/***************************************************************************** * Copyright (C) 2015 x265 project * * Authors: Steve Borho * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA. * * This program is also available under a commercial proprietary license. * For more information, contact us at license @ x265.com. *****************************************************************************/ #ifndef X265_YUV_H #define X265_YUV_H #include "common.h" #include "primitives.h" namespace X265_NS { // private namespace class ShortYuv; class PicYuv; /* A Yuv instance holds pixels for a square CU (64x64 down to 8x8) for all three planes * these are typically used to hold fenc, predictions, or reconstructed blocks */ class Yuv { public: pixel* m_buf[3]; uint32_t m_size; uint32_t m_csize; int m_part; // cached partition enum size int m_csp; int m_hChromaShift; int m_vChromaShift; Yuv(); bool create(uint32_t size, int csp); void destroy(); // Copy YUV buffer to picture buffer void copyToPicYuv(PicYuv& destPicYuv, uint32_t cuAddr, uint32_t absPartIdx) const; // Copy YUV buffer from picture buffer void copyFromPicYuv(const PicYuv& srcPicYuv, uint32_t cuAddr, uint32_t absPartIdx); // Copy from same size YUV buffer void copyFromYuv(const Yuv& srcYuv); // Copy portion of srcYuv into ME prediction buffer void copyPUFromYuv(const Yuv& srcYuv, uint32_t absPartIdx, int partEnum, bool bChroma); // Copy Small YUV buffer to the part of other Big YUV buffer void copyToPartYuv(Yuv& dstYuv, uint32_t absPartIdx) const; // Copy the part of Big YUV buffer to other Small YUV buffer void copyPartToYuv(Yuv& dstYuv, uint32_t absPartIdx) const; // Clip(srcYuv0 + srcYuv1) -> m_buf .. aka recon = clip(pred + residual) void addClip(const Yuv& srcYuv0, const ShortYuv& srcYuv1, uint32_t log2SizeL); // (srcYuv0 + srcYuv1)/2 for YUV partition (bidir averaging) void addAvg(const ShortYuv& srcYuv0, const ShortYuv& srcYuv1, uint32_t absPartIdx, uint32_t width, uint32_t height, bool bLuma, bool bChroma); void copyPartToPartLuma(Yuv& dstYuv, uint32_t absPartIdx, uint32_t log2Size) const; void copyPartToPartChroma(Yuv& dstYuv, uint32_t absPartIdx, uint32_t log2SizeL) const; pixel* getLumaAddr(uint32_t absPartIdx) { return m_buf[0] + getAddrOffset(absPartIdx, m_size); } pixel* getCbAddr(uint32_t absPartIdx) { return m_buf[1] + getChromaAddrOffset(absPartIdx); } pixel* getCrAddr(uint32_t absPartIdx) { return m_buf[2] + getChromaAddrOffset(absPartIdx); } pixel* getChromaAddr(uint32_t chromaId, uint32_t absPartIdx) { return m_buf[chromaId] + getChromaAddrOffset(absPartIdx); } const pixel* getLumaAddr(uint32_t absPartIdx) const { return m_buf[0] + getAddrOffset(absPartIdx, m_size); } const pixel* getCbAddr(uint32_t absPartIdx) const { return m_buf[1] + getChromaAddrOffset(absPartIdx); } const pixel* getCrAddr(uint32_t absPartIdx) const { return m_buf[2] + getChromaAddrOffset(absPartIdx); } const pixel* getChromaAddr(uint32_t chromaId, uint32_t absPartIdx) const { return m_buf[chromaId] + getChromaAddrOffset(absPartIdx); } int getChromaAddrOffset(uint32_t absPartIdx) const { int blkX = g_zscanToPelX[absPartIdx] >> m_hChromaShift; int blkY = g_zscanToPelY[absPartIdx] >> m_vChromaShift; return blkX + blkY * m_csize; } static int getAddrOffset(uint32_t absPartIdx, uint32_t width) { int blkX = g_zscanToPelX[absPartIdx]; int blkY = g_zscanToPelY[absPartIdx]; return blkX + blkY * width; } }; } #endif