libbpg/jctvc/TLibCommon/TComPrediction.cpp

842 lines
28 KiB
C++
Raw Normal View History

2015-01-16 12:46:18 +00:00
/* The copyright in this software is beinOMg made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2014, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file TComPrediction.cpp
\brief prediction class
*/
#include <memory.h>
#include "TComPrediction.h"
#include "TComTU.h"
//! \ingroup TLibCommon
//! \{
// ====================================================================================================================
// Tables
// ====================================================================================================================
const UChar TComPrediction::m_aucIntraFilter[MAX_NUM_CHANNEL_TYPE][MAX_INTRA_FILTER_DEPTHS] =
{
{ // Luma
10, //4x4
7, //8x8
1, //16x16
0, //32x32
10, //64x64
},
{ // Chroma
10, //4xn
7, //8xn
1, //16xn
0, //32xn
10, //64xn
}
};
// ====================================================================================================================
// Constructor / destructor / initialize
// ====================================================================================================================
TComPrediction::TComPrediction()
: m_pLumaRecBuffer(0)
, m_iLumaRecStride(0)
{
for(UInt ch=0; ch<MAX_NUM_COMPONENT; ch++)
{
for(UInt buf=0; buf<2; buf++)
{
m_piYuvExt[ch][buf] = NULL;
}
}
}
TComPrediction::~TComPrediction()
{
destroy();
}
Void TComPrediction::destroy()
{
for(UInt ch=0; ch<MAX_NUM_COMPONENT; ch++)
{
for(UInt buf=0; buf<NUM_PRED_BUF; buf++)
{
delete [] m_piYuvExt[ch][buf];
m_piYuvExt[ch][buf] = NULL;
}
}
for(UInt i=0; i<NUM_REF_PIC_LIST_01; i++)
{
m_acYuvPred[i].destroy();
}
m_cYuvPredTemp.destroy();
if( m_pLumaRecBuffer )
{
delete [] m_pLumaRecBuffer;
m_pLumaRecBuffer = 0;
}
m_iLumaRecStride = 0;
for (UInt i = 0; i < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS; i++)
{
for (UInt j = 0; j < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS; j++)
{
m_filteredBlock[i][j].destroy();
}
m_filteredBlockTmp[i].destroy();
}
}
Void TComPrediction::initTempBuff(ChromaFormat chromaFormatIDC)
{
// if it has been initialised before, but the chroma format has changed, release the memory and start again.
if( m_piYuvExt[COMPONENT_Y][PRED_BUF_UNFILTERED] != NULL && m_cYuvPredTemp.getChromaFormat()!=chromaFormatIDC)
{
destroy();
}
if( m_piYuvExt[COMPONENT_Y][PRED_BUF_UNFILTERED] == NULL ) // check if first is null (in which case, nothing initialised yet)
{
Int extWidth = MAX_CU_SIZE + 16;
Int extHeight = MAX_CU_SIZE + 1;
for (UInt i = 0; i < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS; i++)
{
m_filteredBlockTmp[i].create(extWidth, extHeight + 7, chromaFormatIDC);
for (UInt j = 0; j < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS; j++)
{
m_filteredBlock[i][j].create(extWidth, extHeight, chromaFormatIDC);
}
}
m_iYuvExtSize = (MAX_CU_SIZE*2+1) * (MAX_CU_SIZE*2+1);
for(UInt ch=0; ch<MAX_NUM_COMPONENT; ch++)
{
for(UInt buf=0; buf<NUM_PRED_BUF; buf++)
{
m_piYuvExt[ch][buf] = new Pel[ m_iYuvExtSize ];
}
}
// new structure
for(UInt i=0; i<NUM_REF_PIC_LIST_01; i++)
{
m_acYuvPred[i] .create( MAX_CU_SIZE, MAX_CU_SIZE, chromaFormatIDC );
}
m_cYuvPredTemp.create( MAX_CU_SIZE, MAX_CU_SIZE, chromaFormatIDC );
}
if (m_iLumaRecStride != (MAX_CU_SIZE>>1) + 1)
{
m_iLumaRecStride = (MAX_CU_SIZE>>1) + 1;
if (!m_pLumaRecBuffer)
{
