/* The copyright in this software is being made available under the BSD * License, included below. This software may be subject to other third party * and contributor rights, including patent rights, and no such rights are * granted under this license. * * Copyright (c) 2010-2014, ITU/ISO/IEC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the ITU/ISO/IEC nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /** \file TComBitStream.cpp \brief class for handling bitstream */ #include #include #include "TComBitStream.h" #include #include using namespace std; //! \ingroup TLibCommon //! \{ // ==================================================================================================================== // Constructor / destructor / create / destroy // ==================================================================================================================== TComOutputBitstream::TComOutputBitstream() { clear(); } TComOutputBitstream::~TComOutputBitstream() { } TComInputBitstream::TComInputBitstream(std::vector* buf) { m_fifo = buf; m_fifo_idx = 0; m_held_bits = 0; m_num_held_bits = 0; m_numBitsRead = 0; } TComInputBitstream::~TComInputBitstream() { } // ==================================================================================================================== // Public member functions // ==================================================================================================================== Char* TComOutputBitstream::getByteStream() const { return (Char*) &m_fifo.front(); } UInt TComOutputBitstream::getByteStreamLength() { return UInt(m_fifo.size()); } Void TComOutputBitstream::clear() { m_fifo.clear(); m_held_bits = 0; m_num_held_bits = 0; } Void TComOutputBitstream::write ( UInt uiBits, UInt uiNumberOfBits ) { assert( uiNumberOfBits <= 32 ); assert( uiNumberOfBits == 32 || (uiBits & (~0 << uiNumberOfBits)) == 0 ); /* any modulo 8 remainder of num_total_bits cannot be written this time, * and will be held until next time. */ UInt num_total_bits = uiNumberOfBits + m_num_held_bits; UInt next_num_held_bits = num_total_bits % 8; /* form a byte aligned word (write_bits), by concatenating any held bits * with the new bits, discarding the bits that will form the next_held_bits. * eg: H = held bits, V = n new bits /---- next_held_bits * len(H)=7, len(V)=1: ... ---- HHHH HHHV . 0000 0000, next_num_held_bits=0 * len(H)=7, len(V)=2: ... ---- HHHH HHHV . V000 0000, next_num_held_bits=1 * if total_bits < 8, the value of v_ is not used */ UChar next_held_bits = uiBits << (8 - next_num_held_bits); if (!(num_total_bits >> 3)) { /* insufficient bits accumulated to write out, append new_held_bits to * current held_bits */ /* NB, this requires that v only contains 0 in bit positions {31..n} */ m_held_bits |= next_held_bits; m_num_held_bits = next_num_held_bits; return; } /* topword serves to justify held_bits to align with the msb of uiBits */ UInt topword = (uiNumberOfBits - next_num_held_bits) & ~((1 << 3) -1); UInt write_bits = (m_held_bits << topword) | (uiBits >> next_num_held_bits); switch (num_total_bits >> 3) { case 4: m_fifo.push_back(write_bits >> 24); case 3: m_fifo.push_back(write_bits >> 16); case 2: m_fifo.push_back(write_bits >> 8); case 1: m_fifo.push_back(write_bits); } m_held_bits = next_held_bits; m_num_held_bits = next_num_held_bits; } Void TComOutputBitstream::writeAlignOne() { UInt num_bits = getNumBitsUntilByteAligned(); write((1 << num_bits) - 1, num_bits); return; } Void TComOutputBitstream::writeAlignZero() { if (0 == m_num_held_bits) { return; } m_fifo.push_back(m_held_bits); m_held_bits = 0; m_num_held_bits = 0; } /** - add substream to the end of the current bitstream . \param pcSubstream substream to be added */ Void TComOutputBitstream::addSubstream( TComOutputBitstream* pcSubstream ) { UInt uiNumBits = pcSubstream->getNumberOfWrittenBits(); const vector& rbsp = pcSubstream->getFIFO(); for (vector::const_iterator it = rbsp.begin(); it != rbsp.end();) { write(*it++, 8); } if (uiNumBits&0x7) { write(pcSubstream->getHeldBits()>>(8-(uiNumBits&0x7)), uiNumBits&0x7); } } Void TComOutputBitstream::writeByteAlignment() { write( 1, 1); writeAlignZero(); } Int TComOutputBitstream::countStartCodeEmulations() { UInt cnt = 0; vector& rbsp = getFIFO(); for (vector::iterator it = rbsp.begin(); it != rbsp.end();) { vector::iterator found = it; do { // find the next emulated 00 00 {00,01,02,03} // NB, end()-1, prevents finding a trailing two byte sequence found = search_n(found, rbsp.end()-1, 2, 0); found++; // if not found, found == end, otherwise