libbpg/jctvc/TLibEncoder/TEncSampleAdaptiveOffset.cpp

1363 lines
45 KiB
C++
Raw Permalink Normal View History

2015-01-16 12:46:18 +00:00
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2014, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
\file TEncSampleAdaptiveOffset.cpp
\brief estimation part of sample adaptive offset class
*/
#include "TEncSampleAdaptiveOffset.h"
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
//! \ingroup TLibEncoder
//! \{
/** rounding with IBDI
* \param x
*/
inline Double xRoundIbdi2(Int bitDepth, Double x)
{
return ((x)>0) ? (Int)(((Int)(x)+(1<<(bitDepth-8-1)))/(1<<(bitDepth-8))) : ((Int)(((Int)(x)-(1<<(bitDepth-8-1)))/(1<<(bitDepth-8))));
}
inline Double xRoundIbdi(Int bitDepth, Double x)
{
return (bitDepth > 8 ? xRoundIbdi2(bitDepth, (x)) : ((x)>=0 ? ((Int)((x)+0.5)) : ((Int)((x)-0.5)))) ;
}
TEncSampleAdaptiveOffset::TEncSampleAdaptiveOffset()
{
m_pppcRDSbacCoder = NULL;
m_pcRDGoOnSbacCoder = NULL;
m_pppcBinCoderCABAC = NULL;
m_statData = NULL;
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
m_preDBFstatData = NULL;
#endif
}
TEncSampleAdaptiveOffset::~TEncSampleAdaptiveOffset()
{
destroyEncData();
}
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
Void TEncSampleAdaptiveOffset::createEncData(Bool isPreDBFSamplesUsed)
#else
Void TEncSampleAdaptiveOffset::createEncData()
#endif
{
//cabac coder for RDO
m_pppcRDSbacCoder = new TEncSbac* [NUM_SAO_CABACSTATE_LABELS];
#if FAST_BIT_EST
m_pppcBinCoderCABAC = new TEncBinCABACCounter* [NUM_SAO_CABACSTATE_LABELS];
#else
m_pppcBinCoderCABAC = new TEncBinCABAC* [NUM_SAO_CABACSTATE_LABELS];
#endif
for(Int cs=0; cs < NUM_SAO_CABACSTATE_LABELS; cs++)
{
m_pppcRDSbacCoder[cs] = new TEncSbac;
#if FAST_BIT_EST
m_pppcBinCoderCABAC[cs] = new TEncBinCABACCounter;
#else
m_pppcBinCoderCABAC[cs] = new TEncBinCABAC;
#endif
m_pppcRDSbacCoder [cs]->init( m_pppcBinCoderCABAC [cs] );
}
//statistics
m_statData = new SAOStatData**[m_numCTUsPic];
for(Int i=0; i< m_numCTUsPic; i++)
{
m_statData[i] = new SAOStatData*[MAX_NUM_COMPONENT];
for(Int compIdx=0; compIdx < MAX_NUM_COMPONENT; compIdx++)
{
m_statData[i][compIdx] = new SAOStatData[NUM_SAO_NEW_TYPES];
}
}
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
if(isPreDBFSamplesUsed)
{
m_preDBFstatData = new SAOStatData**[m_numCTUsPic];
for(Int i=0; i< m_numCTUsPic; i++)
{
m_preDBFstatData[i] = new SAOStatData*[MAX_NUM_COMPONENT];
for(Int compIdx=0; compIdx < MAX_NUM_COMPONENT; compIdx++)
{
m_preDBFstatData[i][compIdx] = new SAOStatData[NUM_SAO_NEW_TYPES];
}
}
}
#endif
#if SAO_ENCODING_CHOICE
::memset(m_saoDisabledRate, 0, sizeof(m_saoDisabledRate));
#endif
for(Int typeIdc=0; typeIdc < NUM_SAO_NEW_TYPES; typeIdc++)
{
m_skipLinesR[COMPONENT_Y ][typeIdc]= 5;
m_skipLinesR[COMPONENT_Cb][typeIdc]= m_skipLinesR[COMPONENT_Cr][typeIdc]= 3;
m_skipLinesB[COMPONENT_Y ][typeIdc]= 4;
m_skipLinesB[COMPONENT_Cb][typeIdc]= m_skipLinesB[COMPONENT_Cr][typeIdc]= 2;
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
if(isPreDBFSamplesUsed)
{
switch(typeIdc)
{
case SAO_TYPE_EO_0:
{
m_skipLinesR[COMPONENT_Y ][typeIdc]= 5;
m_skipLinesR[COMPONENT_Cb][typeIdc]= m_skipLinesR[COMPONENT_Cr][typeIdc]= 3;
m_skipLinesB[COMPONENT_Y ][typeIdc]= 3;
m_skipLinesB[COMPONENT_Cb][typeIdc]= m_skipLinesB[COMPONENT_Cr][typeIdc]= 1;
}
break;
case SAO_TYPE_EO_90:
{
m_skipLinesR[COMPONENT_Y ][typeIdc]= 4;
m_skipLinesR[COMPONENT_Cb][typeIdc]= m_skipLinesR[COMPONENT_Cr][typeIdc]= 2;
m_skipLinesB[COMPONENT_Y ][typeIdc]= 4;
m_skipLinesB[COMPONENT_Cb][typeIdc]= m_skipLinesB[COMPONENT_Cr][typeIdc]= 2;
}
break;
case SAO_TYPE_EO_135:
case SAO_TYPE_EO_45:
{
m_skipLinesR[COMPONENT_Y ][typeIdc]= 5;
m_skipLinesR[COMPONENT_Cb][typeIdc]= m_skipLinesR[COMPONENT_Cr][typeIdc]= 3;
m_skipLinesB[COMPONENT_Y ][typeIdc]= 4;
m_skipLinesB[COMPONENT_Cb][typeIdc]= m_skipLinesB[COMPONENT_Cr][typeIdc]= 2;
}
break;
case SAO_TYPE_BO:
{
m_skipLinesR[COMPONENT_Y ][typeIdc]= 4;
m_skipLinesR[COMPONENT_Cb][typeIdc]= m_skipLinesR[COMPONENT_Cr][typeIdc]= 2;
m_skipLinesB[COMPONENT_Y ][typeIdc]= 3;