m_pLumaRecBuffer = new Pel[ m_iLumaRecStride * m_iLumaRecStride ];
}
}
}
// ====================================================================================================================
// Public member functions
// ====================================================================================================================
// Function for calculating DC value of the reference samples used in Intra prediction
//NOTE: Bit-Limit - 25-bit source
Pel TComPrediction::predIntraGetPredValDC( const Pel* pSrc, Int iSrcStride, UInt iWidth, UInt iHeight, ChannelType channelType, ChromaFormat format, Bool bAbove, Bool bLeft )
{
assert(iWidth > 0 && iHeight > 0);
Int iInd, iSum = 0;
Pel pDcVal;
if (bAbove)
{
for (iInd = 0;iInd < iWidth;iInd++)
{
iSum += pSrc[iInd-iSrcStride];
}
}
if (bLeft)
{
for (iInd = 0;iInd < iHeight;iInd++)
{
iSum += pSrc[iInd*iSrcStride-1];
}
}
if (bAbove && bLeft)
{
pDcVal = (iSum + iWidth) / (iWidth + iHeight);
}
else if (bAbove)
{
pDcVal = (iSum + iWidth/2) / iWidth;
}
else if (bLeft)
{
pDcVal = (iSum + iHeight/2) / iHeight;
}
else
{
pDcVal = pSrc[-1]; // Default DC value already calculated and placed in the prediction array if no neighbors are available
}
return pDcVal;
}
// Function for deriving the angular Intra predictions
/** Function for deriving the simplified angular intra predictions.
* \param pSrc pointer to reconstructed sample array
* \param srcStride the stride of the reconstructed sample array
* \param rpDst reference to pointer for the prediction sample array
* \param dstStride the stride of the prediction sample array
* \param width the width of the block
* \param height the height of the block
* \param dirMode the intra prediction mode index
* \param blkAboveAvailable boolean indication if the block above is available
* \param blkLeftAvailable boolean indication if the block to the left is available
*
* This function derives the prediction samples for the angular mode based on the prediction direction indicated by
* the prediction mode index. The prediction direction is given by the displacement of the bottom row of the block and
* the reference row above the block in the case of vertical prediction or displacement of the rightmost column
* of the block and reference column left from the block in the case of the horizontal prediction. The displacement
* is signalled at 1/32 pixel accuracy. When projection of the predicted pixel falls inbetween reference samples,
* the predicted value for the pixel is linearly interpolated from the reference samples. All reference samples are taken
* from the extended main reference.
*/
//NOTE: Bit-Limit - 25-bit source
Void TComPrediction::xPredIntraAng( Int bitDepth,
const Pel* pSrc, Int srcStride,
Pel* pTrueDst, Int dstStrideTrue,
UInt uiWidth, UInt uiHeight, ChannelType channelType, ChromaFormat format,
UInt dirMode, Bool blkAboveAvailable, Bool blkLeftAvailable
, const Bool bEnableEdgeFilters
)
{
Int width=Int(uiWidth);
Int height=Int(uiHeight);
// Map the mode index to main prediction direction and angle
assert( dirMode != PLANAR_IDX ); //no planar
const Bool modeDC = dirMode==DC_IDX;
// Do the DC prediction
if (modeDC)
{
const Pel dcval = predIntraGetPredValDC(pSrc, srcStride, width, height, channelType, format, blkAboveAvailable, blkLeftAvailable);
for (Int y=height;y>0;y--, pTrueDst+=dstStrideTrue)
{
for (Int x=0; x<width;) // width is always a multiple of 4.
