_SPLIT_MODE splitMode, const Bool splitAtCurrentDepth, const ComponentID absPartIdxSourceComponent)
: mChromaFormat(parent.mChromaFormat),
mbProcessLastOfLevel(bProcessLastOfLevel),
mCuDepth(parent.mCuDepth),
mSection(0),
mSplitMode(splitMode),
mAbsPartIdxCU(parent.mAbsPartIdxCU),
mAbsPartIdxTURelCU(parent.GetRelPartIdxTU(absPartIdxSourceComponent)),
mAbsPartIdxStep(std::max<UInt>(1, (parent.GetAbsPartIdxNumParts(absPartIdxSourceComponent) >> partIdxStepShift[splitMode]))),
mpcCU(parent.mpcCU),
mLog2TrLumaSize(parent.mLog2TrLumaSize - ((splitMode != QUAD_SPLIT) ? 0 : 1)), //no change in width for vertical split
mpParent(&parent)
{
for(UInt i=0; i<MAX_NUM_COMPONENT; i++)
{
mTrDepthRelCU[i] = parent.mTrDepthRelCU[i] + ((splitAtCurrentDepth || (splitMode == DONT_SPLIT)) ? 0 : 1);
}
if (mSplitMode==DONT_SPLIT)
{
for(UInt i=0; i<MAX_NUM_COMPONENT; i++)
{
mRect[i] = (parent.mRect[i]);
mOffsets[i]=parent.mOffsets[i];
mCodeAll[i]=true; // The 1 TU at this level is coded.
mOrigWidth[i]=mRect[i].width;
}
return;
}
else if (mSplitMode==VERTICAL_SPLIT)
{
for(UInt i=0; i<MAX_NUM_COMPONENT; i++)
{
mRect[i].x0 = (parent.mRect[i].x0);
mRect[i].y0 = (parent.mRect[i].y0);
mRect[i].width = (parent.mRect[i].width);
mRect[i].height = (parent.mRect[i].height)>>1;
mOffsets[i]=parent.mOffsets[i];
mCodeAll[i]=true; // The 2 TUs at this level is coded.
mOrigWidth[i]=mRect[i].width;
}
return;
}
for(UInt i=0; i<MAX_NUM_COMPONENT; i++)
{
mRect[i].width = (parent.mRect[i].width >> 1);
mRect[i].height= (parent.mRect[i].height>> 1);
mRect[i].x0=parent.mRect[i].x0;
mRect[i].y0=parent.mRect[i].y0;
mOffsets[i]=parent.mOffsets[i];
if ((mRect[i].width < MIN_TU_SIZE || mRect[i].height < MIN_TU_SIZE) && mRect[i].width!=0)
{
const UInt numPels=mRect[i].width * mRect[i].height;
if (numPels < (MIN_TU_SIZE*MIN_TU_SIZE))
{
// this level doesn't have enough pixels to have 4 blocks of any relative dimension
mRect[i].width = parent.mRect[i].width;
mRect[i].height= parent.mRect[i].height;
mCodeAll[i]=false; // go up a level, so only process one entry of a quadrant
mTrDepthRelCU[i]--;
}
else if (mRect[i].width < mRect[i].height)
{
mRect[i].width=MIN_TU_SIZE;
mRect[i].height=numPels/MIN_TU_SIZE;
mCodeAll[i]=true;
}
else
{
mRect[i].height=MIN_TU_SIZE;
mRect[i].width=numPels/MIN_TU_SIZE;
mCodeAll[i]=true;
}
}
else
{
mCodeAll[i]=true;
}
mOrigWidth[i]=mRect[i].width;
if (!mCodeAll[i] && mbProcessLastOfLevel) mRect[i].width=0;
}
}
Bool TComTURecurse::nextSection(const TComTU &parent)
{
if (mSplitMode==DONT_SPLIT)
{
mSection++;
return false;
}
else
{
for(UInt i=0; i<MAX_NUM_COMPONENT; i++)
{
mOffsets[i]+=mRect[i].width*mRect[i].height;
if (mbProcessLastOfLevel) mRect[i].width=mOrigWidth[i];
mRect[i].x0+=mRect[i].width;
const TComRectangle &parentRect=parent.getRect(ComponentID(i));
if (mRect[i].x0 >= parentRect.x0+parentRect.width)
{
mRect[i].x0=parentRect.x0;
mRect[i].y0+=mRect[i].height;
}
if (!mCodeAll[i])
{
if (!mbProcessLastOfLevel || mSection!=2) mRect[i].width=0;
}
}
assert(mRect[COMPONENT_Cb].x0==mRect[COMPONENT_Cr].x0);
assert(mRect[COMPONENT_Cb].y0==mRect[COMPONENT_Cr].y0);
assert(mRect[COMPONENT_Cb].width==mRect[COMPONENT_Cr].width);
assert(mRect[COMPONENT_Cb].height==mRect[COMPONENT_Cr].height);
mAbsPartIdxTURelCU+=mAbsPartIdxStep;
mSection++;
return mSection< (1<<mSplitMode);
}
}
UInt TComTU::GetEquivalentLog2TrSize(const ComponentID compID) const
{
return g_aucConvertToBit[ getRect(compID).height ] + 2;
}
Bool TComTU::useDST(const ComponentID compID)
{
TComDataCU *const pcCU = getCU();
const UInt absPartIdx = GetAbsPartIdxTU(compID);
return isLuma(compID) && pcCU->isIntra(absPartIdx);
}
Bool TComTU::isNonTransformedResidualRotated(const ComponentID compID)
{
// rotation only for 4x4 intra, and is only used for non-transformed blocks (the latter is not checked here)
return getCU()->getSlice()->getSPS()->getUseResidualRotation()
&& mRect[compID].width == 4
&& getCU()->isIntra(GetAbsPartIdxTU());
}
UInt TComTU::getGolombRiceStatisticsIndex(const ComponentID compID)
{
TComDataCU *const pcCU = getCU();
const UInt absPartIdx = GetAbsPartIdxTU(compID);
const Bool transformSkip = pcCU->getTransformSkip(absPartIdx, compID);
const Bool transquantBypass = pcCU->getCUTransquantBypass(absPartIdx);
//--------
const UInt channelTypeOffset = isChroma(compID) ? 2 : 0;
const UInt nonTransformedOffset = (transformSkip || transquantBypass) ? 1 : 0;
//--------
const UInt selectedIndex = channelTypeOffset + nonTransformedOffset;
assert(selectedIndex < RExt__GOLOMB_RICE_ADAPTATION_STATISTICS_SETS);
return selectedIndex;
}