libbpg/jctvc/TLibEncoder/TEncSearch.cpp
2015-01-16 13:46:18 +01:00

5814 lines
220 KiB
C++

/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2014, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file TEncSearch.cpp
\brief encoder search class
*/
#include "TLibCommon/TypeDef.h"
#include "TLibCommon/TComRom.h"
#include "TLibCommon/TComMotionInfo.h"
#include "TEncSearch.h"
#include "TLibCommon/TComTU.h"
#include "TLibCommon/Debug.h"
#include <math.h>
#include <limits>
//! \ingroup TLibEncoder
//! \{
static const TComMv s_acMvRefineH[9] =
{
TComMv( 0, 0 ), // 0
TComMv( 0, -1 ), // 1
TComMv( 0, 1 ), // 2
TComMv( -1, 0 ), // 3
TComMv( 1, 0 ), // 4
TComMv( -1, -1 ), // 5
TComMv( 1, -1 ), // 6
TComMv( -1, 1 ), // 7
TComMv( 1, 1 ) // 8
};
static const TComMv s_acMvRefineQ[9] =
{
TComMv( 0, 0 ), // 0
TComMv( 0, -1 ), // 1
TComMv( 0, 1 ), // 2
TComMv( -1, -1 ), // 5
TComMv( 1, -1 ), // 6
TComMv( -1, 0 ), // 3
TComMv( 1, 0 ), // 4
TComMv( -1, 1 ), // 7
TComMv( 1, 1 ) // 8
};
static const UInt s_auiDFilter[9] =
{
0, 1, 0,
2, 3, 2,
0, 1, 0
};
static Void offsetSubTUCBFs(TComTU &rTu, const ComponentID compID)
{
TComDataCU *pcCU = rTu.getCU();
const UInt uiTrDepth = rTu.GetTransformDepthRel();
const UInt uiAbsPartIdx = rTu.GetAbsPartIdxTU(compID);
const UInt partIdxesPerSubTU = rTu.GetAbsPartIdxNumParts(compID) >> 1;
//move the CBFs down a level and set the parent CBF
UChar subTUCBF[2];
UChar combinedSubTUCBF = 0;
for (UInt subTU = 0; subTU < 2; subTU++)
{
const UInt subTUAbsPartIdx = uiAbsPartIdx + (subTU * partIdxesPerSubTU);
subTUCBF[subTU] = pcCU->getCbf(subTUAbsPartIdx, compID, uiTrDepth);
combinedSubTUCBF |= subTUCBF[subTU];
}
for (UInt subTU = 0; subTU < 2; subTU++)
{
const UInt subTUAbsPartIdx = uiAbsPartIdx + (subTU * partIdxesPerSubTU);
const UChar compositeCBF = (subTUCBF[subTU] << 1) | combinedSubTUCBF;
pcCU->setCbfPartRange((compositeCBF << uiTrDepth), compID, subTUAbsPartIdx, partIdxesPerSubTU);
}
}
TEncSearch::TEncSearch()
{
for (UInt ch=0; ch<MAX_NUM_COMPONENT; ch++)
{
m_ppcQTTempCoeff[ch] = NULL;
m_pcQTTempCoeff[ch] = NULL;
#if ADAPTIVE_QP_SELECTION
m_ppcQTTempArlCoeff[ch] = NULL;
m_pcQTTempArlCoeff[ch] = NULL;
#endif
m_puhQTTempCbf[ch] = NULL;
m_phQTTempCrossComponentPredictionAlpha[ch] = NULL;
m_pSharedPredTransformSkip[ch] = NULL;
m_pcQTTempTUCoeff[ch] = NULL;
#if ADAPTIVE_QP_SELECTION
m_ppcQTTempTUArlCoeff[ch] = NULL;
#endif
m_puhQTTempTransformSkipFlag[ch] = NULL;
}
m_puhQTTempTrIdx = NULL;
m_pcQTTempTComYuv = NULL;
m_pcEncCfg = NULL;
m_pcEntropyCoder = NULL;
m_pTempPel = NULL;
setWpScalingDistParam( NULL, -1, REF_PIC_LIST_X );
}
TEncSearch::~TEncSearch()
{
if ( m_pTempPel )
{
delete [] m_pTempPel;
m_pTempPel = NULL;
}
if ( m_pcEncCfg )
{
const UInt uiNumLayersAllocated = m_pcEncCfg->getQuadtreeTULog2MaxSize()-m_pcEncCfg->getQuadtreeTULog2MinSize()+1;
for (UInt ch=0; ch<MAX_NUM_COMPONENT; ch++)
{
for (UInt layer = 0; layer < uiNumLayersAllocated; layer++)
{
delete[] m_ppcQTTempCoeff[ch][layer];
#if ADAPTIVE_QP_SELECTION
delete[] m_ppcQTTempArlCoeff[ch][layer];
#endif
}
delete[] m_ppcQTTempCoeff[ch];
delete[] m_pcQTTempCoeff[ch];
delete[] m_puhQTTempCbf[ch];
#if ADAPTIVE_QP_SELECTION
delete[] m_ppcQTTempArlCoeff[ch];
delete[] m_pcQTTempArlCoeff[ch];
#endif
}
for( UInt layer = 0; layer < uiNumLayersAllocated; layer++ )
{
m_pcQTTempTComYuv[layer].destroy();
}
}
delete[] m_puhQTTempTrIdx;
delete[] m_pcQTTempTComYuv;
for (UInt ch=0; ch<MAX_NUM_COMPONENT; ch++)
{
delete[] m_pSharedPredTransformSkip[ch];
delete[] m_pcQTTempTUCoeff[ch];
#if ADAPTIVE_QP_SELECTION
delete[] m_ppcQTTempTUArlCoeff[ch];
#endif
delete[] m_phQTTempCrossComponentPredictionAlpha[ch];
delete[] m_puhQTTempTransformSkipFlag[ch];
}
m_pcQTTempTransformSkipTComYuv.destroy();
m_tmpYuvPred.destroy();
}
Void TEncSearch::init(TEncCfg* pcEncCfg,
TComTrQuant* pcTrQuant,
Int iSearchRange,
Int bipredSearchRange,
Int iFastSearch,
Int iMaxDeltaQP,
TEncEntropy* pcEntropyCoder,
TComRdCost* pcRdCost,
TEncSbac*** pppcRDSbacCoder,
TEncSbac* pcRDGoOnSbacCoder
)
{
m_pcEncCfg = pcEncCfg;
m_pcTrQuant = pcTrQuant;
m_iSearchRange = iSearchRange;
m_bipredSearchRange = bipredSearchRange;
m_iFastSearch = iFastSearch;
m_iMaxDeltaQP = iMaxDeltaQP;
m_pcEntropyCoder = pcEntropyCoder;
m_pcRdCost = pcRdCost;