{
pTrueDst[x++] = dcval;
}
}
}
else // Do angular predictions
{
const Bool bIsModeVer = (dirMode >= 18);
const Int intraPredAngleMode = (bIsModeVer) ? (Int)dirMode - VER_IDX : -((Int)dirMode - HOR_IDX);
const Int absAngMode = abs(intraPredAngleMode);
const Int signAng = intraPredAngleMode < 0 ? -1 : 1;
const Bool edgeFilter = bEnableEdgeFilters && isLuma(channelType) && (width <= MAXIMUM_INTRA_FILTERED_WIDTH) && (height <= MAXIMUM_INTRA_FILTERED_HEIGHT);
// Set bitshifts and scale the angle parameter to block size
static const Int angTable[9] = {0, 2, 5, 9, 13, 17, 21, 26, 32};
static const Int invAngTable[9] = {0, 4096, 1638, 910, 630, 482, 390, 315, 256}; // (256 * 32) / Angle
Int invAngle = invAngTable[absAngMode];
Int absAng = angTable[absAngMode];
Int intraPredAngle = signAng * absAng;
Pel* refMain;
Pel* refSide;
Pel refAbove[2*MAX_CU_SIZE+1];
Pel refLeft[2*MAX_CU_SIZE+1];
// Initialise the Main and Left reference array.
if (intraPredAngle < 0)
{
const Int refMainOffsetPreScale = (bIsModeVer ? height : width ) - 1;
const Int refMainOffset = height - 1;
for (Int x=0;x<width+1;x++)
{
refAbove[x+refMainOffset] = pSrc[x-srcStride-1];
}
for (Int y=0;y<height+1;y++)
{
refLeft[y+refMainOffset] = pSrc[(y-1)*srcStride-1];
}
refMain = (bIsModeVer ? refAbove : refLeft) + refMainOffset;
refSide = (bIsModeVer ? refLeft : refAbove) + refMainOffset;
// Extend the Main reference to the left.
Int invAngleSum = 128; // rounding for (shift by 8)
for (Int k=-1; k>(refMainOffsetPreScale+1)*intraPredAngle>>5; k--)
{
invAngleSum += invAngle;
refMain[k] = refSide[invAngleSum>>8];
}
}
else
{
for (Int x=0;x<2*width+1;x++)
{
refAbove[x] = pSrc[x-srcStride-1];
}
for (Int y=0;y<2*height+1;y++)
{
refLeft[y] = pSrc[(y-1)*srcStride-1];
}
refMain = bIsModeVer ? refAbove : refLeft ;
refSide = bIsModeVer ? refLeft : refAbove;
}
// swap width/height if we are doing a horizontal mode:
Pel tempArray[MAX_CU_SIZE*MAX_CU_SIZE];
const Int dstStride = bIsModeVer ? dstStrideTrue : MAX_CU_SIZE;
Pel *pDst = bIsModeVer ? pTrueDst : tempArray;
if (!bIsModeVer)
{
std::swap(width, height);
}
if (intraPredAngle == 0) // pure vertical or pure horizontal
{
for (Int y=0;y<height;y++)
{
for (Int x=0;x<width;x++)
{
pDst[y*dstStride+x] = refMain[x+1];
}
}
if (edgeFilter)
{
for (Int y=0;y<height;y++)
{
pDst[y*dstStride] = Clip3 (0, ((1 << bitDepth) - 1), pDst[y*dstStride] + (( refSide[y+1] - refSide[0] ) >> 1) );
}
}
}
else
{
Pel *pDsty=pDst;
for (Int y=0, deltaPos=intraPredAngle; y<height; y++, deltaPos+=intraPredAngle, pDsty+=dstStride)
{
const Int deltaInt = deltaPos >> 5;
const Int deltaFract = deltaPos & (32 - 1);
if (deltaFract)
{
// Do linear filtering
const Pel *pRM=refMain+deltaInt+1;
Int lastRefMainPel=*pRM++;
for (Int x=0;x<width;pRM++,x++)
{
Int thisRefMainPel=*pRM;
pDsty[x+0] = (Pel) ( ((32-deltaFract)*lastRefMainPel + deltaFract*thisRefMainPel +16) >> 5 );
lastRefMainPel=thisRefMainPel;
}
}
else
