/* The copyright in this software is being made available under the BSD * License, included below. This software may be subject to other third party * and contributor rights, including patent rights, and no such rights are * granted under this license. * * Copyright (c) 2010-2014, ITU/ISO/IEC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the ITU/ISO/IEC nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /** \file TEncSlice.cpp \brief slice encoder class */ #include "TEncTop.h" #include "TEncSlice.h" #include //! \ingroup TLibEncoder //! \{ // ==================================================================================================================== // Constructor / destructor / create / destroy // ==================================================================================================================== TEncSlice::TEncSlice() { m_apcPicYuvPred = NULL; m_apcPicYuvResi = NULL; m_pdRdPicLambda = NULL; m_pdRdPicQp = NULL; m_piRdPicQp = NULL; } TEncSlice::~TEncSlice() { } Void TEncSlice::create( Int iWidth, Int iHeight, ChromaFormat chromaFormat, UInt iMaxCUWidth, UInt iMaxCUHeight, UChar uhTotalDepth ) { // create prediction picture if ( m_apcPicYuvPred == NULL ) { m_apcPicYuvPred = new TComPicYuv; m_apcPicYuvPred->create( iWidth, iHeight, chromaFormat, iMaxCUWidth, iMaxCUHeight, uhTotalDepth ); } // create residual picture if( m_apcPicYuvResi == NULL ) { m_apcPicYuvResi = new TComPicYuv; m_apcPicYuvResi->create( iWidth, iHeight, chromaFormat, iMaxCUWidth, iMaxCUHeight, uhTotalDepth ); } } Void TEncSlice::destroy() { // destroy prediction picture if ( m_apcPicYuvPred ) { m_apcPicYuvPred->destroy(); delete m_apcPicYuvPred; m_apcPicYuvPred = NULL; } // destroy residual picture if ( m_apcPicYuvResi ) { m_apcPicYuvResi->destroy(); delete m_apcPicYuvResi; m_apcPicYuvResi = NULL; } // free lambda and QP arrays if ( m_pdRdPicLambda ) { xFree( m_pdRdPicLambda ); m_pdRdPicLambda = NULL; } if ( m_pdRdPicQp ) { xFree( m_pdRdPicQp ); m_pdRdPicQp = NULL; } if ( m_piRdPicQp ) { xFree( m_piRdPicQp ); m_piRdPicQp = NULL; } } Void TEncSlice::init( TEncTop* pcEncTop ) { m_pcCfg = pcEncTop; m_pcListPic = pcEncTop->getListPic(); m_pcGOPEncoder = pcEncTop->getGOPEncoder(); m_pcCuEncoder = pcEncTop->getCuEncoder(); m_pcPredSearch = pcEncTop->getPredSearch(); m_pcEntropyCoder = pcEncTop->getEntropyCoder(); m_pcSbacCoder = pcEncTop->getSbacCoder(); m_pcBinCABAC = pcEncTop->getBinCABAC(); m_pcTrQuant = pcEncTop->getTrQuant(); m_pcRdCost = pcEncTop->getRdCost(); m_pppcRDSbacCoder = pcEncTop->getRDSbacCoder(); m_pcRDGoOnSbacCoder = pcEncTop->getRDGoOnSbacCoder(); // create lambda and QP arrays m_pdRdPicLambda = (Double*)xMalloc( Double, m_pcCfg->getDeltaQpRD() * 2 + 1 ); m_pdRdPicQp = (Double*)xMalloc( Double, m_pcCfg->getDeltaQpRD() * 2 + 1 ); m_piRdPicQp = (Int* )xMalloc( Int, m_pcCfg->getDeltaQpRD() * 2 + 1 ); m_pcRateCtrl = pcEncTop->getRateCtrl(); } Void TEncSlice::setUpLambda(TComSlice* slice, const Double dLambda, Int iQP) { // store lambda m_pcRdCost ->setLambda( dLambda ); // for RDO // in RdCost there is only one lambda because the luma and chroma bits are not separated, instead we weight the distortion of chroma. Double dLambdas[MAX_NUM_COMPONENT] = { dLambda }; for(UInt compIdx=1; compIdxgetPPS()->getQpOffset(compID) + slice->getSliceChromaQpDelta(compID); Int qpc=(iQP + chromaQPOffset < 0) ? iQP : getScaledChromaQP(iQP + chromaQPOffset, m_pcCfg->getChromaFormatIdc()); Double tmpWeight = pow( 2.0, (iQP-qpc)/3.0 ); // takes into account of the chroma qp mapping and chroma qp Offset m_pcRdCost->setDistortionWeight(compID, tmpWeight); dLambdas[compIdx]=dLambda/tmpWeight; } #if RDOQ_CHROMA_LAMBDA // for RDOQ m_pcTrQuant->setLambdas( dLambdas ); #else m_pcTrQuant->setLambda( dLambda ); #endif // For SAO slice ->setLambdas( dLambdas ); } /** - non-referenced frame marking - QP computation based on temporal structure - lambda computation based on QP - set temporal layer ID and the parameter sets . \param pcPic picture class \param pocLast POC of last picture \param pocCurr current POC \param iNumPicRcvd number of received pictures \param iTimeOffset POC offset for hierarchical structure \param iDepth temporal layer depth \param rpcSlice slice header class \param pSPS SPS associated with the slice \param pPPS PPS associated with the slice */ Void TEncSlice::initEncSlice( TComPic* pcPic, Int pocLast, Int pocCurr, Int iNumPicRcvd, Int iGOPid, TComSlice*& rpcSlice, TComSPS* pSPS, TComPPS *pPPS, Bool isField ) { Double dQP; Double dLambda; rpcSlice = pcPic->getSlice(0); rpcSlice->setSPS( pSPS ); rpcSlice->setPPS( pPPS ); rpcSlice->setSliceBits(0); rpcSlice->setPic( pcPic ); rpcSlice->initSlice(); rpcSlice->setPicOutputFlag( true ); rpcSlice->setPOC( pocCurr ); // depth computation based on GOP size Int depth; { Int poc = rpcSlice->getPOC(); if(isField) { poc = (poc/2) % (m_pcCfg->getGOPSize()/2); } else { poc = poc % m_pcCfg->getGOPSize(); } if ( poc == 0 ) { depth = 0; } else { Int step = m_pcCfg->getGOPSize(); depth = 0; for( Int i=step>>1; i>=1; i>>=1 ) { for ( Int j=i; jgetGOPSize(); j+=step ) { if ( j == poc ) { i=0; break; } } step >>= 1; depth++; } } #if HARMONIZE_GOP_FIRST_FIELD_COUPLE if(poc != 0) { #endif if (isField && ((rpcSlice->getPOC() % 2) == 1)) { depth ++; } #if HARMONIZE_GOP_FIRST_FIELD_COUPLE } #endif } // slice type SliceType eSliceType; eSliceType=B_SLICE; #if EFFICIENT_FIELD_IRAP if(!