libbpg/x265/source/common/yuv.cpp

213 lines
8.1 KiB
C++
Raw Normal View History

2015-10-27 10:46:00 +00:00
/*****************************************************************************
* Copyright (C) 2015 x265 project
*
* Authors: Steve Borho <steve@borho.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*
* This program is also available under a commercial proprietary license.
* For more information, contact us at license @ x265.com.
*****************************************************************************/
#include "common.h"
#include "yuv.h"
#include "shortyuv.h"
#include "picyuv.h"
#include "primitives.h"
using namespace X265_NS;
Yuv::Yuv()
{
m_buf[0] = NULL;
m_buf[1] = NULL;
m_buf[2] = NULL;
}
bool Yuv::create(uint32_t size, int csp)
{
m_csp = csp;
m_hChromaShift = CHROMA_H_SHIFT(csp);
m_vChromaShift = CHROMA_V_SHIFT(csp);
m_size = size;
m_part = partitionFromSizes(size, size);
if (csp == X265_CSP_I400)
{
CHECKED_MALLOC(m_buf[0], pixel, size * size + 8);
m_buf[1] = m_buf[2] = 0;
m_csize = MAX_INT;
return true;
}
else
{
m_csize = size >> m_hChromaShift;
size_t sizeL = size * size;
size_t sizeC = sizeL >> (m_vChromaShift + m_hChromaShift);
X265_CHECK((sizeC & 15) == 0, "invalid size");
// memory allocation (padded for SIMD reads)
CHECKED_MALLOC(m_buf[0], pixel, sizeL + sizeC * 2 + 8);
m_buf[1] = m_buf[0] + sizeL;
m_buf[2] = m_buf[0] + sizeL + sizeC;
return true;
}
fail:
return false;
}
void Yuv::destroy()
{
X265_FREE(m_buf[0]);
}
void Yuv::copyToPicYuv(PicYuv& dstPic, uint32_t cuAddr, uint32_t absPartIdx) const
{
pixel* dstY = dstPic.getLumaAddr(cuAddr, absPartIdx);
primitives.cu[m_part].copy_pp(dstY, dstPic.m_stride, m_buf[0], m_size);
if (m_csp != X265_CSP_I400) {
pixel* dstU = dstPic.getCbAddr(cuAddr, absPartIdx);
pixel* dstV = dstPic.getCrAddr(cuAddr, absPartIdx);
primitives.chroma[m_csp].cu[m_part].copy_pp(dstU, dstPic.m_strideC, m_buf[1], m_csize);
primitives.chroma[m_csp].cu[m_part].copy_pp(dstV, dstPic.m_strideC, m_buf[2], m_csize);
}
}
void Yuv::copyFromPicYuv(const PicYuv& srcPic, uint32_t cuAddr, uint32_t absPartIdx)
{
const pixel* srcY = srcPic.getLumaAddr(cuAddr, absPartIdx);
primitives.cu[m_part].copy_pp(m_buf[0], m_size, srcY, srcPic.m_stride);
if (m_csp != X265_CSP_I400) {
const pixel* srcU = srcPic.getCbAddr(cuAddr, absPartIdx);
const pixel* srcV = srcPic.getCrAddr(cuAddr, absPartIdx);
primitives.chroma[m_csp].cu[m_part].copy_pp(m_buf[1], m_csize, srcU, srcPic.m_strideC);
primitives.chroma[m_csp].cu[m_part].copy_pp(m_buf[2], m_csize, srcV, srcPic.m_strideC);
}
}
void Yuv::copyFromYuv(const Yuv& srcYuv)
{
X265_CHECK(m_size >= srcYuv.m_size, "invalid size\n");
primitives.cu[m_part].copy_pp(m_buf[0], m_size, srcYuv.m_buf[0], srcYuv.m_size);
if (m_csp != X265_CSP_I400) {
primitives.chroma[m_csp].cu[m_part].copy_pp(m_buf[1], m_csize, srcYuv.m_buf[1], srcYuv.m_csize);
primitives.chroma[m_csp].cu[m_part].copy_pp(m_buf[2], m_csize, srcYuv.m_buf[2], srcYuv.m_csize);
}
}
/* This version is intended for use by ME, which required FENC_STRIDE for luma fenc pixels */
void Yuv::copyPUFromYuv(const Yuv& srcYuv, uint32_t absPartIdx, int partEnum, bool bChroma)
{
X265_CHECK(m_size == FENC_STRIDE && m_size >= srcYuv.m_size, "PU buffer size mismatch\n");
const pixel* srcY = srcYuv.m_buf[0] + getAddrOffset(absPartIdx, srcYuv.m_size);
primitives.pu[partEnum].copy_pp(m_buf[0], m_size, srcY, srcYuv.m_size);
if (bChroma)
{
const pixel* srcU = srcYuv.m_buf[1] + srcYuv.getChromaAddrOffset(absPartIdx);