m_skipLinesB[COMPONENT_Cb][typeIdc]= m_skipLinesB[COMPONENT_Cr][typeIdc]= 1;
}
break;
default:
{
printf("Not a supported type");
assert(0);
exit(-1);
}
}
}
#endif
}
}
Void TEncSampleAdaptiveOffset::destroyEncData()
{
if(m_pppcRDSbacCoder != NULL)
{
for (Int cs = 0; cs < NUM_SAO_CABACSTATE_LABELS; cs ++ )
{
delete m_pppcRDSbacCoder[cs];
}
delete[] m_pppcRDSbacCoder; m_pppcRDSbacCoder = NULL;
}
if(m_pppcBinCoderCABAC != NULL)
{
for (Int cs = 0; cs < NUM_SAO_CABACSTATE_LABELS; cs ++ )
{
delete m_pppcBinCoderCABAC[cs];
}
delete[] m_pppcBinCoderCABAC; m_pppcBinCoderCABAC = NULL;
}
if(m_statData != NULL)
{
for(Int i=0; i< m_numCTUsPic; i++)
{
for(Int compIdx=0; compIdx< MAX_NUM_COMPONENT; compIdx++)
{
delete[] m_statData[i][compIdx];
}
delete[] m_statData[i];
}
delete[] m_statData; m_statData = NULL;
}
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
if(m_preDBFstatData != NULL)
{
for(Int i=0; i< m_numCTUsPic; i++)
{
for(Int compIdx=0; compIdx< MAX_NUM_COMPONENT; compIdx++)
{
delete[] m_preDBFstatData[i][compIdx];
}
delete[] m_preDBFstatData[i];
}
delete[] m_preDBFstatData; m_preDBFstatData = NULL;
}
#endif
}
Void TEncSampleAdaptiveOffset::initRDOCabacCoder(TEncSbac* pcRDGoOnSbacCoder, TComSlice* pcSlice)
{
m_pcRDGoOnSbacCoder = pcRDGoOnSbacCoder;
m_pcRDGoOnSbacCoder->setSlice(pcSlice);
m_pcRDGoOnSbacCoder->resetEntropy();
m_pcRDGoOnSbacCoder->resetBits();
m_pcRDGoOnSbacCoder->store( m_pppcRDSbacCoder[SAO_CABACSTATE_PIC_INIT]);
}
Void TEncSampleAdaptiveOffset::SAOProcess(TComPic* pPic, Bool* sliceEnabled, const Double *lambdas
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
, Bool isPreDBFSamplesUsed
#endif
)
{
TComPicYuv* orgYuv= pPic->getPicYuvOrg();
TComPicYuv* resYuv= pPic->getPicYuvRec();
memcpy(m_lambda, lambdas, sizeof(m_lambda));
TComPicYuv* srcYuv = m_tempPicYuv;
resYuv->copyToPic(srcYuv);
srcYuv->setBorderExtension(false);
srcYuv->extendPicBorder();
//collect statistics
getStatistics(m_statData, orgYuv, srcYuv, pPic);
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
if(isPreDBFSamplesUsed)
{
addPreDBFStatistics(m_statData);
}
#endif
//slice on/off
decidePicParams(sliceEnabled, pPic->getSlice(0)->getDepth());
//block on/off
SAOBlkParam* reconParams = new SAOBlkParam[m_numCTUsPic]; //temporary parameter buffer for storing reconstructed SAO parameters
decideBlkParams(pPic, sliceEnabled, m_statData, srcYuv, resYuv, reconParams, pPic->getPicSym()->getSAOBlkParam());
delete[] reconParams;
}
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
Void TEncSampleAdaptiveOffset::getPreDBFStatistics(TComPic* pPic)
{
getStatistics(m_preDBFstatData, pPic->getPicYuvOrg(), pPic->getPicYuvRec(), pPic, true);
}
Void TEncSampleAdaptiveOffset::addPreDBFStatistics(SAOStatData*** blkStats)
{
for(Int n=0; n< m_numCTUsPic; n++)
{
for(Int compIdx=0; compIdx < MAX_NUM_COMPONENT; compIdx++)
{
for(Int typeIdc=0; typeIdc < NUM_SAO_NEW_TYPES; typeIdc++)
{
blkStats[n][compIdx][typeIdc] += m_preDBFstatData[n][compIdx][typeIdc];
}
}
}
}
#endif
Void TEncSampleAdaptiveOffset::getStatistics(SAOStatData*** blkStats, TComPicYuv* orgYuv, TComPicYuv* srcYuv, TComPic* pPic
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
, Bool isCalculatePreDeblockSamples
#endif
)
{
Bool isLeftAvail,isRightAvail,isAboveAvail,isBelowAvail,isAboveLeftAvail,isAboveRightAvail,isBelowLeftAvail,isBelowRightAvail;
const Int numberOfComponents = getNumberValidComponents(m_chromaFormatIDC);
for(Int ctuRsAddr= 0; ctuRsAddr < m_numCTUsPic; ctuRsAddr++)
{
Int yPos = (ctuRsAddr / m_numCTUInWidth)*m_maxCUHeight;
Int xPos = (ctuRsAddr % m_numCTUInWidth)*m_maxCUWidth;
Int height = (yPos + m_maxCUHeight > m_picHeight)?(m_picHeight- yPos):m_maxCUHeight;
Int width = (xPos + m_maxCUWidth > m_picWidth )?(m_picWidth - xPos):m_maxCUWidth;
pPic->getPicSym()->deriveLoopFilterBoundaryAvailibility(ctuRsAddr, isLeftAvail,isRightAvail,isAboveAvail,isBelowAvail,isAboveLeftAvail,isAboveRightAvail,isBelowLeftAvail,isBelowRightAvail);
//NOTE: The number of skipped lines during gathering CTU statistics depends on the slice boundary availabilities.