(isField && pocLast == 1)) { #endif // EFFICIENT_FIELD_IRAP #if ALLOW_RECOVERY_POINT_AS_RAP if(m_pcCfg->getDecodingRefreshType() == 3) { eSliceType = (pocLast == 0 || pocCurr % m_pcCfg->getIntraPeriod() == 0 || m_pcGOPEncoder->getGOPSize() == 0) ? I_SLICE : eSliceType; } else { #endif eSliceType = (pocLast == 0 || (pocCurr - (isField ? 1 : 0)) % m_pcCfg->getIntraPeriod() == 0 || m_pcGOPEncoder->getGOPSize() == 0) ? I_SLICE : eSliceType; #if ALLOW_RECOVERY_POINT_AS_RAP } #endif #if EFFICIENT_FIELD_IRAP } #endif rpcSlice->setSliceType ( eSliceType ); // ------------------------------------------------------------------------------------------------------------------ // Non-referenced frame marking // ------------------------------------------------------------------------------------------------------------------ if(pocLast == 0) { rpcSlice->setTemporalLayerNonReferenceFlag(false); } else { rpcSlice->setTemporalLayerNonReferenceFlag(!m_pcCfg->getGOPEntry(iGOPid).m_refPic); } rpcSlice->setReferenced(true); // ------------------------------------------------------------------------------------------------------------------ // QP setting // ------------------------------------------------------------------------------------------------------------------ dQP = m_pcCfg->getQP(); if(eSliceType!=I_SLICE) { if (!(( m_pcCfg->getMaxDeltaQP() == 0 ) && (dQP == -rpcSlice->getSPS()->getQpBDOffset(CHANNEL_TYPE_LUMA) ) && (rpcSlice->getPPS()->getTransquantBypassEnableFlag()))) { dQP += m_pcCfg->getGOPEntry(iGOPid).m_QPOffset; } } // modify QP Int* pdQPs = m_pcCfg->getdQPs(); if ( pdQPs ) { dQP += pdQPs[ rpcSlice->getPOC() ]; } if (m_pcCfg->getCostMode()==COST_LOSSLESS_CODING) { dQP=LOSSLESS_AND_MIXED_LOSSLESS_RD_COST_TEST_QP; m_pcCfg->setDeltaQpRD(0); } // ------------------------------------------------------------------------------------------------------------------ // Lambda computation // ------------------------------------------------------------------------------------------------------------------ Int iQP; Double dOrigQP = dQP; // pre-compute lambda and QP values for all possible QP candidates for ( Int iDQpIdx = 0; iDQpIdx < 2 * m_pcCfg->getDeltaQpRD() + 1; iDQpIdx++ ) { // compute QP value dQP = dOrigQP + ((iDQpIdx+1)>>1)*(iDQpIdx%2 ? -1 : 1); // compute lambda value Int NumberBFrames = ( m_pcCfg->getGOPSize() - 1 ); Int SHIFT_QP = 12; Double dLambda_scale = 1.0 - Clip3( 0.0, 0.5, 0.05*(Double)(isField ? NumberBFrames/2 : NumberBFrames) ); #if FULL_NBIT Int bitdepth_luma_qp_scale = 6 * (g_bitDepth[CHANNEL_TYPE_LUMA] - 8); #else Int bitdepth_luma_qp_scale = 0; #endif Double qp_temp = (Double) dQP + bitdepth_luma_qp_scale - SHIFT_QP; #if FULL_NBIT Double qp_temp_orig = (Double) dQP - SHIFT_QP; #endif // Case #1: I or P-slices (key-frame) Double dQPFactor = m_pcCfg->getGOPEntry(iGOPid).m_QPFactor; if ( eSliceType==I_SLICE ) { dQPFactor=0.57*dLambda_scale; } dLambda = dQPFactor*pow( 2.0, qp_temp/3.0 ); if ( depth>0 ) { #if FULL_NBIT dLambda *= Clip3( 2.00, 4.00, (qp_temp_orig / 6.0) ); // (j == B_SLICE && p_cur_frm->layer != 0 ) #else dLambda *= Clip3( 2.00, 4.00, (qp_temp / 6.0) ); // (j == B_SLICE && p_cur_frm->layer != 0 ) #endif } // if hadamard is used in ME process if ( !m_pcCfg->getUseHADME() && rpcSlice->getSliceType( ) != I_SLICE ) { dLambda *= 0.95; } iQP = max( -pSPS->getQpBDOffset(CHANNEL_TYPE_LUMA), min( MAX_QP, (Int) floor( dQP + 0.5 ) ) ); m_pdRdPicLambda[iDQpIdx] = dLambda; m_pdRdPicQp [iDQpIdx] = dQP; m_piRdPicQp [iDQpIdx] = iQP; } // obtain dQP = 0 case dLambda = m_pdRdPicLambda[0]; dQP = m_pdRdPicQp [0]; iQP = m_piRdPicQp [0]; if( rpcSlice->getSliceType( ) != I_SLICE ) { dLambda *= m_pcCfg->getLambdaModifier( m_pcCfg->getGOPEntry(iGOPid).m_temporalId ); } setUpLambda(rpcSlice, dLambda, iQP); #if HB_LAMBDA_FOR_LDC // restore original slice type #if EFFICIENT_FIELD_IRAP if(!(isField && pocLast == 1)) { #endif // EFFICIENT_FIELD_IRAP #if ALLOW_RECOVERY_POINT_AS_RAP if(m_pcCfg->getDecodingRefreshType() == 3) { eSliceType = (pocLast == 0 || (pocCurr) % m_pcCfg->getIntraPeriod() == 0 || m_pcGOPEncoder->getGOPSize() == 0) ? I_SLICE : eSliceType; } else { #endif eSliceType = (pocLast == 0 || (pocCurr - (isField ? 