{
// Just copy the integer samples
for (Int x=0;x<width; x++)
{
pDsty[x] = refMain[x+deltaInt+1];
}
}
}
}
// Flip the block if this is the horizontal mode
if (!bIsModeVer)
{
for (Int y=0; y<height; y++)
{
for (Int x=0; x<width; x++)
{
pTrueDst[x*dstStrideTrue] = pDst[x];
}
pTrueDst++;
pDst+=dstStride;
}
}
}
}
Void TComPrediction::predIntraAng( const ComponentID compID, UInt uiDirMode, Pel* piOrg /* Will be null for decoding */, UInt uiOrgStride, Pel* piPred, UInt uiStride, TComTU &rTu, Bool bAbove, Bool bLeft, const Bool bUseFilteredPredSamples, const Bool bUseLosslessDPCM )
{
const ChromaFormat format = rTu.GetChromaFormat();
const ChannelType channelType = toChannelType(compID);
const TComRectangle &rect = rTu.getRect(isLuma(compID) ? COMPONENT_Y : COMPONENT_Cb);
const Int iWidth = rect.width;
const Int iHeight = rect.height;
assert( g_aucConvertToBit[ iWidth ] >= 0 ); // 4x 4
assert( g_aucConvertToBit[ iWidth ] <= 5 ); // 128x128
//assert( iWidth == iHeight );
Pel *pDst = piPred;
// get starting pixel in block
const Int sw = (2 * iWidth + 1);
if ( bUseLosslessDPCM )
{
const Pel *ptrSrc = getPredictorPtr( compID, false );
// Sample Adaptive intra-Prediction (SAP)
if (uiDirMode==HOR_IDX)
{
// left column filled with reference samples
// remaining columns filled with piOrg data (if available).
for(Int y=0; y<iHeight; y++)
{
piPred[y*uiStride+0] = ptrSrc[(y+1)*sw];
}
if (piOrg!=0)
{
piPred+=1; // miss off first column
for(Int y=0; y<iHeight; y++, piPred+=uiStride, piOrg+=uiOrgStride)
{
memcpy(piPred, piOrg, (iWidth-1)*sizeof(Pel));
}
}
}
else // VER_IDX
{
// top row filled with reference samples
// remaining rows filled with piOrd data (if available)
for(Int x=0; x<iWidth; x++)
{
piPred[x] = ptrSrc[x+1];
}
if (piOrg!=0)
{
piPred+=uiStride; // miss off the first row
for(Int y=1; y<iHeight; y++, piPred+=uiStride, piOrg+=uiOrgStride)
{
memcpy(piPred, piOrg, iWidth*sizeof(Pel));
}
}
}
}
else
{
const Pel *ptrSrc = getPredictorPtr( compID, bUseFilteredPredSamples );
if ( uiDirMode == PLANAR_IDX )
{
xPredIntraPlanar( ptrSrc+sw+1, sw, pDst, uiStride, iWidth, iHeight, channelType, format );
}
else
{
// Create the prediction
TComDataCU *const pcCU = rTu.getCU();
const UInt uiAbsPartIdx = rTu.GetAbsPartIdxTU();
const Bool enableEdgeFilters = !(pcCU->isRDPCMEnabled(uiAbsPartIdx) && pcCU->getCUTransquantBypass(uiAbsPartIdx));
#if O0043_BEST_EFFORT_DECODING
xPredIntraAng( g_bitDepthInStream[channelType], ptrSrc+sw+1, sw, pDst, uiStride, iWidth, iHeight, channelType, format, uiDirMode, bAbove, bLeft, enableEdgeFilters );
#else
xPredIntraAng( g_bitDepth[channelType], ptrSrc+sw+1, sw, pDst, uiStride, iWidth, iHeight, channelType, format, uiDirMode, bAbove, bLeft, enableEdgeFilters );
#endif
if(( uiDirMode == DC_IDX ) && bAbove && bLeft )
{
xDCPredFiltering( ptrSrc+sw+1, sw, pDst, uiStride, iWidth, iHeight, channelType );
}
}
}
}
/** Function for checking identical motion.