//For simplicity, here only picture boundaries are considered.
isRightAvail = (xPos + m_maxCUWidth < m_picWidth );
isBelowAvail = (yPos + m_maxCUHeight < m_picHeight);
isBelowRightAvail = (isRightAvail && isBelowAvail);
isBelowLeftAvail = ((xPos > 0) && (isBelowAvail));
isAboveRightAvail = ((yPos > 0) && (isRightAvail));
for(Int compIdx = 0; compIdx < numberOfComponents; compIdx++)
{
const ComponentID component = ComponentID(compIdx);
const UInt componentScaleX = getComponentScaleX(component, pPic->getChromaFormat());
const UInt componentScaleY = getComponentScaleY(component, pPic->getChromaFormat());
Int srcStride = srcYuv->getStride(component);
Pel* srcBlk = srcYuv->getAddr(component) + ((yPos >> componentScaleY) * srcStride) + (xPos >> componentScaleX);
Int orgStride = orgYuv->getStride(component);
Pel* orgBlk = orgYuv->getAddr(component) + ((yPos >> componentScaleY) * orgStride) + (xPos >> componentScaleX);
getBlkStats(component, blkStats[ctuRsAddr][component]
, srcBlk, orgBlk, srcStride, orgStride, (width >> componentScaleX), (height >> componentScaleY)
, isLeftAvail, isRightAvail, isAboveAvail, isBelowAvail, isAboveLeftAvail, isAboveRightAvail, isBelowLeftAvail, isBelowRightAvail
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
, isCalculatePreDeblockSamples
#endif
);
}
}
}
Void TEncSampleAdaptiveOffset::decidePicParams(Bool* sliceEnabled, Int picTempLayer)
{
//decide sliceEnabled[compIdx]
const Int numberOfComponents = getNumberValidComponents(m_chromaFormatIDC);
for (Int compIdx = 0; compIdx < MAX_NUM_COMPONENT; compIdx++)
{
sliceEnabled[compIdx] = false;
}
for (Int compIdx = 0; compIdx < numberOfComponents; compIdx++)
{
// reset flags & counters
sliceEnabled[compIdx] = true;
#if SAO_ENCODING_CHOICE
#if SAO_ENCODING_CHOICE_CHROMA
// decide slice-level on/off based on previous results
if( (picTempLayer > 0)
&& (m_saoDisabledRate[compIdx][picTempLayer-1] > ((compIdx==COMPONENT_Y) ? SAO_ENCODING_RATE : SAO_ENCODING_RATE_CHROMA)) )
{
sliceEnabled[compIdx] = false;
}
#else
// decide slice-level on/off based on previous results
if( (picTempLayer > 0)
&& (m_saoDisabledRate[COMPONENT_Y][0] > SAO_ENCODING_RATE) )
{
sliceEnabled[compIdx] = false;
}
#endif
#endif
}
}
Int64 TEncSampleAdaptiveOffset::getDistortion(ComponentID compIdx, Int typeIdc, Int typeAuxInfo, Int* invQuantOffset, SAOStatData& statData)
{
Int64 dist = 0;
Int shift = 2 * DISTORTION_PRECISION_ADJUSTMENT(g_bitDepth[toChannelType(compIdx)] - 8);
switch(typeIdc)
{
case SAO_TYPE_EO_0:
case SAO_TYPE_EO_90:
case SAO_TYPE_EO_135:
case SAO_TYPE_EO_45:
{
for (Int offsetIdx=0; offsetIdx<NUM_SAO_EO_CLASSES; offsetIdx++)
{
dist += estSaoDist( statData.count[offsetIdx], invQuantOffset[offsetIdx], statData.diff[offsetIdx], shift);
}
}
break;
case SAO_TYPE_BO:
{
for (Int offsetIdx=typeAuxInfo; offsetIdx<typeAuxInfo+4; offsetIdx++)
{
Int bandIdx = offsetIdx % NUM_SAO_BO_CLASSES ;
dist += estSaoDist( statData.count[bandIdx], invQuantOffset[bandIdx], statData.diff[bandIdx], shift);
}
}
break;
default:
{
printf("Not a supported type");
assert(0);
exit(-1);
}
}
return dist;
}
inline Int64 TEncSampleAdaptiveOffset::estSaoDist(Int64 count, Int64 offset, Int64 diffSum, Int shift)
{
return (( count*offset*offset-diffSum*offset*2 ) >> shift);
}
inline Int TEncSampleAdaptiveOffset::estIterOffset(Int typeIdx, Int classIdx, Double lambda, Int offsetInput, Int64 count, Int64 diffSum, Int shift, Int bitIncrease, Int64& bestDist, Double& bestCost, Int offsetTh )
{
Int iterOffset, tempOffset;
Int64 tempDist, tempRate;
Double tempCost, tempMinCost;
Int offsetOutput = 0;
iterOffset = offsetInput;
// Assuming sending quantized value 0 results in zero offset and sending the value zero needs 1 bit. entropy coder can be used to measure the exact rate here.
tempMinCost = lambda;
while (iterOffset != 0)
{
// Calculate the bits required for signaling the offset
tempRate = (typeIdx == SAO_TYPE_BO) ? (abs((Int)iterOffset)+2) : (abs((Int)iterOffset)+1);
if (abs((Int)iterOffset)==offsetTh) //inclusive
{
tempRate --;
}
// Do the dequantization before distortion calculation
tempOffset = iterOffset << bitIncrease;
tempDist = estSaoDist( count, tempOffset, diffSum, shift);
tempCost = ((Double)tempDist + lambda * (Double) tempRate);
if(tempCost < tempMinCost)
{
tempMinCost = tempCost;
offsetOutput = iterOffset;
bestDist = tempDist;
bestCost = tempCost;
}
iterOffset = (iterOffset > 0) ? (iterOffset-1):(iterOffset+1);
}
return offsetOutput;
}
Void TEncSampleAdaptiveOffset::deriveOffsets(ComponentID compIdx, Int typeIdc, SAOStatData& statData, Int* quantOffsets, Int& typeAuxInfo)
{
Int bitDepth = g_bitDepth[toChannelType(compIdx)];
Int shift = 2 * DISTORTION_PRECISION_ADJUSTMENT(bitDepth-8);
Int offsetTh = g_saoMaxOffsetQVal[compIdx]; //inclusive