1 : 0)) % m_pcCfg->getIntraPeriod() == 0 || m_pcGOPEncoder->getGOPSize() == 0) ? I_SLICE : eSliceType; #if ALLOW_RECOVERY_POINT_AS_RAP } #endif #if EFFICIENT_FIELD_IRAP } #endif // EFFICIENT_FIELD_IRAP rpcSlice->setSliceType ( eSliceType ); #endif if (m_pcCfg->getUseRecalculateQPAccordingToLambda()) { dQP = xGetQPValueAccordingToLambda( dLambda ); iQP = max( -pSPS->getQpBDOffset(CHANNEL_TYPE_LUMA), min( MAX_QP, (Int) floor( dQP + 0.5 ) ) ); } rpcSlice->setSliceQp ( iQP ); #if ADAPTIVE_QP_SELECTION rpcSlice->setSliceQpBase ( iQP ); #endif rpcSlice->setSliceQpDelta ( 0 ); rpcSlice->setSliceChromaQpDelta( COMPONENT_Cb, 0 ); rpcSlice->setSliceChromaQpDelta( COMPONENT_Cr, 0 ); rpcSlice->setUseChromaQpAdj( pPPS->getChromaQpAdjTableSize() > 0 ); rpcSlice->setNumRefIdx(REF_PIC_LIST_0,m_pcCfg->getGOPEntry(iGOPid).m_numRefPicsActive); rpcSlice->setNumRefIdx(REF_PIC_LIST_1,m_pcCfg->getGOPEntry(iGOPid).m_numRefPicsActive); if ( m_pcCfg->getDeblockingFilterMetric() ) { rpcSlice->setDeblockingFilterOverrideFlag(true); rpcSlice->setDeblockingFilterDisable(false); rpcSlice->setDeblockingFilterBetaOffsetDiv2( 0 ); rpcSlice->setDeblockingFilterTcOffsetDiv2( 0 ); } else if (rpcSlice->getPPS()->getDeblockingFilterControlPresentFlag()) { rpcSlice->getPPS()->setDeblockingFilterOverrideEnabledFlag( !m_pcCfg->getLoopFilterOffsetInPPS() ); rpcSlice->setDeblockingFilterOverrideFlag( !m_pcCfg->getLoopFilterOffsetInPPS() ); rpcSlice->getPPS()->setPicDisableDeblockingFilterFlag( m_pcCfg->getLoopFilterDisable() ); rpcSlice->setDeblockingFilterDisable( m_pcCfg->getLoopFilterDisable() ); if ( !rpcSlice->getDeblockingFilterDisable()) { if ( !m_pcCfg->getLoopFilterOffsetInPPS() && eSliceType!=I_SLICE) { rpcSlice->getPPS()->setDeblockingFilterBetaOffsetDiv2( m_pcCfg->getGOPEntry(iGOPid).m_betaOffsetDiv2 + m_pcCfg->getLoopFilterBetaOffset() ); rpcSlice->getPPS()->setDeblockingFilterTcOffsetDiv2( m_pcCfg->getGOPEntry(iGOPid).m_tcOffsetDiv2 + m_pcCfg->getLoopFilterTcOffset() ); rpcSlice->setDeblockingFilterBetaOffsetDiv2( m_pcCfg->getGOPEntry(iGOPid).m_betaOffsetDiv2 + m_pcCfg->getLoopFilterBetaOffset() ); rpcSlice->setDeblockingFilterTcOffsetDiv2( m_pcCfg->getGOPEntry(iGOPid).m_tcOffsetDiv2 + m_pcCfg->getLoopFilterTcOffset() ); } else { rpcSlice->getPPS()->setDeblockingFilterBetaOffsetDiv2( m_pcCfg->getLoopFilterBetaOffset() ); rpcSlice->getPPS()->setDeblockingFilterTcOffsetDiv2( m_pcCfg->getLoopFilterTcOffset() ); rpcSlice->setDeblockingFilterBetaOffsetDiv2( m_pcCfg->getLoopFilterBetaOffset() ); rpcSlice->setDeblockingFilterTcOffsetDiv2( m_pcCfg->getLoopFilterTcOffset() ); } } } else { rpcSlice->setDeblockingFilterOverrideFlag( false ); rpcSlice->setDeblockingFilterDisable( false ); rpcSlice->setDeblockingFilterBetaOffsetDiv2( 0 ); rpcSlice->setDeblockingFilterTcOffsetDiv2( 0 ); } rpcSlice->setDepth ( depth ); pcPic->setTLayer( m_pcCfg->getGOPEntry(iGOPid).m_temporalId ); if(eSliceType==I_SLICE) { pcPic->setTLayer(0); } rpcSlice->setTLayer( pcPic->getTLayer() ); assert( m_apcPicYuvPred ); assert( m_apcPicYuvResi ); pcPic->setPicYuvPred( m_apcPicYuvPred ); pcPic->setPicYuvResi( m_apcPicYuvResi ); rpcSlice->setSliceMode ( m_pcCfg->getSliceMode() ); rpcSlice->setSliceArgument ( m_pcCfg->getSliceArgument() ); rpcSlice->setSliceSegmentMode ( m_pcCfg->getSliceSegmentMode() ); rpcSlice->setSliceSegmentArgument ( m_pcCfg->getSliceSegmentArgument() ); rpcSlice->setMaxNumMergeCand ( m_pcCfg->getMaxNumMergeCand() ); xStoreWPparam( pPPS->getUseWP(), pPPS->getWPBiPred() ); } Void TEncSlice::resetQP( TComPic* pic, Int sliceQP, Double lambda ) { TComSlice* slice = pic->getSlice(0); // store lambda slice->setSliceQp( sliceQP ); #if ADAPTIVE_QP_SELECTION slice->setSliceQpBase ( sliceQP ); #endif setUpLambda(slice, lambda, sliceQP); } // ==================================================================================================================== // Public member functions // ==================================================================================================================== Void TEncSlice::setSearchRange( TComSlice* pcSlice ) { Int iCurrPOC = pcSlice->getPOC(); Int iRefPOC; Int iGOPSize = m_pcCfg->getGOPSize(); Int iOffset = (iGOPSize >> 1); Int iMaxSR = m_pcCfg->getSearchRange(); Int iNumPredDir = pcSlice->isInterP() ? 1 : 2; for (Int iDir = 0; iDir <= iNumPredDir; iDir++) { //RefPicList e = (RefPicList)iDir; RefPicList e = ( iDir ? REF_PIC_LIST_1 : REF_PIC_LIST_0 ); for (Int iRefIdx = 0; iRefIdx < pcSlice->getNumRefIdx(e); iRefIdx++) { iRefPOC = pcSlice->getRefPic(e, iRefIdx)->getPOC(); Int iNewSR = Clip3(8, iMaxSR, (iMaxSR*ADAPT_SR_SCALE*abs(iCurrPOC - iRefPOC)+iOffset)/iGOPSize); m_pcPredSearch->setAdaptiveSearchRange(iDir, iRefIdx, iNewSR); } } } /** - multi-loop slice encoding for different slice QP . \param rpcPic picture class */ Void TEncSlice::precompressSlice( TComPic* pcPic ) { // if deltaQP RD is not used, simply return if ( m_pcCfg->getDeltaQpRD() == 0 ) { return; } if ( m_pcCfg->getUseRateCtrl() ) { printf( "\nMultiple QP optimization is not allowed when rate control is enabled." ); assert(0); } TComSlice* pcSlice = pcPic->getSlice(getSliceIdx()); Double dPicRdCostBest = MAX_DOUBLE; UInt uiQpIdxBest = 0; Double dFrameLambda; #if FULL_NBIT Int SHIFT_QP = 12 + 6 * (g_bitDepth[CHANNEL_TYPE_LUMA] - 8); #else Int SHIFT_QP = 12; #endif // set frame lambda if (m_pcCfg->getGOPSize() > 1) { dFrameLambda = 0.68 * pow (2, (m_piRdPicQp[0] - SHIFT_QP) / 3.0) * (pcSlice->isInterB()? 