const pixel* srcV = srcYuv.m_buf[2] + srcYuv.getChromaAddrOffset(absPartIdx);
primitives.chroma[m_csp].pu[partEnum].copy_pp(m_buf[1], m_csize, srcU, srcYuv.m_csize);
primitives.chroma[m_csp].pu[partEnum].copy_pp(m_buf[2], m_csize, srcV, srcYuv.m_csize);
}
}
void Yuv::copyToPartYuv(Yuv& dstYuv, uint32_t absPartIdx) const
{
pixel* dstY = dstYuv.getLumaAddr(absPartIdx);
primitives.cu[m_part].copy_pp(dstY, dstYuv.m_size, m_buf[0], m_size);
if (m_csp != X265_CSP_I400) {
pixel* dstU = dstYuv.getCbAddr(absPartIdx);
pixel* dstV = dstYuv.getCrAddr(absPartIdx);
primitives.chroma[m_csp].cu[m_part].copy_pp(dstU, dstYuv.m_csize, m_buf[1], m_csize);
primitives.chroma[m_csp].cu[m_part].copy_pp(dstV, dstYuv.m_csize, m_buf[2], m_csize);
}
}
void Yuv::copyPartToYuv(Yuv& dstYuv, uint32_t absPartIdx) const
{
pixel* srcY = m_buf[0] + getAddrOffset(absPartIdx, m_size);
pixel* dstY = dstYuv.m_buf[0];
primitives.cu[dstYuv.m_part].copy_pp(dstY, dstYuv.m_size, srcY, m_size);
if (m_csp != X265_CSP_I400) {
pixel* srcU = m_buf[1] + getChromaAddrOffset(absPartIdx);
pixel* srcV = m_buf[2] + getChromaAddrOffset(absPartIdx);
pixel* dstU = dstYuv.m_buf[1];
pixel* dstV = dstYuv.m_buf[2];
primitives.chroma[m_csp].cu[dstYuv.m_part].copy_pp(dstU, dstYuv.m_csize, srcU, m_csize);
primitives.chroma[m_csp].cu[dstYuv.m_part].copy_pp(dstV, dstYuv.m_csize, srcV, m_csize);
}
}
void Yuv::addClip(const Yuv& srcYuv0, const ShortYuv& srcYuv1, uint32_t log2SizeL)
{
primitives.cu[log2SizeL - 2].add_ps(m_buf[0], m_size, srcYuv0.m_buf[0], srcYuv1.m_buf[0], srcYuv0.m_size, srcYuv1.m_size);
if (m_csp != X265_CSP_I400) {
primitives.chroma[m_csp].cu[log2SizeL - 2].add_ps(m_buf[1], m_csize, srcYuv0.m_buf[1], srcYuv1.m_buf[1], srcYuv0.m_csize, srcYuv1.m_csize);
primitives.chroma[m_csp].cu[log2SizeL - 2].add_ps(m_buf[2], m_csize, srcYuv0.m_buf[2], srcYuv1.m_buf[2], srcYuv0.m_csize, srcYuv1.m_csize);
}
}
void Yuv::addAvg(const ShortYuv& srcYuv0, const ShortYuv& srcYuv1, uint32_t absPartIdx, uint32_t width, uint32_t height, bool bLuma, bool bChroma)
{
int part = partitionFromSizes(width, height);
if (bLuma)
{
const int16_t* srcY0 = srcYuv0.getLumaAddr(absPartIdx);
const int16_t* srcY1 = srcYuv1.getLumaAddr(absPartIdx);
pixel* dstY = getLumaAddr(absPartIdx);
primitives.pu[part].addAvg(srcY0, srcY1, dstY, srcYuv0.m_size, srcYuv1.m_size, m_size);
}
if (bChroma)
{
const int16_t* srcU0 = srcYuv0.getCbAddr(absPartIdx);
const int16_t* srcV0 = srcYuv0.getCrAddr(absPartIdx);
const int16_t* srcU1 = srcYuv1.getCbAddr(absPartIdx);
const int16_t* srcV1 = srcYuv1.getCrAddr(absPartIdx);
pixel* dstU = getCbAddr(absPartIdx);
pixel* dstV = getCrAddr(absPartIdx);
primitives.chroma[m_csp].pu[part].addAvg(srcU0, srcU1, dstU, srcYuv0.m_csize, srcYuv1.m_csize, m_csize);
primitives.chroma[m_csp].pu[part].addAvg(srcV0, srcV1, dstV, srcYuv0.m_csize, srcYuv1.m_csize, m_csize);
}
}
void Yuv::copyPartToPartLuma(Yuv& dstYuv, uint32_t absPartIdx, uint32_t log2Size) const
{
const pixel* src = getLumaAddr(absPartIdx);
pixel* dst = dstYuv.getLumaAddr(absPartIdx);
primitives.cu[log2Size - 2].copy_pp(dst, dstYuv.m_size, src, m_size);
}
void Yuv::copyPartToPartChroma(Yuv& dstYuv, uint32_t absPartIdx, uint32_t log2SizeL) const
{
const pixel* srcU = getCbAddr(absPartIdx);
const pixel* srcV = getCrAddr(absPartIdx);
pixel* dstU = dstYuv.getCbAddr(absPartIdx);
pixel* dstV = dstYuv.getCrAddr(absPartIdx);
primitives.chroma[m_csp].cu[log2SizeL - 2].copy_pp(dstU, dstYuv.m_csize, srcU, m_csize);
primitives.chroma[m_csp].cu[log2SizeL - 2].copy_pp(dstV, dstYuv.m_csize, srcV, m_csize);
}