found = second zero byte if (found == rbsp.end()) { break; } if (*(++found) <= 3) { break; } } while (true); it = found; if (found != rbsp.end()) { cnt++; } } return cnt; } /** * read #uiNumberOfBits# from bitstream without updating the bitstream * state, storing the result in #ruiBits#. * * If reading #uiNumberOfBits# would overrun the bitstream buffer, * the bitsream is effectively padded with sufficient zero-bits to * avoid the overrun. */ Void TComInputBitstream::pseudoRead ( UInt uiNumberOfBits, UInt& ruiBits ) { UInt saved_num_held_bits = m_num_held_bits; UChar saved_held_bits = m_held_bits; UInt saved_fifo_idx = m_fifo_idx; UInt num_bits_to_read = min(uiNumberOfBits, getNumBitsLeft()); read(num_bits_to_read, ruiBits); ruiBits <<= (uiNumberOfBits - num_bits_to_read); m_fifo_idx = saved_fifo_idx; m_held_bits = saved_held_bits; m_num_held_bits = saved_num_held_bits; } Void TComInputBitstream::read (UInt uiNumberOfBits, UInt& ruiBits) { assert( uiNumberOfBits <= 32 ); m_numBitsRead += uiNumberOfBits; /* NB, bits are extracted from the MSB of each byte. */ UInt retval = 0; if (uiNumberOfBits <= m_num_held_bits) { /* n=1, len(H)=7: -VHH HHHH, shift_down=6, mask=0xfe * n=3, len(H)=7: -VVV HHHH, shift_down=4, mask=0xf8 */ retval = m_held_bits >> (m_num_held_bits - uiNumberOfBits); retval &= ~(0xff << uiNumberOfBits); m_num_held_bits -= uiNumberOfBits; ruiBits = retval; return; } /* all num_held_bits will go into retval * => need to mask leftover bits from previous extractions * => align retval with top of extracted word */ /* n=5, len(H)=3: ---- -VVV, mask=0x07, shift_up=5-3=2, * n=9, len(H)=3: ---- -VVV, mask=0x07, shift_up=9-3=6 */ uiNumberOfBits -= m_num_held_bits; retval = m_held_bits & ~(0xff << m_num_held_bits); retval <<= uiNumberOfBits; /* number of whole bytes that need to be loaded to form retval */ /* n=32, len(H)=0, load 4bytes, shift_down=0 * n=32, len(H)=1, load 4bytes, shift_down=1 * n=31, len(H)=1, load 4bytes, shift_down=1+1 * n=8, len(H)=0, load 1byte, shift_down=0 * n=8, len(H)=3, load 1byte, shift_down=3 * n=5, len(H)=1, load 1byte, shift_down=1+3 */ UInt aligned_word = 0; UInt num_bytes_to_load = (uiNumberOfBits - 1) >> 3; assert(m_fifo_idx + num_bytes_to_load < m_fifo->size()); switch (num_bytes_to_load) { case 3: aligned_word = (*m_fifo)[m_fifo_idx++] << 24; case 2: aligned_word |= (*m_fifo)[m_fifo_idx++] << 16; case 1: aligned_word |= (*m_fifo)[m_fifo_idx++] << 8; case 0: aligned_word |= (*m_fifo)[m_fifo_idx++]; } /* resolve remainder bits */ UInt next_num_held_bits = (32 - uiNumberOfBits) % 8; /* copy required part of aligned_word into retval */ retval |= aligned_word >> next_num_held_bits; /* store held bits */ m_num_held_bits = next_num_held_bits; m_held_bits = aligned_word; ruiBits = retval; } /** * insert the contents of the bytealigned (and flushed) bitstream src * into this at byte position pos. */ Void TComOutputBitstream::insertAt(const TComOutputBitstream& src, UInt pos) { UInt src_bits = src.getNumberOfWrittenBits(); assert(0 == src_bits % 8); vector::iterator at = m_fifo.begin() + pos; m_fifo.insert(at, src.m_fifo.begin(), src.m_fifo.end()); } UInt TComInputBitstream::readOutTrailingBits () { UInt count=0; UInt uiBits = 0; while ( ( getNumBitsLeft() > 0 ) && (getNumBitsUntilByteAligned()!=0) ) { count++; read ( 1, uiBits ); } return count; } // //TComOutputBitstream& TComOutputBitstream::operator= (const TComOutputBitstream& src) //{ // vector::iterator at = m_fifo.begin(); // m_fifo.insert(at, src.m_fifo.begin(), src.m_fifo.end()); // // m_num_held_bits = src.m_num_held_bits; // m_held_bits = src.m_held_bits; // // return *this; //} /** - extract substream from the current bitstream . \param pcBitstream bitstream which contains substreams \param uiNumBits number of bits to transfer */ TComInputBitstream *TComInputBitstream::extractSubstream( UInt uiNumBits ) { UInt uiNumBytes = uiNumBits/8; std::vector* buf = new std::vector; UInt uiByte; for (UInt ui = 0; ui < uiNumBytes; ui++) { read(8, uiByte); buf->push_back(uiByte); } if (uiNumBits&0x7) { uiByte = 0; read(uiNumBits&0x7, uiByte); uiByte <<= 8-(uiNumBits&0x7); buf->push_back(uiByte); } return new TComInputBitstream(buf); } /** - delete internal fifo */ Void TComInputBitstream::deleteFifo() { delete m_fifo; m_fifo = NULL; } UInt TComInputBitstream::readByteAlignment() { UInt code = 0; read( 1, code ); assert(code == 1); UInt numBits = getNumBitsUntilByteAligned(); if(numBits) { assert(numBits <= getNumBitsLeft()); read( numBits, code ); assert(code == 0); } return numBits+1; } //! \}