::memset(quantOffsets, 0, sizeof(Int)*MAX_NUM_SAO_CLASSES);
//derive initial offsets
Int numClasses = (typeIdc == SAO_TYPE_BO)?((Int)NUM_SAO_BO_CLASSES):((Int)NUM_SAO_EO_CLASSES);
for(Int classIdx=0; classIdx< numClasses; classIdx++)
{
if( (typeIdc != SAO_TYPE_BO) && (classIdx==SAO_CLASS_EO_PLAIN) )
{
continue; //offset will be zero
}
if(statData.count[classIdx] == 0)
{
continue; //offset will be zero
}
quantOffsets[classIdx] = (Int) xRoundIbdi(bitDepth, (Double)( statData.diff[classIdx]<<(bitDepth-8))
/
(Double)( statData.count[classIdx]<< m_offsetStepLog2[compIdx])
);
quantOffsets[classIdx] = Clip3(-offsetTh, offsetTh, quantOffsets[classIdx]);
}
// adjust offsets
switch(typeIdc)
{
case SAO_TYPE_EO_0:
case SAO_TYPE_EO_90:
case SAO_TYPE_EO_135:
case SAO_TYPE_EO_45:
{
Int64 classDist;
Double classCost;
for(Int classIdx=0; classIdx<NUM_SAO_EO_CLASSES; classIdx++)
{
if(classIdx==SAO_CLASS_EO_FULL_VALLEY && quantOffsets[classIdx] < 0) quantOffsets[classIdx] =0;
if(classIdx==SAO_CLASS_EO_HALF_VALLEY && quantOffsets[classIdx] < 0) quantOffsets[classIdx] =0;
if(classIdx==SAO_CLASS_EO_HALF_PEAK && quantOffsets[classIdx] > 0) quantOffsets[classIdx] =0;
if(classIdx==SAO_CLASS_EO_FULL_PEAK && quantOffsets[classIdx] > 0) quantOffsets[classIdx] =0;
if( quantOffsets[classIdx] != 0 ) //iterative adjustment only when derived offset is not zero
{
quantOffsets[classIdx] = estIterOffset( typeIdc, classIdx, m_lambda[compIdx], quantOffsets[classIdx], statData.count[classIdx], statData.diff[classIdx], shift, m_offsetStepLog2[compIdx], classDist , classCost , offsetTh );
}
}
typeAuxInfo =0;
}
break;
case SAO_TYPE_BO:
{
Int64 distBOClasses[NUM_SAO_BO_CLASSES];
Double costBOClasses[NUM_SAO_BO_CLASSES];
::memset(distBOClasses, 0, sizeof(Int64)*NUM_SAO_BO_CLASSES);
for(Int classIdx=0; classIdx< NUM_SAO_BO_CLASSES; classIdx++)
{
costBOClasses[classIdx]= m_lambda[compIdx];
if( quantOffsets[classIdx] != 0 ) //iterative adjustment only when derived offset is not zero
{
quantOffsets[classIdx] = estIterOffset( typeIdc, classIdx, m_lambda[compIdx], quantOffsets[classIdx], statData.count[classIdx], statData.diff[classIdx], shift, m_offsetStepLog2[compIdx], distBOClasses[classIdx], costBOClasses[classIdx], offsetTh );
}
}
//decide the starting band index
Double minCost = MAX_DOUBLE, cost;
for(Int band=0; band< NUM_SAO_BO_CLASSES- 4+ 1; band++)
{
cost = costBOClasses[band ];
cost += costBOClasses[band+1];
cost += costBOClasses[band+2];
cost += costBOClasses[band+3];
if(cost < minCost)
{
minCost = cost;
typeAuxInfo = band;
}
}
//clear those unused classes
Int clearQuantOffset[NUM_SAO_BO_CLASSES];
::memset(clearQuantOffset, 0, sizeof(Int)*NUM_SAO_BO_CLASSES);
for(Int i=0; i< 4; i++)
{
Int band = (typeAuxInfo+i)%NUM_SAO_BO_CLASSES;
clearQuantOffset[band] = quantOffsets[band];
}
::memcpy(quantOffsets, clearQuantOffset, sizeof(Int)*NUM_SAO_BO_CLASSES);
}
break;
default:
{
printf("Not a supported type");
assert(0);
exit(-1);
}
}
}
Void TEncSampleAdaptiveOffset::deriveModeNewRDO(Int ctuRsAddr, SAOBlkParam* mergeList[NUM_SAO_MERGE_TYPES], Bool* sliceEnabled, SAOStatData*** blkStats, SAOBlkParam& modeParam, Double& modeNormCost, TEncSbac** cabacCoderRDO, Int inCabacLabel)
{
Double minCost, cost;
UInt previousWrittenBits;
const Int numberOfComponents = getNumberValidComponents(m_chromaFormatIDC);
Int64 dist[MAX_NUM_COMPONENT], modeDist[MAX_NUM_COMPONENT];
SAOOffset testOffset[MAX_NUM_COMPONENT];
Int invQuantOffset[MAX_NUM_SAO_CLASSES];
for(Int comp=0; comp < MAX_NUM_COMPONENT; comp++)
{
modeDist[comp] = 0;
}
//pre-encode merge flags
modeParam[COMPONENT_Y].modeIdc = SAO_MODE_OFF;
m_pcRDGoOnSbacCoder->load(cabacCoderRDO[inCabacLabel]);
m_pcRDGoOnSbacCoder->codeSAOBlkParam(modeParam, sliceEnabled, (mergeList[SAO_MERGE_LEFT]!= NULL), (mergeList[SAO_MERGE_ABOVE]!= NULL), true);
m_pcRDGoOnSbacCoder->store(cabacCoderRDO[SAO_CABACSTATE_BLK_MID]);
//------ luma --------//
{
ComponentID compIdx = COMPONENT_Y;
//"off" case as initial cost
modeParam[compIdx].modeIdc = SAO_MODE_OFF;
m_pcRDGoOnSbacCoder->resetBits();
m_pcRDGoOnSbacCoder->codeSAOOffsetParam(compIdx, modeParam[compIdx], sliceEnabled[compIdx]);
modeDist[compIdx] = 0;
minCost= m_lambda[compIdx]*((Double)m_pcRDGoOnSbacCoder->getNumberOfWrittenBits());
m_pcRDGoOnSbacCoder->store(cabacCoderRDO[SAO_CABACSTATE_BLK_TEMP]);
if(sliceEnabled[compIdx])
{
for(Int typeIdc=0; typeIdc< NUM_SAO_NEW_TYPES; typeIdc++)
{
testOffset[compIdx].modeIdc = SAO_MODE_NEW;
testOffset[compIdx].typeIdc = typeIdc;
//derive coded offset
deriveOffsets(compIdx, typeIdc, blkStats[ctuRsAddr][compIdx][typeIdc], testOffset[compIdx].offset, testOffset[compIdx].typeAuxInfo);
//inversed quantized offsets