m_pppcRDSbacCoder = pppcRDSbacCoder;
m_pcRDGoOnSbacCoder = pcRDGoOnSbacCoder;
for (UInt iDir = 0; iDir < MAX_NUM_REF_LIST_ADAPT_SR; iDir++)
{
for (UInt iRefIdx = 0; iRefIdx < MAX_IDX_ADAPT_SR; iRefIdx++)
{
m_aaiAdaptSR[iDir][iRefIdx] = iSearchRange;
}
}
m_puiDFilter = s_auiDFilter + 4;
// initialize motion cost
for( Int iNum = 0; iNum < AMVP_MAX_NUM_CANDS+1; iNum++)
{
for( Int iIdx = 0; iIdx < AMVP_MAX_NUM_CANDS; iIdx++)
{
if (iIdx < iNum)
m_auiMVPIdxCost[iIdx][iNum] = xGetMvpIdxBits(iIdx, iNum);
else
m_auiMVPIdxCost[iIdx][iNum] = MAX_INT;
}
}
const ChromaFormat cform=pcEncCfg->getChromaFormatIdc();
initTempBuff(cform);
m_pTempPel = new Pel[g_uiMaxCUWidth*g_uiMaxCUHeight];
const UInt uiNumLayersToAllocate = pcEncCfg->getQuadtreeTULog2MaxSize()-pcEncCfg->getQuadtreeTULog2MinSize()+1;
const UInt uiNumPartitions = 1<<(g_uiMaxCUDepth<<1);
for (UInt ch=0; ch<MAX_NUM_COMPONENT; ch++)
{
const UInt csx=::getComponentScaleX(ComponentID(ch), cform);
const UInt csy=::getComponentScaleY(ComponentID(ch), cform);
m_ppcQTTempCoeff[ch] = new TCoeff* [uiNumLayersToAllocate];
m_pcQTTempCoeff[ch] = new TCoeff [(g_uiMaxCUWidth*g_uiMaxCUHeight)>>(csx+csy) ];
#if ADAPTIVE_QP_SELECTION
m_ppcQTTempArlCoeff[ch] = new TCoeff*[uiNumLayersToAllocate];
m_pcQTTempArlCoeff[ch] = new TCoeff [(g_uiMaxCUWidth*g_uiMaxCUHeight)>>(csx+csy) ];
#endif
m_puhQTTempCbf[ch] = new UChar [uiNumPartitions];
for (UInt layer = 0; layer < uiNumLayersToAllocate; layer++)
{
m_ppcQTTempCoeff[ch][layer] = new TCoeff[(g_uiMaxCUWidth*g_uiMaxCUHeight)>>(csx+csy)];
#if ADAPTIVE_QP_SELECTION
m_ppcQTTempArlCoeff[ch][layer] = new TCoeff[(g_uiMaxCUWidth*g_uiMaxCUHeight)>>(csx+csy) ];
#endif
}
m_phQTTempCrossComponentPredictionAlpha[ch] = new Char [uiNumPartitions];
m_pSharedPredTransformSkip[ch] = new Pel [MAX_CU_SIZE*MAX_CU_SIZE];
m_pcQTTempTUCoeff[ch] = new TCoeff[MAX_CU_SIZE*MAX_CU_SIZE];
#if ADAPTIVE_QP_SELECTION
m_ppcQTTempTUArlCoeff[ch] = new TCoeff[MAX_CU_SIZE*MAX_CU_SIZE];
#endif
m_puhQTTempTransformSkipFlag[ch] = new UChar [uiNumPartitions];
}
m_puhQTTempTrIdx = new UChar [uiNumPartitions];
m_pcQTTempTComYuv = new TComYuv[uiNumLayersToAllocate];
for( UInt ui = 0; ui < uiNumLayersToAllocate; ++ui )
{
m_pcQTTempTComYuv[ui].create( g_uiMaxCUWidth, g_uiMaxCUHeight, pcEncCfg->getChromaFormatIdc() );
}
m_pcQTTempTransformSkipTComYuv.create( g_uiMaxCUWidth, g_uiMaxCUHeight, pcEncCfg->getChromaFormatIdc() );
m_tmpYuvPred.create(MAX_CU_SIZE, MAX_CU_SIZE, pcEncCfg->getChromaFormatIdc());
}
#if FASTME_SMOOTHER_MV
#define FIRSTSEARCHSTOP 1
#else
#define FIRSTSEARCHSTOP 0
#endif
#define TZ_SEARCH_CONFIGURATION \
const Int iRaster = 5; /* TZ soll von aussen ?ergeben werden */ \
const Bool bTestOtherPredictedMV = 0; \
const Bool bTestZeroVector = 1; \
const Bool bTestZeroVectorStart = 0; \
const Bool bTestZeroVectorStop = 0; \
const Bool bFirstSearchDiamond = 1; /* 1 = xTZ8PointDiamondSearch 0 = xTZ8PointSquareSearch */ \
const Bool bFirstSearchStop = FIRSTSEARCHSTOP; \
const UInt uiFirstSearchRounds = 3; /* first search stop X rounds after best match (must be >=1) */ \
const Bool bEnableRasterSearch = 1; \
const Bool bAlwaysRasterSearch = 0; /* ===== 1: BETTER but factor 2 slower ===== */ \
const Bool bRasterRefinementEnable = 0; /* enable either raster refinement or star refinement */ \
const Bool bRasterRefinementDiamond = 0; /* 1 = xTZ8PointDiamondSearch 0 = xTZ8PointSquareSearch */ \
const Bool bStarRefinementEnable = 1; /* enable either star refinement or raster refinement */ \
const Bool bStarRefinementDiamond = 1; /* 1 = xTZ8PointDiamondSearch 0 = xTZ8PointSquareSearch */ \
const Bool bStarRefinementStop = 0; \
const UInt uiStarRefinementRounds = 2; /* star refinement stop X rounds after best match (must be >=1) */ \
#define SEL_SEARCH_CONFIGURATION \
const Bool bTestOtherPredictedMV = 1; \
const Bool bTestZeroVector = 1; \
const Bool bEnableRasterSearch = 1; \
const Bool bAlwaysRasterSearch = 0; /* ===== 1: BETTER but factor 15x slower ===== */ \
const Bool bStarRefinementEnable = 1; /* enable either star refinement or raster refinement */ \
const Bool bStarRefinementDiamond = 1; /* 1 = xTZ8PointDiamondSearch 0 = xTZ8PointSquareSearch */ \
const Bool bStarRefinementStop = 0; \