2 : 1); } else { dFrameLambda = 0.68 * pow (2, (m_piRdPicQp[0] - SHIFT_QP) / 3.0); } m_pcRdCost ->setFrameLambda(dFrameLambda); const UInt initialSliceQp=pcSlice->getSliceQp(); // for each QP candidate for ( UInt uiQpIdx = 0; uiQpIdx < 2 * m_pcCfg->getDeltaQpRD() + 1; uiQpIdx++ ) { pcSlice ->setSliceQp ( m_piRdPicQp [uiQpIdx] ); #if ADAPTIVE_QP_SELECTION pcSlice ->setSliceQpBase ( m_piRdPicQp [uiQpIdx] ); #endif setUpLambda(pcSlice, m_pdRdPicLambda[uiQpIdx], m_piRdPicQp [uiQpIdx]); // try compress compressSlice ( pcPic ); Double dPicRdCost; UInt64 uiPicDist = m_uiPicDist; // TODO: will this work if multiple slices are being used? There may not be any reconstruction data yet. // Will this also be ideal if a byte-restriction is placed on the slice? // - what if the last CTU was sometimes included, sometimes not, and that had all the distortion? m_pcGOPEncoder->preLoopFilterPicAll( pcPic, uiPicDist ); // compute RD cost and choose the best dPicRdCost = m_pcRdCost->calcRdCost64( m_uiPicTotalBits, uiPicDist, true, DF_SSE_FRAME); if ( dPicRdCost < dPicRdCostBest ) { uiQpIdxBest = uiQpIdx; dPicRdCostBest = dPicRdCost; } } if (pcSlice->getDependentSliceSegmentFlag() && initialSliceQp!=m_piRdPicQp[uiQpIdxBest] ) { // TODO: this won't work with dependent slices: they do not have their own QP. fprintf(stderr,"ERROR - attempt to change QP for a dependent slice-segment, having already coded the slice\n"); assert(pcSlice->getDependentSliceSegmentFlag()==false || initialSliceQp==m_piRdPicQp[uiQpIdxBest]); } // set best values pcSlice ->setSliceQp ( m_piRdPicQp [uiQpIdxBest] ); #if ADAPTIVE_QP_SELECTION pcSlice ->setSliceQpBase ( m_piRdPicQp [uiQpIdxBest] ); #endif setUpLambda(pcSlice, m_pdRdPicLambda[uiQpIdxBest], m_piRdPicQp [uiQpIdxBest]); } Void TEncSlice::calCostSliceI(TComPic* pcPic) { UInt ctuRsAddr; UInt startCtuTsAddr; UInt boundingCtuTsAddr; Int iSumHad, shift = g_bitDepth[CHANNEL_TYPE_LUMA]-8, offset = (shift>0)?(1<<(shift-1)):0;; Double iSumHadSlice = 0; pcPic->getSlice(getSliceIdx())->setSliceSegmentBits(0); TComSlice* pcSlice = pcPic->getSlice(getSliceIdx()); xDetermineStartAndBoundingCtuTsAddr ( startCtuTsAddr, boundingCtuTsAddr, pcPic, false ); UInt ctuTsAddr; ctuRsAddr = pcPic->getPicSym()->getCtuTsToRsAddrMap( startCtuTsAddr); for( ctuTsAddr = startCtuTsAddr; ctuTsAddr < boundingCtuTsAddr; ctuRsAddr = pcPic->getPicSym()->getCtuTsToRsAddrMap(++ctuTsAddr) ) { // initialize CU encoder TComDataCU* pCtu = pcPic->getCtu( ctuRsAddr ); pCtu->initCtu( pcPic, ctuRsAddr ); Int height = min( pcSlice->getSPS()->getMaxCUHeight(),pcSlice->getSPS()->getPicHeightInLumaSamples() - ctuRsAddr / pcPic->getFrameWidthInCtus() * pcSlice->getSPS()->getMaxCUHeight() ); Int width = min( pcSlice->getSPS()->getMaxCUWidth(),pcSlice->getSPS()->getPicWidthInLumaSamples() - ctuRsAddr % pcPic->getFrameWidthInCtus() * pcSlice->getSPS()->getMaxCUWidth() ); iSumHad = m_pcCuEncoder->updateCtuDataISlice(pCtu, width, height); (m_pcRateCtrl->getRCPic()->getLCU(ctuRsAddr)).m_costIntra=(iSumHad+offset)>>shift; iSumHadSlice += (m_pcRateCtrl->getRCPic()->getLCU(ctuRsAddr)).m_costIntra; } m_pcRateCtrl->getRCPic()->setTotalIntraCost(iSumHadSlice); } /** \param rpcPic picture class */ Void TEncSlice::compressSlice( TComPic* pcPic ) { UInt startCtuTsAddr; UInt boundingCtuTsAddr; TComSlice* pcSlice = pcPic->getSlice(getSliceIdx()); pcSlice->setSliceSegmentBits(0); xDetermineStartAndBoundingCtuTsAddr ( startCtuTsAddr, boundingCtuTsAddr, pcPic, false ); // initialize cost values - these are used by precompressSlice (they should be parameters). m_uiPicTotalBits = 0; m_dPicRdCost = 0; // NOTE: This is a write-only variable! m_uiPicDist = 0; m_pcEntropyCoder->setEntropyCoder ( m_pppcRDSbacCoder[0][CI_CURR_BEST], pcSlice ); m_pcEntropyCoder->resetEntropy (); TEncBinCABAC* pRDSbacCoder = (TEncBinCABAC *) m_pppcRDSbacCoder[0][CI_CURR_BEST]->getEncBinIf(); pRDSbacCoder->setBinCountingEnableFlag( false ); pRDSbacCoder->setBinsCoded( 0 ); TComBitCounter tempBitCounter; const UInt frameWidthInCtus = pcPic->getPicSym()->getFrameWidthInCtus(); //------------------------------------------------------------------------------ // Weighted Prediction parameters estimation. //------------------------------------------------------------------------------ // calculate AC/DC values for current picture if( pcSlice->getPPS()->getUseWP() || pcSlice->getPPS()->getWPBiPred() ) { xCalcACDCParamSlice(pcSlice); } const Bool bWp_explicit = (pcSlice->getSliceType()==P_SLICE && pcSlice->getPPS()->getUseWP()) || (pcSlice->getSliceType()==B_SLICE && pcSlice->getPPS()->getWPBiPred()); if ( bWp_explicit ) { //------------------------------------------------------------------------------ // Weighted Prediction implemented at Slice level. SliceMode=2 is not supported yet. //------------------------------------------------------------------------------ if ( pcSlice->getSliceMode()==FIXED_NUMBER_OF_BYTES || pcSlice->getSliceSegmentMode()==FIXED_NUMBER_OF_BYTES ) { printf("Weighted Prediction is not supported with slice mode determined by max number of bins.