invertQuantOffsets(compIdx, typeIdc, testOffset[compIdx].typeAuxInfo, invQuantOffset, testOffset[compIdx].offset);
//get distortion
dist[compIdx] = getDistortion(compIdx, testOffset[compIdx].typeIdc, testOffset[compIdx].typeAuxInfo, invQuantOffset, blkStats[ctuRsAddr][compIdx][typeIdc]);
//get rate
m_pcRDGoOnSbacCoder->load(cabacCoderRDO[SAO_CABACSTATE_BLK_MID]);
m_pcRDGoOnSbacCoder->resetBits();
m_pcRDGoOnSbacCoder->codeSAOOffsetParam(compIdx, testOffset[compIdx], sliceEnabled[compIdx]);
Int rate = m_pcRDGoOnSbacCoder->getNumberOfWrittenBits();
cost = (Double)dist[compIdx] + m_lambda[compIdx]*((Double)rate);
if(cost < minCost)
{
minCost = cost;
modeDist[compIdx] = dist[compIdx];
modeParam[compIdx]= testOffset[compIdx];
m_pcRDGoOnSbacCoder->store(cabacCoderRDO[SAO_CABACSTATE_BLK_TEMP]);
}
}
}
m_pcRDGoOnSbacCoder->load(cabacCoderRDO[SAO_CABACSTATE_BLK_TEMP]);
m_pcRDGoOnSbacCoder->store(cabacCoderRDO[SAO_CABACSTATE_BLK_MID]);
}
//------ chroma --------//
//"off" case as initial cost
cost = 0;
previousWrittenBits = 0;
m_pcRDGoOnSbacCoder->resetBits();
for(UInt componentIndex = COMPONENT_Cb; componentIndex < numberOfComponents; componentIndex++)
{
const ComponentID component = ComponentID(componentIndex);
modeParam[component].modeIdc = SAO_MODE_OFF;
modeDist [component] = 0;
m_pcRDGoOnSbacCoder->codeSAOOffsetParam(component, modeParam[component], sliceEnabled[component]);
const UInt currentWrittenBits = m_pcRDGoOnSbacCoder->getNumberOfWrittenBits();
cost += m_lambda[component] * (currentWrittenBits - previousWrittenBits);
previousWrittenBits = currentWrittenBits;
}
minCost = cost;
//doesn't need to store cabac status here since the whole CTU parameters will be re-encoded at the end of this function
for(Int typeIdc=0; typeIdc< NUM_SAO_NEW_TYPES; typeIdc++)
{
m_pcRDGoOnSbacCoder->load(cabacCoderRDO[SAO_CABACSTATE_BLK_MID]);
m_pcRDGoOnSbacCoder->resetBits();
previousWrittenBits = 0;
cost = 0;
for(UInt componentIndex = COMPONENT_Cb; componentIndex < numberOfComponents; componentIndex++)
{
const ComponentID component = ComponentID(componentIndex);
if(!sliceEnabled[component])
{
testOffset[component].modeIdc = SAO_MODE_OFF;
dist[component]= 0;
continue;
}
testOffset[component].modeIdc = SAO_MODE_NEW;
testOffset[component].typeIdc = typeIdc;
//derive offset & get distortion
deriveOffsets(component, typeIdc, blkStats[ctuRsAddr][component][typeIdc], testOffset[component].offset, testOffset[component].typeAuxInfo);
invertQuantOffsets(component, typeIdc, testOffset[component].typeAuxInfo, invQuantOffset, testOffset[component].offset);
dist[component] = getDistortion(component, typeIdc, testOffset[component].typeAuxInfo, invQuantOffset, blkStats[ctuRsAddr][component][typeIdc]);
m_pcRDGoOnSbacCoder->codeSAOOffsetParam(component, testOffset[component], sliceEnabled[component]);
const UInt currentWrittenBits = m_pcRDGoOnSbacCoder->getNumberOfWrittenBits();
cost += dist[component] + (m_lambda[component] * (currentWrittenBits - previousWrittenBits));
previousWrittenBits = currentWrittenBits;
}
if(cost < minCost)
{
minCost = cost;
for(UInt componentIndex = COMPONENT_Cb; componentIndex < numberOfComponents; componentIndex++)
{
modeDist[componentIndex] = dist[componentIndex];
modeParam[componentIndex] = testOffset[componentIndex];
}
}
} // SAO_TYPE loop
//----- re-gen rate & normalized cost----//
modeNormCost = 0;
for(UInt componentIndex = COMPONENT_Y; componentIndex < numberOfComponents; componentIndex++)
{
modeNormCost += (Double)modeDist[componentIndex] / m_lambda[componentIndex];
}
m_pcRDGoOnSbacCoder->load(cabacCoderRDO[inCabacLabel]);
m_pcRDGoOnSbacCoder->resetBits();
m_pcRDGoOnSbacCoder->codeSAOBlkParam(modeParam, sliceEnabled, (mergeList[SAO_MERGE_LEFT]!= NULL), (mergeList[SAO_MERGE_ABOVE]!= NULL), false);
modeNormCost += (Double)m_pcRDGoOnSbacCoder->getNumberOfWrittenBits();
}
Void TEncSampleAdaptiveOffset::deriveModeMergeRDO(Int ctuRsAddr, SAOBlkParam* mergeList[NUM_SAO_MERGE_TYPES], Bool* sliceEnabled, SAOStatData*** blkStats, SAOBlkParam& modeParam, Double& modeNormCost, TEncSbac** cabacCoderRDO, Int inCabacLabel)
{
modeNormCost = MAX_DOUBLE;
Double cost;
SAOBlkParam testBlkParam;
const Int numberOfComponents = getNumberValidComponents(m_chromaFormatIDC);
for(Int mergeType=0; mergeType< NUM_SAO_MERGE_TYPES; mergeType++)
{
if(mergeList[mergeType] == NULL)
{
continue;
}
testBlkParam = *(mergeList[mergeType]);
//normalized distortion
Double normDist=0;
for(Int compIdx = 0; compIdx < numberOfComponents; compIdx++)
{
testBlkParam[compIdx].modeIdc = SAO_MODE_MERGE;
testBlkParam[compIdx].typeIdc = mergeType;
SAOOffset& mergedOffsetParam = (*(mergeList[mergeType]))[compIdx];
if( mergedOffsetParam.modeIdc != SAO_MODE_OFF)
{
//offsets have been reconstructed. Don't call inversed quantization function.