const UInt uiStarRefinementRounds = 2; /* star refinement stop X rounds after best match (must be >=1) */ \
const UInt uiSearchRange = m_iSearchRange; \
const Int uiSearchRangeInitial = m_iSearchRange >> 2; \
const Int uiSearchStep = 4; \
const Int iMVDistThresh = 8; \
__inline Void TEncSearch::xTZSearchHelp( TComPattern* pcPatternKey, IntTZSearchStruct& rcStruct, const Int iSearchX, const Int iSearchY, const UChar ucPointNr, const UInt uiDistance )
{
Distortion uiSad = 0;
Pel* piRefSrch;
piRefSrch = rcStruct.piRefY + iSearchY * rcStruct.iYStride + iSearchX;
//-- jclee for using the SAD function pointer
m_pcRdCost->setDistParam( pcPatternKey, piRefSrch, rcStruct.iYStride, m_cDistParam );
if(m_pcEncCfg->getFastSearch() != SELECTIVE)
{
// fast encoder decision: use subsampled SAD when rows > 8 for integer ME
if ( m_pcEncCfg->getUseFastEnc() )
{
if ( m_cDistParam.iRows > 8 )
{
m_cDistParam.iSubShift = 1;
}
}
}
setDistParamComp(COMPONENT_Y);
// distortion
m_cDistParam.bitDepth = g_bitDepth[CHANNEL_TYPE_LUMA];
if(m_pcEncCfg->getFastSearch() == SELECTIVE)
{
Int isubShift = 0;
// motion cost
UInt uiBitCost = m_pcRdCost->getCost( iSearchX, iSearchY );
if ( m_cDistParam.iRows > 32 )
m_cDistParam.iSubShift = 4;
else if ( m_cDistParam.iRows > 16 )
m_cDistParam.iSubShift = 3;
else if ( m_cDistParam.iRows > 8 )
m_cDistParam.iSubShift = 2;
else
m_cDistParam.iSubShift = 1;
Distortion uiTempSad = m_cDistParam.DistFunc( &m_cDistParam );
if((uiTempSad + uiBitCost) < rcStruct.uiBestSad)
{
uiSad += uiTempSad >> m_cDistParam.iSubShift;
while(m_cDistParam.iSubShift > 0)
{
isubShift = m_cDistParam.iSubShift -1;
m_cDistParam.pOrg = pcPatternKey->getROIY() + (pcPatternKey->getPatternLStride() << isubShift);
m_cDistParam.pCur = piRefSrch + (rcStruct.iYStride << isubShift);
uiTempSad = m_cDistParam.DistFunc( &m_cDistParam );
uiSad += uiTempSad >> m_cDistParam.iSubShift;
if(((uiSad << isubShift) + uiBitCost) > rcStruct.uiBestSad)
break;
m_cDistParam.iSubShift--;
}
if(m_cDistParam.iSubShift == 0)
{
uiSad += uiBitCost;
if( uiSad < rcStruct.uiBestSad )
{
rcStruct.uiBestSad = uiSad;
rcStruct.iBestX = iSearchX;
rcStruct.iBestY = iSearchY;
rcStruct.uiBestDistance = uiDistance;
rcStruct.uiBestRound = 0;
rcStruct.ucPointNr = ucPointNr;
}
}
}
}
else
{
uiSad = m_cDistParam.DistFunc( &m_cDistParam );
// motion cost
uiSad += m_pcRdCost->getCost( iSearchX, iSearchY );
if( uiSad < rcStruct.uiBestSad )
{
rcStruct.uiBestSad = uiSad;
rcStruct.iBestX = iSearchX;
rcStruct.iBestY = iSearchY;
rcStruct.uiBestDistance = uiDistance;
rcStruct.uiBestRound = 0;
rcStruct.ucPointNr = ucPointNr;
}
}
}
__inline Void TEncSearch::xTZ2PointSearch( TComPattern* pcPatternKey, IntTZSearchStruct& rcStruct, TComMv* pcMvSrchRngLT, TComMv* pcMvSrchRngRB )
{
Int iSrchRngHorLeft = pcMvSrchRngLT->getHor();
Int iSrchRngHorRight = pcMvSrchRngRB->getHor();
Int iSrchRngVerTop = pcMvSrchRngLT->getVer();
Int iSrchRngVerBottom = pcMvSrchRngRB->getVer();
// 2 point search, // 1 2 3
// check only the 2 untested points // 4 0 5
// around the start point // 6 7 8
Int iStartX = rcStruct.iBestX;
Int iStartY = rcStruct.iBestY;
switch( rcStruct.ucPointNr )
{
case 1:
{
if ( (iStartX - 1) >= iSrchRngHorLeft )
{
xTZSearchHelp( pcPatternKey, rcStruct, iStartX - 1, iStartY, 0, 2 );
}
if ( (iStartY - 1) >= iSrchRngVerTop )
{
xTZSearchHelp( pcPatternKey, rcStruct, iStartX, iStartY - 1, 0, 2 );
}
}
break;
case 2:
{
if ( (iStartY - 1) >= iSrchRngVerTop )
{
if ( (iStartX - 1) >= iSrchRngHorLeft )
{
xTZSearchHelp( pcPatternKey, rcStruct, iStartX - 1, iStartY - 1, 0, 2 );
}
if ( (iStartX + 1) <= iSrchRngHorRight )
{
xTZSearchHelp( pcPatternKey, rcStruct, iStartX + 1, iStartY - 1, 0, 2 );
}
}
}
break;
case 3:
{
if ( (iStartY - 1) >= iSrchRngVerTop )
{
xTZSearchHelp( pcPatternKey, rcStruct, iStartX, iStartY - 1, 0, 2 );
}
if ( (iStartX + 1) <= iSrchRngHorRight )
{
xTZSearchHelp( pcPatternKey, rcStruct, iStartX + 1, iStartY, 0, 2 );
}
}
break;
case 4:
{
if ( (iStartX - 1) >= iSrchRngHorLeft )
{
if ( (iStartY + 1) <= iSrchRngVerBottom )
{
xTZSearchHelp( pcPatternKey, rcStruct, iStartX - 1, iStartY + 1, 0, 2 );
}
if ( (iStartY - 1) >= iSrchRngVerTop )
{
xTZSearchHelp( pcPatternKey, rcStruct, iStartX - 1, iStartY - 1, 0, 2 );
}
}
}
break;
case 5:
{
if ( (iStartX + 1) <= iSrchRngHorRight )
{