* \param TComDataCU* pcCU
* \param UInt PartAddr
*/
Bool TComPrediction::xCheckIdenticalMotion ( TComDataCU* pcCU, UInt PartAddr )
{
if( pcCU->getSlice()->isInterB() && !pcCU->getSlice()->getPPS()->getWPBiPred() )
{
if( pcCU->getCUMvField(REF_PIC_LIST_0)->getRefIdx(PartAddr) >= 0 && pcCU->getCUMvField(REF_PIC_LIST_1)->getRefIdx(PartAddr) >= 0)
{
Int RefPOCL0 = pcCU->getSlice()->getRefPic(REF_PIC_LIST_0, pcCU->getCUMvField(REF_PIC_LIST_0)->getRefIdx(PartAddr))->getPOC();
Int RefPOCL1 = pcCU->getSlice()->getRefPic(REF_PIC_LIST_1, pcCU->getCUMvField(REF_PIC_LIST_1)->getRefIdx(PartAddr))->getPOC();
if(RefPOCL0 == RefPOCL1 && pcCU->getCUMvField(REF_PIC_LIST_0)->getMv(PartAddr) == pcCU->getCUMvField(REF_PIC_LIST_1)->getMv(PartAddr))
{
return true;
}
}
}
return false;
}
Void TComPrediction::motionCompensation ( TComDataCU* pcCU, TComYuv* pcYuvPred, RefPicList eRefPicList, Int iPartIdx )
{
Int iWidth;
Int iHeight;
UInt uiPartAddr;
if ( iPartIdx >= 0 )
{
pcCU->getPartIndexAndSize( iPartIdx, uiPartAddr, iWidth, iHeight );
if ( eRefPicList != REF_PIC_LIST_X )
{
if( pcCU->getSlice()->getPPS()->getUseWP())
{
xPredInterUni (pcCU, uiPartAddr, iWidth, iHeight, eRefPicList, pcYuvPred, true );
}
else
{
xPredInterUni (pcCU, uiPartAddr, iWidth, iHeight, eRefPicList, pcYuvPred );
}
if ( pcCU->getSlice()->getPPS()->getUseWP() )
{
xWeightedPredictionUni( pcCU, pcYuvPred, uiPartAddr, iWidth, iHeight, eRefPicList, pcYuvPred );
}
}
else
{
if ( xCheckIdenticalMotion( pcCU, uiPartAddr ) )
{
xPredInterUni (pcCU, uiPartAddr, iWidth, iHeight, REF_PIC_LIST_0, pcYuvPred );
}
else
{
xPredInterBi (pcCU, uiPartAddr, iWidth, iHeight, pcYuvPred );
}
}
return;
}
for ( iPartIdx = 0; iPartIdx < pcCU->getNumPartitions(); iPartIdx++ )
{
pcCU->getPartIndexAndSize( iPartIdx, uiPartAddr, iWidth, iHeight );
if ( eRefPicList != REF_PIC_LIST_X )
{
if( pcCU->getSlice()->getPPS()->getUseWP())
{
xPredInterUni (pcCU, uiPartAddr, iWidth, iHeight, eRefPicList, pcYuvPred, true );
}
else
{
xPredInterUni (pcCU, uiPartAddr, iWidth, iHeight, eRefPicList, pcYuvPred );
}
if ( pcCU->getSlice()->getPPS()->getUseWP() )
{
xWeightedPredictionUni( pcCU, pcYuvPred, uiPartAddr, iWidth, iHeight, eRefPicList, pcYuvPred );
}
}
else
{
if ( xCheckIdenticalMotion( pcCU, uiPartAddr ) )
{
xPredInterUni (pcCU, uiPartAddr, iWidth, iHeight, REF_PIC_LIST_0, pcYuvPred );
}
else
{
xPredInterBi (pcCU, uiPartAddr, iWidth, iHeight, pcYuvPred );
}
}
}
return;
}
Void TComPrediction::xPredInterUni ( TComDataCU* pcCU, UInt uiPartAddr, Int iWidth, Int iHeight, RefPicList eRefPicList, TComYuv* pcYuvPred, Bool bi )
{
Int iRefIdx = pcCU->getCUMvField( eRefPicList )->getRefIdx( uiPartAddr ); assert (iRefIdx >= 0);