normDist += (((Double)getDistortion(ComponentID(compIdx), mergedOffsetParam.typeIdc, mergedOffsetParam.typeAuxInfo, mergedOffsetParam.offset, blkStats[ctuRsAddr][compIdx][mergedOffsetParam.typeIdc]))
/m_lambda[compIdx]
);
}
}
//rate
m_pcRDGoOnSbacCoder->load(cabacCoderRDO[inCabacLabel]);
m_pcRDGoOnSbacCoder->resetBits();
m_pcRDGoOnSbacCoder->codeSAOBlkParam(testBlkParam, sliceEnabled, (mergeList[SAO_MERGE_LEFT]!= NULL), (mergeList[SAO_MERGE_ABOVE]!= NULL), false);
Int rate = m_pcRDGoOnSbacCoder->getNumberOfWrittenBits();
cost = normDist+(Double)rate;
if(cost < modeNormCost)
{
modeNormCost = cost;
modeParam = testBlkParam;
m_pcRDGoOnSbacCoder->store(cabacCoderRDO[SAO_CABACSTATE_BLK_TEMP]);
}
}
m_pcRDGoOnSbacCoder->load(cabacCoderRDO[SAO_CABACSTATE_BLK_TEMP]);
}
Void TEncSampleAdaptiveOffset::decideBlkParams(TComPic* pic, Bool* sliceEnabled, SAOStatData*** blkStats, TComPicYuv* srcYuv, TComPicYuv* resYuv, SAOBlkParam* reconParams, SAOBlkParam* codedParams)
{
Bool allBlksDisabled = true;
const Int numberOfComponents = getNumberValidComponents(m_chromaFormatIDC);
for(Int compId = COMPONENT_Y; compId < numberOfComponents; compId++)
{
if (sliceEnabled[compId])
allBlksDisabled = false;
}
m_pcRDGoOnSbacCoder->load(m_pppcRDSbacCoder[ SAO_CABACSTATE_PIC_INIT ]);
SAOBlkParam modeParam;
Double minCost, modeCost;
#if RD_TEST_SAO_DISABLE_AT_PICTURE_LEVEL
Double totalCost = 0;
#endif
for(Int ctuRsAddr=0; ctuRsAddr< m_numCTUsPic; ctuRsAddr++)
{
if(allBlksDisabled)
{
codedParams[ctuRsAddr].reset();
continue;
}
m_pcRDGoOnSbacCoder->store(m_pppcRDSbacCoder[ SAO_CABACSTATE_BLK_CUR ]);
//get merge list
SAOBlkParam* mergeList[NUM_SAO_MERGE_TYPES] = { NULL };
getMergeList(pic, ctuRsAddr, reconParams, mergeList);
minCost = MAX_DOUBLE;
for(Int mode=0; mode < NUM_SAO_MODES; mode++)
{
switch(mode)
{
case SAO_MODE_OFF:
{
continue; //not necessary, since all-off case will be tested in SAO_MODE_NEW case.
}
break;
case SAO_MODE_NEW:
{
deriveModeNewRDO(ctuRsAddr, mergeList, sliceEnabled, blkStats, modeParam, modeCost, m_pppcRDSbacCoder, SAO_CABACSTATE_BLK_CUR);
}
break;
case SAO_MODE_MERGE:
{
deriveModeMergeRDO(ctuRsAddr, mergeList, sliceEnabled, blkStats , modeParam, modeCost, m_pppcRDSbacCoder, SAO_CABACSTATE_BLK_CUR);
}
break;
default:
{
printf("Not a supported SAO mode\n");
assert(0);
exit(-1);
}
}
if(modeCost < minCost)
{
minCost = modeCost;
codedParams[ctuRsAddr] = modeParam;
m_pcRDGoOnSbacCoder->store(m_pppcRDSbacCoder[ SAO_CABACSTATE_BLK_NEXT ]);
}
} //mode
#if RD_TEST_SAO_DISABLE_AT_PICTURE_LEVEL
totalCost += minCost;
#endif
m_pcRDGoOnSbacCoder->load(m_pppcRDSbacCoder[ SAO_CABACSTATE_BLK_NEXT ]);
//apply reconstructed offsets
reconParams[ctuRsAddr] = codedParams[ctuRsAddr];
reconstructBlkSAOParam(reconParams[ctuRsAddr], mergeList);
offsetCTU(ctuRsAddr, srcYuv, resYuv, reconParams[ctuRsAddr], pic);
} //ctuRsAddr
#if RD_TEST_SAO_DISABLE_AT_PICTURE_LEVEL
if (!allBlksDisabled && (totalCost >= 0)) //SAO is not beneficial - disable it
{
for(Int ctuRsAddr = 0; ctuRsAddr < m_numCTUsPic; ctuRsAddr++)
{
codedParams[ctuRsAddr].reset();
}
for (UInt componentIndex = 0; componentIndex < MAX_NUM_COMPONENT; componentIndex++)
{
sliceEnabled[componentIndex] = false;
}
m_pcRDGoOnSbacCoder->load(m_pppcRDSbacCoder[ SAO_CABACSTATE_PIC_INIT ]);
}
#endif
#if SAO_ENCODING_CHOICE
Int picTempLayer = pic->getSlice(0)->getDepth();
Int numCtusForSAOOff[MAX_NUM_COMPONENT];
for (Int compIdx = 0; compIdx < numberOfComponents; compIdx++)
{
numCtusForSAOOff[compIdx] = 0;
for(Int ctuRsAddr=0; ctuRsAddr< m_numCTUsPic; ctuRsAddr++)
{
if( reconParams[ctuRsAddr][compIdx].modeIdc == SAO_MODE_OFF)
{
numCtusForSAOOff[compIdx]++;
}
}
}
#if SAO_ENCODING_CHOICE_CHROMA
for (Int compIdx = 0; compIdx < numberOfComponents; compIdx++)
{
m_saoDisabledRate[compIdx][picTempLayer] = (Double)numCtusForSAOOff[compIdx]/(Double)m_numCTUsPic;
}
#else
if (picTempLayer == 0)
{
m_saoDisabledRate[COMPONENT_Y][0] = (Double)(numCtusForSAOOff[COMPONENT_Y]+numCtusForSAOOff[COMPONENT_Cb]+numCtusForSAOOff[COMPONENT_Cr])/(Double)(m_numCTUsPic*3);
}
#endif
#endif
}
Void TEncSampleAdaptiveOffset::getBlkStats(ComponentID compIdx, SAOStatData* statsDataTypes
, Pel* srcBlk, Pel* orgBlk, Int srcStride, Int orgStride, Int width, Int height
, Bool isLeftAvail, Bool isRightAvail, Bool isAboveAvail, Bool isBelowAvail, Bool isAboveLeftAvail, Bool isAboveRightAvail, Bool isBelowLeftAvail, Bool isBelowRightAvail
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
, Bool isCalculatePreDeblockSamples
#endif
)
{
if(m_lineBufWidth != m_maxCUWidth)
{
m_lineBufWidth = m_maxCUWidth;
if (m_signLineBuf1) delete[] m_signLineBuf1; m_signLineBuf1 = NULL;
m_signLineBuf1 = new Char[m_lineBufWidth+1];
if (m_signLineBuf2) delete[] m_signLineBuf2; m_signLineBuf2 = NULL;
m_signLineBuf2 = new Char[m_lineBufWidth+1];
}
Int x,y, startX, startY, endX, endY, edgeType, firstLineStartX, firstLineEndX;
Char signLeft, signRight, signDown;
Int64 *diff, *count;