if ( (iStartY - 1) >= iSrchRngVerTop )
{
xTZSearchHelp( pcPatternKey, rcStruct, iStartX + 1, iStartY - 1, 0, 2 );
}
if ( (iStartY + 1) <= iSrchRngVerBottom )
{
xTZSearchHelp( pcPatternKey, rcStruct, iStartX + 1, iStartY + 1, 0, 2 );
}
}
}
break;
case 6:
{
if ( (iStartX - 1) >= iSrchRngHorLeft )
{
xTZSearchHelp( pcPatternKey, rcStruct, iStartX - 1, iStartY , 0, 2 );
}
if ( (iStartY + 1) <= iSrchRngVerBottom )
{
xTZSearchHelp( pcPatternKey, rcStruct, iStartX, iStartY + 1, 0, 2 );
}
}
break;
case 7:
{
if ( (iStartY + 1) <= iSrchRngVerBottom )
{
if ( (iStartX - 1) >= iSrchRngHorLeft )
{
xTZSearchHelp( pcPatternKey, rcStruct, iStartX - 1, iStartY + 1, 0, 2 );
}
if ( (iStartX + 1) <= iSrchRngHorRight )
{
xTZSearchHelp( pcPatternKey, rcStruct, iStartX + 1, iStartY + 1, 0, 2 );
}
}
}
break;
case 8:
{
if ( (iStartX + 1) <= iSrchRngHorRight )
{
xTZSearchHelp( pcPatternKey, rcStruct, iStartX + 1, iStartY, 0, 2 );
}
if ( (iStartY + 1) <= iSrchRngVerBottom )
{
xTZSearchHelp( pcPatternKey, rcStruct, iStartX, iStartY + 1, 0, 2 );
}
}
break;
default:
{
assert( false );
}
break;
} // switch( rcStruct.ucPointNr )
}
__inline Void TEncSearch::xTZ8PointSquareSearch( TComPattern* pcPatternKey, IntTZSearchStruct& rcStruct, TComMv* pcMvSrchRngLT, TComMv* pcMvSrchRngRB, const Int iStartX, const Int iStartY, const Int iDist )
{
Int iSrchRngHorLeft = pcMvSrchRngLT->getHor();
Int iSrchRngHorRight = pcMvSrchRngRB->getHor();
Int iSrchRngVerTop = pcMvSrchRngLT->getVer();
Int iSrchRngVerBottom = pcMvSrchRngRB->getVer();
// 8 point search, // 1 2 3
// search around the start point // 4 0 5
// with the required distance // 6 7 8
assert( iDist != 0 );
const Int iTop = iStartY - iDist;
const Int iBottom = iStartY + iDist;
const Int iLeft = iStartX - iDist;
const Int iRight = iStartX + iDist;
rcStruct.uiBestRound += 1;
if ( iTop >= iSrchRngVerTop ) // check top
{
if ( iLeft >= iSrchRngHorLeft ) // check top left
{
xTZSearchHelp( pcPatternKey, rcStruct, iLeft, iTop, 1, iDist );
}
// top middle
xTZSearchHelp( pcPatternKey, rcStruct, iStartX, iTop, 2, iDist );
if ( iRight <= iSrchRngHorRight ) // check top right
{
xTZSearchHelp( pcPatternKey, rcStruct, iRight, iTop, 3, iDist );
}
} // check top
if ( iLeft >= iSrchRngHorLeft ) // check middle left
{
xTZSearchHelp( pcPatternKey, rcStruct, iLeft, iStartY, 4, iDist );
}
if ( iRight <= iSrchRngHorRight ) // check middle right
{
xTZSearchHelp( pcPatternKey, rcStruct, iRight, iStartY, 5, iDist );
}
if ( iBottom <= iSrchRngVerBottom ) // check bottom
{
if ( iLeft >= iSrchRngHorLeft ) // check bottom left
{
xTZSearchHelp( pcPatternKey, rcStruct, iLeft, iBottom, 6, iDist );
}
// check bottom middle
xTZSearchHelp( pcPatternKey, rcStruct, iStartX, iBottom, 7, iDist );
if ( iRight <= iSrchRngHorRight ) // check bottom right
{
xTZSearchHelp( pcPatternKey, rcStruct, iRight, iBottom, 8, iDist );
}
} // check bottom
}
__inline Void TEncSearch::xTZ8PointDiamondSearch( TComPattern* pcPatternKey, IntTZSearchStruct& rcStruct, TComMv* pcMvSrchRngLT, TComMv* pcMvSrchRngRB, const Int iStartX, const Int iStartY, const Int iDist )
{
Int iSrchRngHorLeft = pcMvSrchRngLT->getHor();
Int iSrchRngHorRight = pcMvSrchRngRB->getHor();
Int iSrchRngVerTop = pcMvSrchRngLT->getVer();
Int iSrchRngVerBottom = pcMvSrchRngRB->getVer();
// 8 point search, // 1 2 3
// search around the start point // 4 0 5
// with the required distance // 6 7 8
assert ( iDist != 0 );
const Int iTop = iStartY - iDist;
const Int iBottom = iStartY + iDist;
const Int iLeft = iStartX - iDist;
const Int iRight = iStartX + iDist;
rcStruct.uiBestRound += 1;
if ( iDist == 1 ) // iDist == 1
{
if ( iTop >= iSrchRngVerTop ) // check top
{
xTZSearchHelp( pcPatternKey, rcStruct, iStartX, iTop, 2, iDist );
}
if ( iLeft >= iSrchRngHorLeft ) // check middle left
{
xTZSearchHelp( pcPatternKey, rcStruct, iLeft, iStartY, 4, iDist );
}
if ( iRight <= iSrchRngHorRight ) // check middle right
{
xTZSearchHelp( pcPatternKey, rcStruct, iRight, iStartY, 5, iDist );
}
if ( iBottom <= iSrchRngVerBottom ) // check bottom
{
xTZSearchHelp( pcPatternKey, rcStruct, iStartX, iBottom, 7, iDist );
}
}
else // if (iDist != 1)
{
if ( iDist <= 8 )
{
const Int iTop_2 = iStartY - (iDist>>1);
const Int iBottom_2 = iStartY + (iDist>>1);
const Int iLeft_2 = iStartX - (iDist>>1);