TComMv cMv = pcCU->getCUMvField( eRefPicList )->getMv( uiPartAddr );
pcCU->clipMv(cMv);
for (UInt ch=COMPONENT_Y; ch<pcYuvPred->getNumberValidComponents(); ch++)
xPredInterBlk (ComponentID(ch), pcCU, pcCU->getSlice()->getRefPic( eRefPicList, iRefIdx )->getPicYuvRec(), uiPartAddr, &cMv, iWidth, iHeight, pcYuvPred, bi );
}
Void TComPrediction::xPredInterBi ( TComDataCU* pcCU, UInt uiPartAddr, Int iWidth, Int iHeight, TComYuv* pcYuvPred )
{
TComYuv* pcMbYuv;
Int iRefIdx[NUM_REF_PIC_LIST_01] = {-1, -1};
for ( UInt refList = 0; refList < NUM_REF_PIC_LIST_01; refList++ )
{
RefPicList eRefPicList = (refList ? REF_PIC_LIST_1 : REF_PIC_LIST_0);
iRefIdx[refList] = pcCU->getCUMvField( eRefPicList )->getRefIdx( uiPartAddr );
if ( iRefIdx[refList] < 0 )
{
continue;
}
assert( iRefIdx[refList] < pcCU->getSlice()->getNumRefIdx(eRefPicList) );
pcMbYuv = &m_acYuvPred[refList];
if( pcCU->getCUMvField( REF_PIC_LIST_0 )->getRefIdx( uiPartAddr ) >= 0 && pcCU->getCUMvField( REF_PIC_LIST_1 )->getRefIdx( uiPartAddr ) >= 0 )
{
xPredInterUni ( pcCU, uiPartAddr, iWidth, iHeight, eRefPicList, pcMbYuv, true );
}
else
{
if ( ( pcCU->getSlice()->getPPS()->getUseWP() && pcCU->getSlice()->getSliceType() == P_SLICE ) ||
( pcCU->getSlice()->getPPS()->getWPBiPred() && pcCU->getSlice()->getSliceType() == B_SLICE ) )
{
xPredInterUni ( pcCU, uiPartAddr, iWidth, iHeight, eRefPicList, pcMbYuv, true );
}
else
{
xPredInterUni ( pcCU, uiPartAddr, iWidth, iHeight, eRefPicList, pcMbYuv );
}
}
}
if ( pcCU->getSlice()->getPPS()->getWPBiPred() && pcCU->getSlice()->getSliceType() == B_SLICE )
{
xWeightedPredictionBi( pcCU, &m_acYuvPred[REF_PIC_LIST_0], &m_acYuvPred[REF_PIC_LIST_1], iRefIdx[REF_PIC_LIST_0], iRefIdx[REF_PIC_LIST_1], uiPartAddr, iWidth, iHeight, pcYuvPred );
}
else if ( pcCU->getSlice()->getPPS()->getUseWP() && pcCU->getSlice()->getSliceType() == P_SLICE )
{
xWeightedPredictionUni( pcCU, &m_acYuvPred[REF_PIC_LIST_0], uiPartAddr, iWidth, iHeight, REF_PIC_LIST_0, pcYuvPred );
}
else
{
xWeightedAverage( &m_acYuvPred[REF_PIC_LIST_0], &m_acYuvPred[REF_PIC_LIST_1], iRefIdx[REF_PIC_LIST_0], iRefIdx[REF_PIC_LIST_1], uiPartAddr, iWidth, iHeight, pcYuvPred );
}
}
/**
* \brief Generate motion-compensated block
*
* \param cu Pointer to current CU
* \param refPic Pointer to reference picture
* \param partAddr Address of block within CU
* \param mv Motion vector
* \param width Width of block
* \param height Height of block
* \param dstPic Pointer to destination picture
* \param bi Flag indicating whether bipred is used
*/
Void TComPrediction::xPredInterBlk(const ComponentID compID, TComDataCU *cu, TComPicYuv *refPic, UInt partAddr, TComMv *mv, Int width, Int height, TComYuv *dstPic, Bool bi )