Pel *srcLine, *orgLine;
Int* skipLinesR = m_skipLinesR[compIdx];
Int* skipLinesB = m_skipLinesB[compIdx];
for(Int typeIdx=0; typeIdx< NUM_SAO_NEW_TYPES; typeIdx++)
{
SAOStatData& statsData= statsDataTypes[typeIdx];
statsData.reset();
srcLine = srcBlk;
orgLine = orgBlk;
diff = statsData.diff;
count = statsData.count;
switch(typeIdx)
{
case SAO_TYPE_EO_0:
{
diff +=2;
count+=2;
endY = (isBelowAvail) ? (height - skipLinesB[typeIdx]) : height;
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
startX = (!isCalculatePreDeblockSamples) ? (isLeftAvail ? 0 : 1)
: (isRightAvail ? (width - skipLinesR[typeIdx]) : (width - 1))
;
#else
startX = isLeftAvail ? 0 : 1;
#endif
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
endX = (!isCalculatePreDeblockSamples) ? (isRightAvail ? (width - skipLinesR[typeIdx]) : (width - 1))
: (isRightAvail ? width : (width - 1))
;
#else
endX = isRightAvail ? (width - skipLinesR[typeIdx]): (width - 1);
#endif
for (y=0; y<endY; y++)
{
signLeft = (Char)sgn(srcLine[startX] - srcLine[startX-1]);
for (x=startX; x<endX; x++)
{
signRight = (Char)sgn(srcLine[x] - srcLine[x+1]);
edgeType = signRight + signLeft;
signLeft = -signRight;
diff [edgeType] += (orgLine[x] - srcLine[x]);
count[edgeType] ++;
}
srcLine += srcStride;
orgLine += orgStride;
}
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
if(isCalculatePreDeblockSamples)
{
if(isBelowAvail)
{
startX = isLeftAvail ? 0 : 1;
endX = isRightAvail ? width : (width -1);
for(y=0; y<skipLinesB[typeIdx]; y++)
{
signLeft = (Char)sgn(srcLine[startX] - srcLine[startX-1]);
for (x=startX; x<endX; x++)
{
signRight = (Char)sgn(srcLine[x] - srcLine[x+1]);
edgeType = signRight + signLeft;
signLeft = -signRight;
diff [edgeType] += (orgLine[x] - srcLine[x]);
count[edgeType] ++;
}
srcLine += srcStride;
orgLine += orgStride;
}
}
}
#endif
}
break;
case SAO_TYPE_EO_90:
{
diff +=2;
count+=2;
Char *signUpLine = m_signLineBuf1;
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
startX = (!isCalculatePreDeblockSamples) ? 0
: (isRightAvail ? (width - skipLinesR[typeIdx]) : width)
;
#endif
startY = isAboveAvail ? 0 : 1;
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
endX = (!isCalculatePreDeblockSamples) ? (isRightAvail ? (width - skipLinesR[typeIdx]) : width)
: width
;
#else
endX = isRightAvail ? (width - skipLinesR[typeIdx]) : width ;
#endif
endY = isBelowAvail ? (height - skipLinesB[typeIdx]) : (height - 1);
if (!isAboveAvail)
{
srcLine += srcStride;
orgLine += orgStride;
}
Pel* srcLineAbove = srcLine - srcStride;
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
for (x=startX; x<endX; x++)
#else
for (x=0; x< endX; x++)
#endif
{
signUpLine[x] = (Char)sgn(srcLine[x] - srcLineAbove[x]);
}
Pel* srcLineBelow;
for (y=startY; y<endY; y++)
{
srcLineBelow = srcLine + srcStride;
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
for (x=startX; x<endX; x++)
#else
for (x=0; x<endX; x++)
#endif
{
signDown = (Char)sgn(srcLine[x] - srcLineBelow[x]);
edgeType = signDown + signUpLine[x];
signUpLine[x]= -signDown;
diff [edgeType] += (orgLine[x] - srcLine[x]);
count[edgeType] ++;
}
srcLine += srcStride;
orgLine += orgStride;
}
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
if(isCalculatePreDeblockSamples)
{
if(isBelowAvail)
{
startX = 0;
endX = width;
for(y=0; y<skipLinesB[typeIdx]; y++)
{
srcLineBelow = srcLine + srcStride;
srcLineAbove = srcLine - srcStride;
for (x=startX; x<endX; x++)
{
edgeType = sgn(srcLine[x] - srcLineBelow[x]) + sgn(srcLine[x] - srcLineAbove[x]);
diff [edgeType] += (orgLine[x] - srcLine[x]);
count[edgeType] ++;
}
srcLine += srcStride;
orgLine += orgStride;
}
}
}
#endif
}
break;
case SAO_TYPE_EO_135:
{
diff +=2;
count+=2;
Char *signUpLine, *signDownLine, *signTmpLine;
signUpLine = m_signLineBuf1;
signDownLine= m_signLineBuf2;
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
startX = (!isCalculatePreDeblockSamples) ? (isLeftAvail ? 0 : 1)
: (isRightAvail ? (width - skipLinesR[typeIdx]) : (width - 1))
;
#else
startX = isLeftAvail ? 0 : 1 ;
#endif
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
endX = (!isCalculatePreDeblockSamples) ? (isRightAvail ? (width - skipLinesR[typeIdx]): (width - 1))
: (isRightAvail ? width : (width - 1))
;
#else
endX = isRightAvail ? (width - skipLinesR[typeIdx]): (width - 1);
#endif
endY = isBelowAvail ? (height - skipLinesB[typeIdx]) : (height - 1);
//prepare 2nd line's upper sign
Pel* srcLineBelow = srcLine + srcStride;
for (x=startX; x<endX+1; x++)
{
signUpLine[x] = (Char)sgn(srcLineBelow[x] - srcLine[x-1]);
}
//1st line
Pel* srcLineAbove = srcLine - srcStride;
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
firstLineStartX = (!isCalculatePreDeblockSamples) ? (isAboveLeftAvail ? 0 : 1) : startX;
firstLineEndX = (!isCalculatePreDeblockSamples) ? (isAboveAvail ? endX : 1) : endX;
#else
firstLineStartX = isAboveLeftAvail ? 0 : 1;
firstLineEndX = isAboveAvail ? endX : 1;
#endif
for(x=firstLineStartX; x<firstLineEndX; x++)