const Int iRight_2 = iStartX + (iDist>>1);
if ( iTop >= iSrchRngVerTop && iLeft >= iSrchRngHorLeft &&
iRight <= iSrchRngHorRight && iBottom <= iSrchRngVerBottom ) // check border
{
xTZSearchHelp( pcPatternKey, rcStruct, iStartX, iTop, 2, iDist );
xTZSearchHelp( pcPatternKey, rcStruct, iLeft_2, iTop_2, 1, iDist>>1 );
xTZSearchHelp( pcPatternKey, rcStruct, iRight_2, iTop_2, 3, iDist>>1 );
xTZSearchHelp( pcPatternKey, rcStruct, iLeft, iStartY, 4, iDist );
xTZSearchHelp( pcPatternKey, rcStruct, iRight, iStartY, 5, iDist );
xTZSearchHelp( pcPatternKey, rcStruct, iLeft_2, iBottom_2, 6, iDist>>1 );
xTZSearchHelp( pcPatternKey, rcStruct, iRight_2, iBottom_2, 8, iDist>>1 );
xTZSearchHelp( pcPatternKey, rcStruct, iStartX, iBottom, 7, iDist );
}
else // check border
{
if ( iTop >= iSrchRngVerTop ) // check top
{
xTZSearchHelp( pcPatternKey, rcStruct, iStartX, iTop, 2, iDist );
}
if ( iTop_2 >= iSrchRngVerTop ) // check half top
{
if ( iLeft_2 >= iSrchRngHorLeft ) // check half left
{
xTZSearchHelp( pcPatternKey, rcStruct, iLeft_2, iTop_2, 1, (iDist>>1) );
}
if ( iRight_2 <= iSrchRngHorRight ) // check half right
{
xTZSearchHelp( pcPatternKey, rcStruct, iRight_2, iTop_2, 3, (iDist>>1) );
}
} // check half top
if ( iLeft >= iSrchRngHorLeft ) // check left
{
xTZSearchHelp( pcPatternKey, rcStruct, iLeft, iStartY, 4, iDist );
}
if ( iRight <= iSrchRngHorRight ) // check right
{
xTZSearchHelp( pcPatternKey, rcStruct, iRight, iStartY, 5, iDist );
}
if ( iBottom_2 <= iSrchRngVerBottom ) // check half bottom
{
if ( iLeft_2 >= iSrchRngHorLeft ) // check half left
{
xTZSearchHelp( pcPatternKey, rcStruct, iLeft_2, iBottom_2, 6, (iDist>>1) );
}
if ( iRight_2 <= iSrchRngHorRight ) // check half right
{
xTZSearchHelp( pcPatternKey, rcStruct, iRight_2, iBottom_2, 8, (iDist>>1) );
}
} // check half bottom
if ( iBottom <= iSrchRngVerBottom ) // check bottom
{
xTZSearchHelp( pcPatternKey, rcStruct, iStartX, iBottom, 7, iDist );
}
} // check border
}
else // iDist > 8
{
if ( iTop >= iSrchRngVerTop && iLeft >= iSrchRngHorLeft &&
iRight <= iSrchRngHorRight && iBottom <= iSrchRngVerBottom ) // check border
{
xTZSearchHelp( pcPatternKey, rcStruct, iStartX, iTop, 0, iDist );
xTZSearchHelp( pcPatternKey, rcStruct, iLeft, iStartY, 0, iDist );
xTZSearchHelp( pcPatternKey, rcStruct, iRight, iStartY, 0, iDist );
xTZSearchHelp( pcPatternKey, rcStruct, iStartX, iBottom, 0, iDist );
for ( Int index = 1; index < 4; index++ )
{
Int iPosYT = iTop + ((iDist>>2) * index);
Int iPosYB = iBottom - ((iDist>>2) * index);
Int iPosXL = iStartX - ((iDist>>2) * index);
Int iPosXR = iStartX + ((iDist>>2) * index);
xTZSearchHelp( pcPatternKey, rcStruct, iPosXL, iPosYT, 0, iDist );
xTZSearchHelp( pcPatternKey, rcStruct, iPosXR, iPosYT, 0, iDist );
xTZSearchHelp( pcPatternKey, rcStruct, iPosXL, iPosYB, 0, iDist );
xTZSearchHelp( pcPatternKey, rcStruct, iPosXR, iPosYB, 0, iDist );
}
}
else // check border
{
if ( iTop >= iSrchRngVerTop ) // check top
{
xTZSearchHelp( pcPatternKey, rcStruct, iStartX, iTop, 0, iDist );
}
if ( iLeft >= iSrchRngHorLeft ) // check left
{
xTZSearchHelp( pcPatternKey, rcStruct, iLeft, iStartY, 0, iDist );
}
if ( iRight <= iSrchRngHorRight ) // check right
{
xTZSearchHelp( pcPatternKey, rcStruct, iRight, iStartY, 0, iDist );
}
if ( iBottom <= iSrchRngVerBottom ) // check bottom
{
xTZSearchHelp( pcPatternKey, rcStruct, iStartX, iBottom, 0, iDist );
}
for ( Int index = 1; index < 4; index++ )
{
Int iPosYT = iTop + ((iDist>>2) * index);
Int iPosYB = iBottom - ((iDist>>2) * index);
Int iPosXL = iStartX - ((iDist>>2) * index);
Int iPosXR = iStartX + ((iDist>>2) * index);
if ( iPosYT >= iSrchRngVerTop ) // check top
{
if ( iPosXL >= iSrchRngHorLeft ) // check left
{
xTZSearchHelp( pcPatternKey, rcStruct, iPosXL, iPosYT, 0, iDist );
}
if ( iPosXR <= iSrchRngHorRight ) // check right
{
xTZSearchHelp( pcPatternKey, rcStruct, iPosXR, iPosYT, 0, iDist );
}
} // check top
if ( iPosYB <= iSrchRngVerBottom ) // check bottom
{
if ( iPosXL >= iSrchRngHorLeft ) // check left
{
xTZSearchHelp( pcPatternKey, rcStruct, iPosXL, iPosYB, 0, iDist );
}
if ( iPosXR <= iSrchRngHorRight ) // check right
{
xTZSearchHelp( pcPatternKey, rcStruct, iPosXR, iPosYB, 0, iDist );
}
} // check bottom
} // for ...