{
Int refStride = refPic->getStride(compID);
Int dstStride = dstPic->getStride(compID);
Int shiftHor=(2+refPic->getComponentScaleX(compID));
Int shiftVer=(2+refPic->getComponentScaleY(compID));
Int refOffset = (mv->getHor() >> shiftHor) + (mv->getVer() >> shiftVer) * refStride;
Pel* ref = refPic->getAddr(compID, cu->getCtuRsAddr(), cu->getZorderIdxInCtu() + partAddr ) + refOffset;
Pel* dst = dstPic->getAddr( compID, partAddr );
Int xFrac = mv->getHor() & ((1<<shiftHor)-1);
Int yFrac = mv->getVer() & ((1<<shiftVer)-1);
UInt cxWidth = width >> refPic->getComponentScaleX(compID);
UInt cxHeight = height >> refPic->getComponentScaleY(compID);
const ChromaFormat chFmt = cu->getPic()->getChromaFormat();
if ( yFrac == 0 )
{
m_if.filterHor(compID, ref, refStride, dst, dstStride, cxWidth, cxHeight, xFrac, !bi, chFmt);
}
else if ( xFrac == 0 )
{
m_if.filterVer(compID, ref, refStride, dst, dstStride, cxWidth, cxHeight, yFrac, true, !bi, chFmt);
}
else
{
Int tmpStride = m_filteredBlockTmp[0].getStride(compID);
Pel* tmp = m_filteredBlockTmp[0].getAddr(compID);
const Int vFilterSize = isLuma(compID) ? NTAPS_LUMA : NTAPS_CHROMA;
m_if.filterHor(compID, ref - ((vFilterSize>>1) -1)*refStride, refStride, tmp, tmpStride, cxWidth, cxHeight+vFilterSize-1, xFrac, false, chFmt);
m_if.filterVer(compID, tmp + ((vFilterSize>>1) -1)*tmpStride, tmpStride, dst, dstStride, cxWidth, cxHeight, yFrac, false, !bi, chFmt);
}
}
Void TComPrediction::xWeightedAverage( TComYuv* pcYuvSrc0, TComYuv* pcYuvSrc1, Int iRefIdx0, Int iRefIdx1, UInt uiPartIdx, Int iWidth, Int iHeight, TComYuv* pcYuvDst )
{
if( iRefIdx0 >= 0 && iRefIdx1 >= 0 )
{
pcYuvDst->addAvg( pcYuvSrc0, pcYuvSrc1, uiPartIdx, iWidth, iHeight );
}
else if ( iRefIdx0 >= 0 && iRefIdx1 < 0 )
{
pcYuvSrc0->copyPartToPartYuv( pcYuvDst, uiPartIdx, iWidth, iHeight );
}
else if ( iRefIdx0 < 0 && iRefIdx1 >= 0 )
{
pcYuvSrc1->copyPartToPartYuv( pcYuvDst, uiPartIdx, iWidth, iHeight );
}
}
// AMVP
Void TComPrediction::getMvPredAMVP( TComDataCU* pcCU, UInt uiPartIdx, UInt uiPartAddr, RefPicList eRefPicList, TComMv& rcMvPred )
{
AMVPInfo* pcAMVPInfo = pcCU->getCUMvField(eRefPicList)->getAMVPInfo();
if( pcAMVPInfo->iN <= 1 )
{
rcMvPred = pcAMVPInfo->m_acMvCand[0];
pcCU->setMVPIdxSubParts( 0, eRefPicList, uiPartAddr, uiPartIdx, pcCU->getDepth(uiPartAddr));
pcCU->setMVPNumSubParts( pcAMVPInfo->iN, eRefPicList, uiPartAddr, uiPartIdx, pcCU->getDepth(uiPartAddr));
return;
}
assert(pcCU->getMVPIdx(eRefPicList,uiPartAddr) >= 0);
rcMvPred = pcAMVPInfo->m_acMvCand[pcCU->getMVPIdx(eRefPicList,uiPartAddr)];
return;
}
/** Function for deriving planar intra prediction.