{
edgeType = sgn(srcLine[x] - srcLineAbove[x-1]) - signUpLine[x+1];
diff [edgeType] += (orgLine[x] - srcLine[x]);
count[edgeType] ++;
}
srcLine += srcStride;
orgLine += orgStride;
//middle lines
for (y=1; y<endY; y++)
{
srcLineBelow = srcLine + srcStride;
for (x=startX; x<endX; x++)
{
signDown = (Char)sgn(srcLine[x] - srcLineBelow[x+1]);
edgeType = signDown + signUpLine[x];
diff [edgeType] += (orgLine[x] - srcLine[x]);
count[edgeType] ++;
signDownLine[x+1] = -signDown;
}
signDownLine[startX] = (Char)sgn(srcLineBelow[startX] - srcLine[startX-1]);
signTmpLine = signUpLine;
signUpLine = signDownLine;
signDownLine = signTmpLine;
srcLine += srcStride;
orgLine += orgStride;
}
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
if(isCalculatePreDeblockSamples)
{
if(isBelowAvail)
{
startX = isLeftAvail ? 0 : 1 ;
endX = isRightAvail ? width : (width -1);
for(y=0; y<skipLinesB[typeIdx]; y++)
{
srcLineBelow = srcLine + srcStride;
srcLineAbove = srcLine - srcStride;
for (x=startX; x< endX; x++)
{
edgeType = sgn(srcLine[x] - srcLineBelow[x+1]) + sgn(srcLine[x] - srcLineAbove[x-1]);
diff [edgeType] += (orgLine[x] - srcLine[x]);
count[edgeType] ++;
}
srcLine += srcStride;
orgLine += orgStride;
}
}
}
#endif
}
break;
case SAO_TYPE_EO_45:
{
diff +=2;
count+=2;
Char *signUpLine = m_signLineBuf1+1;
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
startX = (!isCalculatePreDeblockSamples) ? (isLeftAvail ? 0 : 1)
: (isRightAvail ? (width - skipLinesR[typeIdx]) : (width - 1))
;
#else
startX = isLeftAvail ? 0 : 1;
#endif
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
endX = (!isCalculatePreDeblockSamples) ? (isRightAvail ? (width - skipLinesR[typeIdx]) : (width - 1))
: (isRightAvail ? width : (width - 1))
;
#else
endX = isRightAvail ? (width - skipLinesR[typeIdx]) : (width - 1);
#endif
endY = isBelowAvail ? (height - skipLinesB[typeIdx]) : (height - 1);
//prepare 2nd line upper sign
Pel* srcLineBelow = srcLine + srcStride;
for (x=startX-1; x<endX; x++)
{
signUpLine[x] = (Char)sgn(srcLineBelow[x] - srcLine[x+1]);
}
//first line
Pel* srcLineAbove = srcLine - srcStride;
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
firstLineStartX = (!isCalculatePreDeblockSamples) ? (isAboveAvail ? startX : endX)
: startX
;
firstLineEndX = (!isCalculatePreDeblockSamples) ? ((!isRightAvail && isAboveRightAvail) ? width : endX)
: endX
;
#else
firstLineStartX = isAboveAvail ? startX : endX;
firstLineEndX = (!isRightAvail && isAboveRightAvail) ? width : endX;
#endif
for(x=firstLineStartX; x<firstLineEndX; x++)
{
edgeType = sgn(srcLine[x] - srcLineAbove[x+1]) - signUpLine[x-1];
diff [edgeType] += (orgLine[x] - srcLine[x]);
count[edgeType] ++;
}
srcLine += srcStride;
orgLine += orgStride;
//middle lines
for (y=1; y<endY; y++)
{
srcLineBelow = srcLine + srcStride;
for(x=startX; x<endX; x++)
{
signDown = (Char)sgn(srcLine[x] - srcLineBelow[x-1]);
edgeType = signDown + signUpLine[x];
diff [edgeType] += (orgLine[x] - srcLine[x]);
count[edgeType] ++;
signUpLine[x-1] = -signDown;
}
signUpLine[endX-1] = (Char)sgn(srcLineBelow[endX-1] - srcLine[endX]);
srcLine += srcStride;
orgLine += orgStride;
}
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
if(isCalculatePreDeblockSamples)
{
if(isBelowAvail)
{
startX = isLeftAvail ? 0 : 1 ;
endX = isRightAvail ? width : (width -1);
for(y=0; y<skipLinesB[typeIdx]; y++)
{
srcLineBelow = srcLine + srcStride;
srcLineAbove = srcLine - srcStride;
for (x=startX; x<endX; x++)
{
edgeType = sgn(srcLine[x] - srcLineBelow[x-1]) + sgn(srcLine[x] - srcLineAbove[x+1]);
diff [edgeType] += (orgLine[x] - srcLine[x]);
count[edgeType] ++;
}
srcLine += srcStride;
orgLine += orgStride;
}
}
}
#endif
}
break;
case SAO_TYPE_BO:
{
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
startX = (!isCalculatePreDeblockSamples)?0
:( isRightAvail?(width- skipLinesR[typeIdx]):width)
;
endX = (!isCalculatePreDeblockSamples)?(isRightAvail ? (width - skipLinesR[typeIdx]) : width )
:width
;
#else
endX = isRightAvail ? (width- skipLinesR[typeIdx]) : width;
#endif
endY = isBelowAvail ? (height- skipLinesB[typeIdx]) : height;
Int shiftBits = g_bitDepth[toChannelType(compIdx)] - NUM_SAO_BO_CLASSES_LOG2;
for (y=0; y< endY; y++)
{
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
for (x=startX; x< endX; x++)
#else
for (x=0; x< endX; x++)
#endif
{
Int bandIdx= srcLine[x] >> shiftBits;
diff [bandIdx] += (orgLine[x] - srcLine[x]);
count[bandIdx] ++;
}
srcLine += srcStride;
orgLine += orgStride;
}
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
if(isCalculatePreDeblockSamples)
{
if(isBelowAvail)
{
startX = 0;
endX = width;
for(y= 0; y< skipLinesB[typeIdx]; y++)
{
for (x=startX; x< endX; x++)
{
Int bandIdx= srcLine[x] >> shiftBits;
diff [bandIdx] += (orgLine[x] - srcLine[x]);
count[bandIdx] ++;
}
srcLine += srcStride;
orgLine += orgStride;
}
}
}
#endif
}
break;
default:
{
printf("Not a supported SAO types\n");
assert(0);
exit(-1);
}
}
}
}
//! \}