} // check border
} // iDist <= 8
} // iDist == 1
}
//<--
Distortion TEncSearch::xPatternRefinement( TComPattern* pcPatternKey,
TComMv baseRefMv,
Int iFrac, TComMv& rcMvFrac,
Bool bAllowUseOfHadamard
)
{
Distortion uiDist;
Distortion uiDistBest = std::numeric_limits<Distortion>::max();
UInt uiDirecBest = 0;
Pel* piRefPos;
Int iRefStride = m_filteredBlock[0][0].getStride(COMPONENT_Y);
m_pcRdCost->setDistParam( pcPatternKey, m_filteredBlock[0][0].getAddr(COMPONENT_Y), iRefStride, 1, m_cDistParam, m_pcEncCfg->getUseHADME() && bAllowUseOfHadamard );
const TComMv* pcMvRefine = (iFrac == 2 ? s_acMvRefineH : s_acMvRefineQ);
for (UInt i = 0; i < 9; i++)
{
TComMv cMvTest = pcMvRefine[i];
cMvTest += baseRefMv;
Int horVal = cMvTest.getHor() * iFrac;
Int verVal = cMvTest.getVer() * iFrac;
piRefPos = m_filteredBlock[ verVal & 3 ][ horVal & 3 ].getAddr(COMPONENT_Y);
if ( horVal == 2 && ( verVal & 1 ) == 0 )
{
piRefPos += 1;
}
if ( ( horVal & 1 ) == 0 && verVal == 2 )
{
piRefPos += iRefStride;
}
cMvTest = pcMvRefine[i];
cMvTest += rcMvFrac;
setDistParamComp(COMPONENT_Y);
m_cDistParam.pCur = piRefPos;
m_cDistParam.bitDepth = g_bitDepth[CHANNEL_TYPE_LUMA];
uiDist = m_cDistParam.DistFunc( &m_cDistParam );
uiDist += m_pcRdCost->getCost( cMvTest.getHor(), cMvTest.getVer() );
if ( uiDist < uiDistBest )
{
uiDistBest = uiDist;
uiDirecBest = i;
}
}
rcMvFrac = pcMvRefine[uiDirecBest];
return uiDistBest;
}
Void
TEncSearch::xEncSubdivCbfQT(TComTU &rTu,
Bool bLuma,
Bool bChroma )
{
TComDataCU* pcCU=rTu.getCU();
const UInt uiAbsPartIdx = rTu.GetAbsPartIdxTU();
const UInt uiTrDepth = rTu.GetTransformDepthRel();
const UInt uiTrMode = pcCU->getTransformIdx( uiAbsPartIdx );
const UInt uiSubdiv = ( uiTrMode > uiTrDepth ? 1 : 0 );
const UInt uiLog2LumaTrafoSize = rTu.GetLog2LumaTrSize();
if( pcCU->isIntra(0) && pcCU->getPartitionSize(0) == SIZE_NxN && uiTrDepth == 0 )
{
assert( uiSubdiv );
}
else if( uiLog2LumaTrafoSize > pcCU->getSlice()->getSPS()->getQuadtreeTULog2MaxSize() )
{
assert( uiSubdiv );
}
else if( uiLog2LumaTrafoSize == pcCU->getSlice()->getSPS()->getQuadtreeTULog2MinSize() )
{
assert( !uiSubdiv );
}
else if( uiLog2LumaTrafoSize == pcCU->getQuadtreeTULog2MinSizeInCU(uiAbsPartIdx) )
{
assert( !uiSubdiv );
}
else
{
assert( uiLog2LumaTrafoSize > pcCU->getQuadtreeTULog2MinSizeInCU(uiAbsPartIdx) );
if( bLuma )
{
m_pcEntropyCoder->encodeTransformSubdivFlag( uiSubdiv, 5 - uiLog2LumaTrafoSize );
}
}
if ( bChroma )
{
const UInt numberValidComponents = getNumberValidComponents(rTu.GetChromaFormat());
for (UInt ch=COMPONENT_Cb; ch<numberValidComponents; ch++)
{
const ComponentID compID=ComponentID(ch);
if( rTu.ProcessingAllQuadrants(compID) && (uiTrDepth==0 || pcCU->getCbf( uiAbsPartIdx, compID, uiTrDepth-1 ) ))
m_pcEntropyCoder->encodeQtCbf(rTu, compID, (uiSubdiv == 0));
}
}
if( uiSubdiv )
{
TComTURecurse tuRecurse(rTu, false);
do
{
xEncSubdivCbfQT( tuRecurse, bLuma, bChroma );
} while (tuRecurse.nextSection(rTu));
}
else
{
//===== Cbfs =====
if( bLuma )
{
m_pcEntropyCoder->encodeQtCbf( rTu, COMPONENT_Y, true );
}
}
}
Void
TEncSearch::xEncCoeffQT(TComTU &rTu,
const ComponentID component,
Bool bRealCoeff )
{
TComDataCU* pcCU=rTu.getCU();
const UInt uiAbsPartIdx = rTu.GetAbsPartIdxTU();
const UInt uiTrDepth=rTu.GetTransformDepthRel();
const UInt uiTrMode = pcCU->getTransformIdx( uiAbsPartIdx );
const UInt uiSubdiv = ( uiTrMode > uiTrDepth ? 1 : 0 );
if( uiSubdiv )
{
TComTURecurse tuRecurseChild(rTu, false);
do
{
xEncCoeffQT( tuRecurseChild, component, bRealCoeff );
} while (tuRecurseChild.nextSection(rTu) );
}
else if (rTu.ProcessComponentSection(component))
{
//===== coefficients =====
const UInt uiLog2TrafoSize = rTu.GetLog2LumaTrSize();
UInt uiCoeffOffset = rTu.getCoefficientOffset(component);
UInt uiQTLayer = pcCU->getSlice()->getSPS()->getQuadtreeTULog2MaxSize() - uiLog2TrafoSize;
TCoeff* pcCoeff = bRealCoeff ? pcCU->getCoeff(component) : m_ppcQTTempCoeff[component][uiQTLayer];
if (isChroma(component) && (pcCU->getCbf( rTu.GetAbsPartIdxTU(), COMPONENT_Y, uiTrMode ) != 0) && pcCU->getSlice()->getPPS()->getUseCrossComponentPrediction() )
{
m_pcEntropyCoder->encodeCrossComponentPrediction( rTu, component );
}
m_pcEntropyCoder->encodeCoeffNxN( rTu, pcCoeff+uiCoeffOffset, component );
}
}
Void
TEncSearch::xEncIntraHeader( TComDataCU* pcCU,
UInt uiTrDepth,
UInt uiAbsPartIdx,
Bool bLuma,
Bool bChroma )
{
if( bLuma )
{
// CU header
if( uiAbsPartIdx == 0 )
{
if( !pcCU->getSlice()->isIntra() )
{
if (pcCU->getSlice()->getPPS()->getTransquantBypassEnableFlag())
{
m_pcEntropyCoder->encodeCUTransquantBypassFlag( pcCU, 0, true );
}
m_pcEntropyCoder->encodeSkipFlag( pcCU, 0, true );
m_pcEntropyCoder->encodePredMode( pcCU, 0, true );
}
m_pcEntropyCoder ->encodePartSize( pcCU, 0, pcCU->getDepth(0), true );