\n"); exit(0); } xEstimateWPParamSlice( pcSlice ); pcSlice->initWpScaling(); // check WP on/off xCheckWPEnable( pcSlice ); } #if ADAPTIVE_QP_SELECTION if( m_pcCfg->getUseAdaptQpSelect() && !(pcSlice->getDependentSliceSegmentFlag())) { // TODO: this won't work with dependent slices: they do not have their own QP. Check fix to mask clause execution with && !(pcSlice->getDependentSliceSegmentFlag()) m_pcTrQuant->clearSliceARLCnt(); if(pcSlice->getSliceType()!=I_SLICE) { Int qpBase = pcSlice->getSliceQpBase(); pcSlice->setSliceQp(qpBase + m_pcTrQuant->getQpDelta(qpBase)); } } #endif // Adjust initial state if this is the start of a dependent slice. { const UInt ctuRsAddr = pcPic->getPicSym()->getCtuTsToRsAddrMap( startCtuTsAddr); const UInt currentTileIdx = pcPic->getPicSym()->getTileIdxMap(ctuRsAddr); const TComTile *pCurrentTile = pcPic->getPicSym()->getTComTile(currentTileIdx); const UInt firstCtuRsAddrOfTile = pCurrentTile->getFirstCtuRsAddr(); if( pcSlice->getDependentSliceSegmentFlag() && ctuRsAddr != firstCtuRsAddrOfTile ) { // This will only occur if dependent slice-segments (m_entropyCodingSyncContextState=true) are being used. if( pCurrentTile->getTileWidthInCtus() >= 2 || !m_pcCfg->getWaveFrontsynchro() ) { m_pppcRDSbacCoder[0][CI_CURR_BEST]->loadContexts( &m_lastSliceSegmentEndContextState ); } } } // for every CTU in the slice segment (may terminate sooner if there is a byte limit on the slice-segment) for( UInt ctuTsAddr = startCtuTsAddr; ctuTsAddr < boundingCtuTsAddr; ++ctuTsAddr ) { const UInt ctuRsAddr = pcPic->getPicSym()->getCtuTsToRsAddrMap(ctuTsAddr); // initialize CTU encoder TComDataCU* pCtu = pcPic->getCtu( ctuRsAddr ); pCtu->initCtu( pcPic, ctuRsAddr ); // update CABAC state const UInt firstCtuRsAddrOfTile = pcPic->getPicSym()->getTComTile(pcPic->getPicSym()->getTileIdxMap(ctuRsAddr))->getFirstCtuRsAddr(); const UInt tileXPosInCtus = firstCtuRsAddrOfTile % frameWidthInCtus; const UInt ctuXPosInCtus = ctuRsAddr % frameWidthInCtus; if (ctuRsAddr == firstCtuRsAddrOfTile) { m_pppcRDSbacCoder[0][CI_CURR_BEST]->resetEntropy(); } else if ( ctuXPosInCtus == tileXPosInCtus && m_pcCfg->getWaveFrontsynchro()) { // reset and then update contexts to the state at the end of the top-right CTU (if within current slice and tile). m_pppcRDSbacCoder[0][CI_CURR_BEST]->resetEntropy(); // Sync if the Top-Right is available. TComDataCU *pCtuUp = pCtu->getCtuAbove(); if ( pCtuUp && ((ctuRsAddr%frameWidthInCtus+1) < frameWidthInCtus) ) { TComDataCU *pCtuTR = pcPic->getCtu( ctuRsAddr - frameWidthInCtus + 1 ); if ( pCtu->CUIsFromSameSliceAndTile(pCtuTR) ) { // Top-Right is available, we use it. m_pppcRDSbacCoder[0][CI_CURR_BEST]->loadContexts( &m_entropyCodingSyncContextState ); } } } // set go-on entropy coder (used for all trial encodings - the cu encoder and encoder search also have a copy of the same pointer) m_pcEntropyCoder->setEntropyCoder ( m_pcRDGoOnSbacCoder, pcSlice ); m_pcEntropyCoder->setBitstream( &tempBitCounter ); tempBitCounter.resetBits(); m_pcRDGoOnSbacCoder->load( m_pppcRDSbacCoder[0][CI_CURR_BEST] ); // this copy is not strictly necessary here, but indicates that the GoOnSbacCoder // is reset to a known state before every decision process. ((TEncBinCABAC*)m_pcRDGoOnSbacCoder->getEncBinIf())->setBinCountingEnableFlag(true); Double oldLambda = m_pcRdCost->getLambda(); if ( m_pcCfg->getUseRateCtrl() ) { Int estQP = pcSlice->getSliceQp(); Double estLambda = -1.0; Double bpp = -1.0; if ( ( pcPic->getSlice( 0 )->getSliceType() == I_SLICE && m_pcCfg->getForceIntraQP() ) || !m_pcCfg->getLCULevelRC() ) { estQP = pcSlice->getSliceQp(); } else { bpp = m_pcRateCtrl->getRCPic()->getLCUTargetBpp(pcSlice->getSliceType()); if ( pcPic->getSlice( 0 )->getSliceType() == I_SLICE) { estLambda = m_pcRateCtrl->getRCPic()->getLCUEstLambdaAndQP(bpp, pcSlice->getSliceQp(), &estQP); } else { estLambda = m_pcRateCtrl->getRCPic()->getLCUEstLambda( bpp ); estQP = m_pcRateCtrl->getRCPic()->getLCUEstQP ( estLambda, pcSlice->getSliceQp() ); } estQP = Clip3( -pcSlice->getSPS()->getQpBDOffset(CHANNEL_TYPE_LUMA), MAX_QP, estQP ); m_pcRdCost->setLambda(estLambda); #if RDOQ_CHROMA_LAMBDA // set lambda for RDOQ const Double chromaLambda = estLambda / m_pcRdCost->getChromaWeight(); const Double lambdaArray[MAX_NUM_COMPONENT] = { estLambda, chromaLambda, chromaLambda }; m_pcTrQuant->setLambdas( lambdaArray ); #else m_pcTrQuant->setLambda( estLambda ); #endif } m_pcRateCtrl->setRCQP( estQP ); #if ADAPTIVE_QP_SELECTION pCtu->getSlice()->setSliceQpBase( estQP ); #endif } // run CTU trial encoder m_pcCuEncoder->compressCtu( pCtu ); // All CTU decisions have now been made. Restore entropy coder to an initial stage, ready to make a true encode, // which will result in the state of the contexts being correct. It will also count up the number of bits coded, // which is used if there is a limit of the number of bytes per slice-segment. m_pcEntropyCoder->setEntropyCoder ( m_pppcRDSbacCoder[0][CI_CURR_BEST], pcSlice ); m_pcEntropyCoder->setBitstream( &tempBitCounter ); pRDSbacCoder->setBinCountingEnableFlag( true ); m_pppcRDSbacCoder[0][CI_CURR_BEST]->resetBits(); pRDSbacCoder->setBinsCoded( 0 ); // encode CTU and calculate the true bit counters. m_pcCuEncoder->encodeCtu( pCtu ); pRDSbacCoder->setBinCountingEnableFlag( false ); const Int numberOfWrittenBits = m_pcEntropyCoder->getNumberOfWrittenBits(); // Calculate if this CTU puts us over slice bit size. // cannot terminate if current slice/slice-segment would be 0 Ctu in size, const UInt validEndOfSliceCtuTsAddr = ctuTsAddr + (ctuTsAddr == startCtuTsAddr ? 