* \param pSrc pointer to reconstructed sample array
* \param srcStride the stride of the reconstructed sample array
* \param rpDst reference to pointer for the prediction sample array
* \param dstStride the stride of the prediction sample array
* \param width the width of the block
* \param height the height of the block
*
* This function derives the prediction samples for planar mode (intra coding).
*/
//NOTE: Bit-Limit - 24-bit source
Void TComPrediction::xPredIntraPlanar( const Pel* pSrc, Int srcStride, Pel* rpDst, Int dstStride, UInt width, UInt height, ChannelType channelType, ChromaFormat format )
{
assert(width <= height);
Int leftColumn[MAX_CU_SIZE+1], topRow[MAX_CU_SIZE+1], bottomRow[MAX_CU_SIZE], rightColumn[MAX_CU_SIZE];
UInt shift1Dhor = g_aucConvertToBit[ width ] + 2;
UInt shift1Dver = g_aucConvertToBit[ height ] + 2;
// Get left and above reference column and row
for(Int k=0;k<width+1;k++)
{
topRow[k] = pSrc[k-srcStride];
}
for (Int k=0; k < height+1; k++)
{
leftColumn[k] = pSrc[k*srcStride-1];
}
// Prepare intermediate variables used in interpolation
Int bottomLeft = leftColumn[height];
Int topRight = topRow[width];
for(Int k=0;k<width;k++)
{
bottomRow[k] = bottomLeft - topRow[k];
topRow[k] <<= shift1Dver;
}
for(Int k=0;k<height;k++)
{
rightColumn[k] = topRight - leftColumn[k];
leftColumn[k] <<= shift1Dhor;
}
const UInt topRowShift = 0;
// Generate prediction signal
for (Int y=0;y<height;y++)
{
Int horPred = leftColumn[y] + width;
for (Int x=0;x<width;x++)
{
horPred += rightColumn[y];
topRow[x] += bottomRow[x];
Int vertPred = ((topRow[x] + topRowShift)>>topRowShift);
rpDst[y*dstStride+x] = ( horPred + vertPred ) >> (shift1Dhor+1);
}
}
}
/** Function for filtering intra DC predictor.
* \param pSrc pointer to reconstructed sample array
* \param iSrcStride the stride of the reconstructed sample array
* \param rpDst reference to pointer for the prediction sample array
* \param iDstStride the stride of the prediction sample array
* \param iWidth the width of the block
* \param iHeight the height of the block
*
* This function performs filtering left and top edges of the prediction samples for DC mode (intra coding).
*/
Void TComPrediction::xDCPredFiltering( const Pel* pSrc, Int iSrcStride, Pel* pDst, Int iDstStride, Int iWidth, Int iHeight, ChannelType channelType )
{
Int x, y, iDstStride2, iSrcStride2;
if (isLuma(channelType) && (iWidth <= MAXIMUM_INTRA_FILTERED_WIDTH) && (iHeight <= MAXIMUM_INTRA_FILTERED_HEIGHT))
{
//top-left
pDst[0] = (Pel)((pSrc[-iSrcStride] + pSrc[-1] + 2 * pDst[0] + 2) >> 2);
//top row (vertical filter)
for ( x = 1; x < iWidth; x++ )
{
pDst[x] = (Pel)((pSrc[x - iSrcStride] + 3 * pDst[x] + 2) >> 2);
}
//left column (horizontal filter)
for ( y = 1, iDstStride2 = iDstStride, iSrcStride2 = iSrcStride-1; y < iHeight; y++, iDstStride2+=iDstStride, iSrcStride2+=iSrcStride )
{
pDst[iDstStride2] = (Pel)((pSrc[iSrcStride2] + 3 * pDst[iDstStride2] + 2) >> 2);
}
}
return;
}
/* Static member function */
Bool TComPrediction::UseDPCMForFirstPassIntraEstimation(TComTU &rTu, const UInt uiDirMode)
{
return (rTu.getCU()->isRDPCMEnabled(rTu.GetAbsPartIdxTU()) ) &&
rTu.getCU()->getCUTransquantBypass(rTu.GetAbsPartIdxTU()) &&
(uiDirMode==HOR_IDX || uiDirMode==VER_IDX);
}
//! \}