if (pcCU->isIntra(0) && pcCU->getPartitionSize(0) == SIZE_2Nx2N )
{
m_pcEntropyCoder->encodeIPCMInfo( pcCU, 0, true );
if ( pcCU->getIPCMFlag (0))
{
return;
}
}
}
// luma prediction mode
if( pcCU->getPartitionSize(0) == SIZE_2Nx2N )
{
if (uiAbsPartIdx==0)
{
m_pcEntropyCoder->encodeIntraDirModeLuma ( pcCU, 0 );
}
}
else
{
UInt uiQNumParts = pcCU->getTotalNumPart() >> 2;
if (uiTrDepth>0 && (uiAbsPartIdx%uiQNumParts)==0) m_pcEntropyCoder->encodeIntraDirModeLuma ( pcCU, uiAbsPartIdx );
}
}
if( bChroma )
{
if( pcCU->getPartitionSize(0) == SIZE_2Nx2N || !enable4ChromaPUsInIntraNxNCU(pcCU->getPic()->getChromaFormat()))
{
if(uiAbsPartIdx==0)
{
m_pcEntropyCoder->encodeIntraDirModeChroma ( pcCU, uiAbsPartIdx );
}
}
else
{
UInt uiQNumParts = pcCU->getTotalNumPart() >> 2;
assert(uiTrDepth>0);
if ((uiAbsPartIdx%uiQNumParts)==0)
{
m_pcEntropyCoder->encodeIntraDirModeChroma ( pcCU, uiAbsPartIdx );
}
}
}
}
UInt
TEncSearch::xGetIntraBitsQT(TComTU &rTu,
Bool bLuma,
Bool bChroma,
Bool bRealCoeff /* just for test */ )
{
TComDataCU* pcCU=rTu.getCU();
const UInt uiAbsPartIdx = rTu.GetAbsPartIdxTU();
const UInt uiTrDepth=rTu.GetTransformDepthRel();
m_pcEntropyCoder->resetBits();
xEncIntraHeader ( pcCU, uiTrDepth, uiAbsPartIdx, bLuma, bChroma );
xEncSubdivCbfQT ( rTu, bLuma, bChroma );
if( bLuma )
{
xEncCoeffQT ( rTu, COMPONENT_Y, bRealCoeff );
}
if( bChroma )
{
xEncCoeffQT ( rTu, COMPONENT_Cb, bRealCoeff );
xEncCoeffQT ( rTu, COMPONENT_Cr, bRealCoeff );
}
UInt uiBits = m_pcEntropyCoder->getNumberOfWrittenBits();
return uiBits;
}
UInt TEncSearch::xGetIntraBitsQTChroma(TComTU &rTu,
ComponentID compID,
Bool bRealCoeff /* just for test */ )
{
m_pcEntropyCoder->resetBits();
xEncCoeffQT ( rTu, compID, bRealCoeff );
UInt uiBits = m_pcEntropyCoder->getNumberOfWrittenBits();
return uiBits;
}
Void TEncSearch::xIntraCodingTUBlock( TComYuv* pcOrgYuv,
TComYuv* pcPredYuv,
TComYuv* pcResiYuv,
Pel resiLuma[NUMBER_OF_STORED_RESIDUAL_TYPES][MAX_CU_SIZE * MAX_CU_SIZE],
const Bool checkCrossCPrediction,
Distortion& ruiDist,
const ComponentID compID,
TComTU& rTu
DEBUG_STRING_FN_DECLARE(sDebug)
,Int default0Save1Load2
)
{
if (!rTu.ProcessComponentSection(compID)) return;
const Bool bIsLuma = isLuma(compID);
const TComRectangle &rect= rTu.getRect(compID);
TComDataCU *pcCU=rTu.getCU();
const UInt uiAbsPartIdx=rTu.GetAbsPartIdxTU();
const UInt uiTrDepth=rTu.GetTransformDepthRelAdj(compID);
const UInt uiFullDepth = rTu.GetTransformDepthTotal();
const UInt uiLog2TrSize = rTu.GetLog2LumaTrSize();
const ChromaFormat chFmt = pcOrgYuv->getChromaFormat();
const ChannelType chType = toChannelType(compID);
const UInt uiWidth = rect.width;
const UInt uiHeight = rect.height;
const UInt uiStride = pcOrgYuv ->getStride (compID);
Pel* piOrg = pcOrgYuv ->getAddr( compID, uiAbsPartIdx );
Pel* piPred = pcPredYuv->getAddr( compID, uiAbsPartIdx );
Pel* piResi = pcResiYuv->getAddr( compID, uiAbsPartIdx );
Pel* piReco = pcPredYuv->getAddr( compID, uiAbsPartIdx );
const UInt uiQTLayer = pcCU->getSlice()->getSPS()->getQuadtreeTULog2MaxSize() - uiLog2TrSize;
Pel* piRecQt = m_pcQTTempTComYuv[ uiQTLayer ].getAddr( compID, uiAbsPartIdx );
const UInt uiRecQtStride = m_pcQTTempTComYuv[ uiQTLayer ].getStride(compID);
const UInt uiZOrder = pcCU->getZorderIdxInCtu() + uiAbsPartIdx;
Pel* piRecIPred = pcCU->getPic()->getPicYuvRec()->getAddr( compID, pcCU->getCtuRsAddr(), uiZOrder );
UInt uiRecIPredStride = pcCU->getPic()->getPicYuvRec()->getStride ( compID );
TCoeff* pcCoeff = m_ppcQTTempCoeff[compID][uiQTLayer] + rTu.getCoefficientOffset(compID);
Bool useTransformSkip = pcCU->getTransformSkip(uiAbsPartIdx, compID);
#if ADAPTIVE_QP_SELECTION
TCoeff* pcArlCoeff = m_ppcQTTempArlCoeff[compID][ uiQTLayer ] + rTu.getCoefficientOffset(compID);
#endif
const UInt uiChPredMode = pcCU->getIntraDir( chType, uiAbsPartIdx );
const UInt uiChCodedMode = (uiChPredMode==DM_CHROMA_IDX && !bIsLuma) ? pcCU->getIntraDir(CHANNEL_TYPE_LUMA, getChromasCorrespondingPULumaIdx(uiAbsPartIdx, chFmt)) : uiChPredMode;
const UInt uiChFinalMode = ((chFmt == CHROMA_422) && !bIsLuma) ? g_chroma422IntraAngleMappingTable[uiChCodedMode] : uiChCodedMode;
const Int blkX = g_auiRasterToPelX[ g_auiZscanToRaster[ uiAbsPartIdx ] ];
const Int blkY = g_auiRasterToPelY[ g_auiZscanToRaster[ uiAbsPartIdx ] ];
const Int bufferOffset = blkX + (blkY * MAX_CU_SIZE);
Pel *const encoderLumaResidual = resiLuma[RESIDUAL_ENCODER_SIDE ] + bufferOffset;
Pel *const reconstructedLumaResidual = resiLuma[RESIDUAL_RECONSTRUCTED] + bufferOffset;
const Bool bUseCrossCPrediction = isChroma(compID) && (uiChPredMode == DM_CHROMA_IDX) && checkCrossCPrediction;
const Bool bUseReconstructedResidualForEstimate = m_pcEncCfg->getUseReconBasedCrossCPredictionEstimate();