1 : 0); // Set slice end parameter if(pcSlice->getSliceMode()==FIXED_NUMBER_OF_BYTES && pcSlice->getSliceBits()+numberOfWrittenBits > (pcSlice->getSliceArgument()<<3)) { pcSlice->setSliceSegmentCurEndCtuTsAddr(validEndOfSliceCtuTsAddr); pcSlice->setSliceCurEndCtuTsAddr(validEndOfSliceCtuTsAddr); boundingCtuTsAddr=validEndOfSliceCtuTsAddr; } else if(pcSlice->getSliceSegmentMode()==FIXED_NUMBER_OF_BYTES && pcSlice->getSliceSegmentBits()+numberOfWrittenBits > (pcSlice->getSliceSegmentArgument()<<3)) { pcSlice->setSliceSegmentCurEndCtuTsAddr(validEndOfSliceCtuTsAddr); boundingCtuTsAddr=validEndOfSliceCtuTsAddr; } if (boundingCtuTsAddr <= ctuTsAddr) break; pcSlice->setSliceBits( (UInt)(pcSlice->getSliceBits() + numberOfWrittenBits) ); pcSlice->setSliceSegmentBits(pcSlice->getSliceSegmentBits()+numberOfWrittenBits); // Store probabilities of second CTU in line into buffer - used only if wavefront-parallel-processing is enabled. if ( ctuXPosInCtus == tileXPosInCtus+1 && m_pcCfg->getWaveFrontsynchro()) { m_entropyCodingSyncContextState.loadContexts(m_pppcRDSbacCoder[0][CI_CURR_BEST]); } if ( m_pcCfg->getUseRateCtrl() ) { Int actualQP = g_RCInvalidQPValue; Double actualLambda = m_pcRdCost->getLambda(); Int actualBits = pCtu->getTotalBits(); Int numberOfEffectivePixels = 0; for ( Int idx = 0; idx < pcPic->getNumPartitionsInCtu(); idx++ ) { if ( pCtu->getPredictionMode( idx ) != NUMBER_OF_PREDICTION_MODES && ( !pCtu->isSkipped( idx ) ) ) { numberOfEffectivePixels = numberOfEffectivePixels + 16; break; } } if ( numberOfEffectivePixels == 0 ) { actualQP = g_RCInvalidQPValue; } else { actualQP = pCtu->getQP( 0 ); } m_pcRdCost->setLambda(oldLambda); m_pcRateCtrl->getRCPic()->updateAfterCTU( m_pcRateCtrl->getRCPic()->getLCUCoded(), actualBits, actualQP, actualLambda, pCtu->getSlice()->getSliceType() == I_SLICE ? 0 : m_pcCfg->getLCULevelRC() ); } m_uiPicTotalBits += pCtu->getTotalBits(); m_dPicRdCost += pCtu->getTotalCost(); m_uiPicDist += pCtu->getTotalDistortion(); } // store context state at the end of this slice-segment, in case the next slice is a dependent slice and continues using the CABAC contexts. if( pcSlice->getPPS()->getDependentSliceSegmentsEnabledFlag() ) { m_lastSliceSegmentEndContextState.loadContexts( m_pppcRDSbacCoder[0][CI_CURR_BEST] );//ctx end of dep.slice } xRestoreWPparam( pcSlice ); // stop use of temporary bit counter object. m_pppcRDSbacCoder[0][CI_CURR_BEST]->setBitstream(NULL); m_pcRDGoOnSbacCoder->setBitstream(NULL); // stop use of tempBitCounter. } /** \param rpcPic picture class \retval rpcBitstream bitstream class */ Void TEncSlice::encodeSlice ( TComPic* pcPic, TComOutputBitstream* pcSubstreams, UInt &numBinsCoded ) { TComSlice* pcSlice = pcPic->getSlice(getSliceIdx()); const UInt startCtuTsAddr = pcSlice->getSliceSegmentCurStartCtuTsAddr(); const UInt boundingCtuTsAddr = pcSlice->getSliceSegmentCurEndCtuTsAddr(); const UInt frameWidthInCtus = pcPic->getPicSym()->getFrameWidthInCtus(); const Bool depSliceSegmentsEnabled = pcSlice->getPPS()->getDependentSliceSegmentsEnabledFlag(); const Bool wavefrontsEnabled = pcSlice->getPPS()->getEntropyCodingSyncEnabledFlag(); // initialise entropy coder for the slice m_pcSbacCoder->init( (TEncBinIf*)m_pcBinCABAC ); m_pcEntropyCoder->setEntropyCoder ( m_pcSbacCoder, pcSlice ); m_pcEntropyCoder->resetEntropy (); numBinsCoded = 0; m_pcBinCABAC->setBinCountingEnableFlag( true ); m_pcBinCABAC->setBinsCoded(0); #if ENC_DEC_TRACE g_bJustDoIt = g_bEncDecTraceEnable; #endif DTRACE_CABAC_VL( g_nSymbolCounter++ ); DTRACE_CABAC_T( "\tPOC: " ); DTRACE_CABAC_V( pcPic->getPOC() ); DTRACE_CABAC_T( "\n" ); #if ENC_DEC_TRACE g_bJustDoIt = g_bEncDecTraceDisable; #endif if (depSliceSegmentsEnabled) { // modify initial contexts with previous slice segment if this is a dependent slice. const UInt ctuRsAddr = pcPic->getPicSym()->getCtuTsToRsAddrMap( startCtuTsAddr ); const UInt currentTileIdx=pcPic->getPicSym()->getTileIdxMap(ctuRsAddr); const TComTile *pCurrentTile=pcPic->getPicSym()->getTComTile(currentTileIdx); const UInt firstCtuRsAddrOfTile = pCurrentTile->getFirstCtuRsAddr(); if( pcSlice->getDependentSliceSegmentFlag() && ctuRsAddr != firstCtuRsAddrOfTile ) { if( pCurrentTile->getTileWidthInCtus() >= 2 || !wavefrontsEnabled ) { m_pcSbacCoder->loadContexts(&m_lastSliceSegmentEndContextState); } } } // for every CTU in the slice segment... for( UInt ctuTsAddr = startCtuTsAddr; ctuTsAddr < boundingCtuTsAddr; ++ctuTsAddr ) { const UInt ctuRsAddr = pcPic->getPicSym()->getCtuTsToRsAddrMap(ctuTsAddr); const TComTile ¤tTile = *(pcPic->getPicSym()->getTComTile(pcPic->getPicSym()->getTileIdxMap(ctuRsAddr))); const UInt firstCtuRsAddrOfTile = currentTile.getFirstCtuRsAddr(); const UInt tileXPosInCtus = firstCtuRsAddrOfTile % frameWidthInCtus; const UInt tileYPosInCtus = firstCtuRsAddrOfTile / frameWidthInCtus; const UInt ctuXPosInCtus = ctuRsAddr % frameWidthInCtus; const UInt ctuYPosInCtus = ctuRsAddr / frameWidthInCtus; const UInt uiSubStrm=pcPic->getSubstreamForCtuAddr(ctuRsAddr, true, pcSlice); TComDataCU* pCtu = pcPic->getCtu( ctuRsAddr ); m_pcEntropyCoder->setBitstream( &pcSubstreams[uiSubStrm] ); // set up CABAC contexts' state for this CTU if (ctuRsAddr == firstCtuRsAddrOfTile) { if (ctuTsAddr != startCtuTsAddr) // if it is the first CTU, then the entropy coder has already been reset { m_pcEntropyCoder->resetEntropy(); } } else if (ctuXPosInCtus == tileXPosInCtus && wavefrontsEnabled) { // Synchronize cabac probabilities with upper-right CTU if it's available and at the start of a line. if (ctuTsAddr != startCtuTsAddr) // if it is the first CTU, then the entropy coder has already been reset { m_pcEntropyCoder->resetEntropy(); } TComDataCU *pCtuUp = pCtu->getCtuAbove(); if ( pCtuUp && ((ctuRsAddr%frameWidthInCtus+1) < frameWidthInCtus) ) { TComDataCU *pCtuTR = pcPic->getCtu( ctuRsAddr - frameWidthInCtus + 1 ); if ( pCtu->CUIsFromSameSliceAndTile(pCtuTR) ) { // Top-right is available, so use it. m_pcSbacCoder->loadContexts( &m_entropyCodingSyncContextState ); } } } if ( pcSlice->getSPS()->getUseSAO() ) { Bool bIsSAOSliceEnabled = false; Bool sliceEnabled[MAX_NUM_COMPONENT]; for(Int comp=0; comp < MAX_NUM_COMPONENT; comp++) { ComponentID compId=ComponentID(comp); sliceEnabled[compId] = pcSlice->getSaoEnabledFlag(toChannelType(compId)) && (comp < pcPic->getNumberValidComponents()); if (sliceEnabled[compId]) bIsSAOSliceEnabled=true; } if (bIsSAOSliceEnabled) { SAOBlkParam& saoblkParam = (pcPic->getPicSym()->getSAOBlkParam())[ctuRsAddr]; Bool leftMergeAvail = false; Bool aboveMergeAvail= false; //merge left condition Int rx = (ctuRsAddr % frameWidthInCtus); if(rx > 0) { leftMergeAvail = pcPic->getSAOMergeAvailability(ctuRsAddr, ctuRsAddr-1); } //merge up condition Int ry = (ctuRsAddr / frameWidthInCtus); if(ry > 0) { aboveMergeAvail = pcPic->getSAOMergeAvailability(ctuRsAddr, ctuRsAddr-frameWidthInCtus); } m_pcEntropyCoder->encodeSAOBlkParam(saoblkParam, sliceEnabled, leftMergeAvail, aboveMergeAvail); } } #if ENC_DEC_TRACE g_bJustDoIt = g_bEncDecTraceEnable; #endif m_pcCuEncoder->encodeCtu( pCtu ); #if ENC_DEC_TRACE g_bJustDoIt = g_bEncDecTraceDisable; #endif //Store probabilities of second CTU in line into buffer if ( ctuXPosInCtus == tileXPosInCtus+1 && wavefrontsEnabled) { m_entropyCodingSyncContextState.loadContexts( m_pcSbacCoder ); } // terminate the sub-stream, if required (end of slice-segment, end of tile, end of wavefront-CTU-row): if (ctuTsAddr+1 == boundingCtuTsAddr || ( ctuXPosInCtus + 1 == tileXPosInCtus + currentTile.getTileWidthInCtus() && ( ctuYPosInCtus + 1 == tileYPosInCtus + currentTile.getTileHeightInCtus() || wavefrontsEnabled) ) ) { m_pcEntropyCoder->encodeTerminatingBit(1); m_pcEntropyCoder->encodeSliceFinish(); // Byte-alignment in slice_data() when new tile pcSubstreams[uiSubStrm].writeByteAlignment(); // write sub-stream size if (ctuTsAddr+1 != boundingCtuTsAddr) { pcSlice->addSubstreamSize( (pcSubstreams[uiSubStrm].getNumberOfWrittenBits() >> 3) + pcSubstreams[uiSubStrm].countStartCodeEmulations() ); } } } // CTU-loop if( depSliceSegmentsEnabled ) { m_lastSliceSegmentEndContextState.loadContexts( m_pcSbacCoder );//ctx end of dep.slice } #if ADAPTIVE_QP_SELECTION if( m_pcCfg->getUseAdaptQpSelect() ) { m_pcTrQuant->storeSliceQpNext(pcSlice); } #endif if (pcSlice->getPPS()->getCabacInitPresentFlag()) { if (pcSlice->getPPS()->getDependentSliceSegmentsEnabledFlag()) { pcSlice->getPPS()->setEncCABACTableIdx( pcSlice->getSliceType() ); } else { m_pcEntropyCoder->determineCabacInitIdx(); } } numBinsCoded = m_pcBinCABAC->getBinsCoded(); } Void TEncSlice::calculateBoundingCtuTsAddrForSlice(UInt &startCtuTSAddrSlice, UInt &boundingCtuTSAddrSlice, Bool &haveReachedTileBoundary, TComPic* pcPic, const Bool encodingSlice, const Int sliceMode, const Int sliceArgument, const UInt sliceCurEndCtuTSAddr) { TComSlice* pcSlice = pcPic->getSlice(getSliceIdx()); const UInt numberOfCtusInFrame = pcPic->getNumberOfCtusInFrame(); boundingCtuTSAddrSlice=0; haveReachedTileBoundary=false; switch (sliceMode) { case FIXED_NUMBER_OF_CTU: { UInt ctuAddrIncrement = sliceArgument; boundingCtuTSAddrSlice = ((startCtuTSAddrSlice + ctuAddrIncrement) < numberOfCtusInFrame) ? (startCtuTSAddrSlice + ctuAddrIncrement) : numberOfCtusInFrame; } break; case FIXED_NUMBER_OF_BYTES: if (encodingSlice) boundingCtuTSAddrSlice = sliceCurEndCtuTSAddr; else boundingCtuTSAddrSlice = numberOfCtusInFrame; break; case FIXED_NUMBER_OF_TILES: { const UInt tileIdx = pcPic->getPicSym()->getTileIdxMap( pcPic->getPicSym()->getCtuTsToRsAddrMap(startCtuTSAddrSlice) ); const UInt tileTotalCount = (pcPic->getPicSym()->getNumTileColumnsMinus1()+1) * (pcPic->getPicSym()->getNumTileRowsMinus1()+1); UInt ctuAddrIncrement = 0; for(UInt tileIdxIncrement = 0; tileIdxIncrement < sliceArgument; tileIdxIncrement++) { if((tileIdx + tileIdxIncrement) < tileTotalCount) { UInt tileWidthInCtus = pcPic->getPicSym()->getTComTile(tileIdx + tileIdxIncrement)->getTileWidthInCtus(); UInt tileHeightInCtus = pcPic->getPicSym()->getTComTile(tileIdx + tileIdxIncrement)->getTileHeightInCtus(); ctuAddrIncrement += (tileWidthInCtus * tileHeightInCtus); } } boundingCtuTSAddrSlice = ((startCtuTSAddrSlice + ctuAddrIncrement) < numberOfCtusInFrame) ? (startCtuTSAddrSlice + ctuAddrIncrement) : numberOfCtusInFrame; } break; default: boundingCtuTSAddrSlice = numberOfCtusInFrame; break; } // Adjust for tiles and wavefronts. if ((sliceMode == FIXED_NUMBER_OF_CTU || sliceMode == FIXED_NUMBER_OF_BYTES) && (m_pcCfg->getNumRowsMinus1() > 0 || m_pcCfg->getNumColumnsMinus1() > 0)) { const UInt ctuRSAddr = pcPic->getPicSym()->getCtuTsToRsAddrMap(startCtuTSAddrSlice); const UInt startTileIdx = pcPic->getPicSym()->getTileIdxMap(ctuRSAddr); const Bool wavefrontsAreEnabled = m_pcCfg->getWaveFrontsynchro(); const TComTile *pStartingTile = pcPic->getPicSym()->getTComTile(startTileIdx); const UInt tileStartTsAddr = pcPic->getPicSym()->getCtuRsToTsAddrMap(pStartingTile->getFirstCtuRsAddr()); const UInt tileStartWidth = pStartingTile->getTileWidthInCtus(); const UInt tileStartHeight = pStartingTile->getTileHeightInCtus(); const UInt tileLastTsAddr_excl = tileStartTsAddr + tileStartWidth*tileStartHeight; const UInt tileBoundingCtuTsAddrSlice = tileLastTsAddr_excl; const UInt ctuColumnOfStartingTile = ((startCtuTSAddrSlice-tileStartTsAddr)%tileStartWidth); if (wavefrontsAreEnabled && ctuColumnOfStartingTile!=0) { // WPP: if a slice does not start at the beginning of a CTB row, it must end within the same CTB row const UInt numberOfCTUsToEndOfRow = tileStartWidth - ctuColumnOfStartingTile; const UInt wavefrontTileBoundingCtuAddrSlice = startCtuTSAddrSlice + numberOfCTUsToEndOfRow; if (wavefrontTileBoundingCtuAddrSlice < boundingCtuTSAddrSlice) { boundingCtuTSAddrSlice = wavefrontTileBoundingCtuAddrSlice; } } if (tileBoundingCtuTsAddrSlice < boundingCtuTSAddrSlice) { boundingCtuTSAddrSlice = tileBoundingCtuTsAddrSlice; haveReachedTileBoundary = true; } } else if ((sliceMode == FIXED_NUMBER_OF_CTU || sliceMode == FIXED_NUMBER_OF_BYTES) && pcSlice->getPPS()->getEntropyCodingSyncEnabledFlag() && ((startCtuTSAddrSlice % pcPic->getFrameWidthInCtus()) != 0)) { // Adjust for wavefronts (no tiles). // WPP: if a slice does not start at the beginning of a CTB row, it must end within the same CTB row boundingCtuTSAddrSlice = min(boundingCtuTSAddrSlice, startCtuTSAddrSlice - (startCtuTSAddrSlice % pcPic->getFrameWidthInCtus()) + (pcPic->getFrameWidthInCtus())); } } /** Determines the starting and bounding CTU address of current slice / dependent slice * \param bEncodeSlice Identifies if the calling function is compressSlice() [false] or encodeSlice() [true] * \returns Updates startCtuTsAddr, boundingCtuTsAddr with appropriate CTU address */ Void TEncSlice::xDetermineStartAndBoundingCtuTsAddr ( UInt& startCtuTsAddr, UInt& boundingCtuTsAddr, TComPic* pcPic, const Bool encodingSlice ) { TComSlice* pcSlice = pcPic->getSlice(getSliceIdx()); // Non-dependent slice UInt startCtuTsAddrSlice = pcSlice->getSliceCurStartCtuTsAddr(); Bool haveReachedTileBoundarySlice = false; UInt boundingCtuTsAddrSlice; calculateBoundingCtuTsAddrForSlice(startCtuTsAddrSlice, boundingCtuTsAddrSlice, haveReachedTileBoundarySlice, pcPic, encodingSlice, m_pcCfg->getSliceMode(), m_pcCfg->getSliceArgument(), pcSlice->getSliceCurEndCtuTsAddr()); pcSlice->setSliceCurEndCtuTsAddr( boundingCtuTsAddrSlice ); pcSlice->setSliceCurStartCtuTsAddr( startCtuTsAddrSlice ); // Dependent slice UInt startCtuTsAddrSliceSegment = pcSlice->getSliceSegmentCurStartCtuTsAddr(); Bool haveReachedTileBoundarySliceSegment = false; UInt boundingCtuTsAddrSliceSegment; calculateBoundingCtuTsAddrForSlice(startCtuTsAddrSliceSegment, boundingCtuTsAddrSliceSegment, haveReachedTileBoundarySliceSegment, pcPic, encodingSlice, m_pcCfg->getSliceSegmentMode(), m_pcCfg->getSliceSegmentArgument(), pcSlice->getSliceSegmentCurEndCtuTsAddr()); if (boundingCtuTsAddrSliceSegment>boundingCtuTsAddrSlice) { boundingCtuTsAddrSliceSegment = boundingCtuTsAddrSlice; } pcSlice->setSliceSegmentCurEndCtuTsAddr( boundingCtuTsAddrSliceSegment ); pcSlice->setSliceSegmentCurStartCtuTsAddr(startCtuTsAddrSliceSegment); // Make a joint decision based on reconstruction and dependent slice bounds startCtuTsAddr = max(startCtuTsAddrSlice , startCtuTsAddrSliceSegment ); boundingCtuTsAddr = boundingCtuTsAddrSliceSegment; } Double TEncSlice::xGetQPValueAccordingToLambda ( Double lambda ) { return 4.2005*log(lambda) + 13.7122; } //! \}