Pel *const lumaResidualForEstimate = bUseReconstructedResidualForEstimate ? reconstructedLumaResidual : encoderLumaResidual;
#ifdef DEBUG_STRING
const Int debugPredModeMask=DebugStringGetPredModeMask(MODE_INTRA);
#endif
//===== init availability pattern =====
Bool bAboveAvail = false;
Bool bLeftAvail = false;
DEBUG_STRING_NEW(sTemp)
#ifndef DEBUG_STRING
if( default0Save1Load2 != 2 )
#endif
{
const Bool bUseFilteredPredictions=TComPrediction::filteringIntraReferenceSamples(compID, uiChFinalMode, uiWidth, uiHeight, chFmt, pcCU->getSlice()->getSPS()->getDisableIntraReferenceSmoothing());
initAdiPatternChType( rTu, bAboveAvail, bLeftAvail, compID, bUseFilteredPredictions DEBUG_STRING_PASS_INTO(sDebug) );
//===== get prediction signal =====
predIntraAng( compID, uiChFinalMode, piOrg, uiStride, piPred, uiStride, rTu, bAboveAvail, bLeftAvail, bUseFilteredPredictions );
// save prediction
if( default0Save1Load2 == 1 )
{
Pel* pPred = piPred;
Pel* pPredBuf = m_pSharedPredTransformSkip[compID];
Int k = 0;
for( UInt uiY = 0; uiY < uiHeight; uiY++ )
{
for( UInt uiX = 0; uiX < uiWidth; uiX++ )
{
pPredBuf[ k ++ ] = pPred[ uiX ];
}
pPred += uiStride;
}
}
}
#ifndef DEBUG_STRING
else
{
// load prediction
Pel* pPred = piPred;
Pel* pPredBuf = m_pSharedPredTransformSkip[compID];
Int k = 0;
for( UInt uiY = 0; uiY < uiHeight; uiY++ )
{
for( UInt uiX = 0; uiX < uiWidth; uiX++ )
{
pPred[ uiX ] = pPredBuf[ k ++ ];
}
pPred += uiStride;
}
}
#endif
//===== get residual signal =====
{
// get residual
Pel* pOrg = piOrg;
Pel* pPred = piPred;
Pel* pResi = piResi;
for( UInt uiY = 0; uiY < uiHeight; uiY++ )
{
for( UInt uiX = 0; uiX < uiWidth; uiX++ )
{
pResi[ uiX ] = pOrg[ uiX ] - pPred[ uiX ];
}
pOrg += uiStride;
pResi += uiStride;
pPred += uiStride;
}
}
if (pcCU->getSlice()->getPPS()->getUseCrossComponentPrediction())
{
if (bUseCrossCPrediction)
{
if (xCalcCrossComponentPredictionAlpha( rTu, compID, lumaResidualForEstimate, piResi, uiWidth, uiHeight, MAX_CU_SIZE, uiStride ) == 0) return;
TComTrQuant::crossComponentPrediction ( rTu, compID, reconstructedLumaResidual, piResi, piResi, uiWidth, uiHeight, MAX_CU_SIZE, uiStride, uiStride, false );
}
else if (isLuma(compID) && !bUseReconstructedResidualForEstimate)
{
xStoreCrossComponentPredictionResult( encoderLumaResidual, piResi, rTu, 0, 0, MAX_CU_SIZE, uiStride );
}
}
//===== transform and quantization =====
//--- init rate estimation arrays for RDOQ ---
if( useTransformSkip ? m_pcEncCfg->getUseRDOQTS() : m_pcEncCfg->getUseRDOQ() )
{
m_pcEntropyCoder->estimateBit( m_pcTrQuant->m_pcEstBitsSbac, uiWidth, uiHeight, chType );
}
//--- transform and quantization ---
TCoeff uiAbsSum = 0;
if (bIsLuma)
{
pcCU ->setTrIdxSubParts ( uiTrDepth, uiAbsPartIdx, uiFullDepth );
}
const QpParam cQP(*pcCU, compID);
#if RDOQ_CHROMA_LAMBDA
m_pcTrQuant->selectLambda (compID);
#endif
m_pcTrQuant->transformNxN ( rTu, compID, piResi, uiStride, pcCoeff,
#if ADAPTIVE_QP_SELECTION
pcArlCoeff,
#endif
uiAbsSum, cQP
);
//--- inverse transform ---
#ifdef DEBUG_STRING
if ( (uiAbsSum > 0) || (DebugOptionList::DebugString_InvTran.getInt()&debugPredModeMask) )
#else
if ( uiAbsSum > 0 )
#endif
{
m_pcTrQuant->invTransformNxN ( rTu, compID, piResi, uiStride, pcCoeff, cQP DEBUG_STRING_PASS_INTO_OPTIONAL(&sDebug, (DebugOptionList::DebugString_InvTran.getInt()&debugPredModeMask)) );
}
else
{
Pel* pResi = piResi;
memset( pcCoeff, 0, sizeof( TCoeff ) * uiWidth * uiHeight );
for( UInt uiY = 0; uiY < uiHeight; uiY++ )
{
memset( pResi, 0, sizeof( Pel ) * uiWidth );
pResi += uiStride;
}
}
//===== reconstruction =====
{
Pel* pPred = piPred;
Pel* pResi = piResi;
Pel* pReco = piReco;
Pel* pRecQt = piRecQt;
Pel* pRecIPred = piRecIPred;
const UInt clipbd=g_bitDepth[chType];
if (pcCU->getSlice()->getPPS()->getUseCrossComponentPrediction())
{
if (bUseCrossCPrediction)
{
TComTrQuant::crossComponentPrediction( rTu, compID, reconstructedLumaResidual, piResi, piResi, uiWidth, uiHeight, MAX_CU_SIZE, uiStride, uiStride, true );
}
else if (isLuma(compID))
{
xStoreCrossComponentPredictionResult( reconstructedLumaResidual, piResi, rTu, 0, 0, MAX_CU_SIZE, uiStride );
}
}
#ifdef DEBUG_STRING
std::stringstream ss(stringstream::out);
const Bool bDebugPred=((DebugOptionList::DebugString_Pred.getInt()&debugPredModeMask) && DEBUG_STRING_CHANNEL_CONDITION(compID));
const Bool bDebugResi=((DebugOptionList::DebugString_Resi.getInt()&debugPredModeMask) && DEBUG_STRING_CHANNEL_CONDITION(compID));
const Bool bDebugReco=((DebugOptionList::DebugString_Reco.getInt()&debugPredModeMask) && DEBUG_STRING_CHANNEL_CONDITION(compID));
if (bDebugPred || bDebugResi || bDebugReco)
{
ss << "###: " << "CompID: " << compID << " pred mode (ch/fin): " << uiChPredMode << "/" << uiChFinalMode << " absPartIdx: " << rTu.GetAbsPartIdxTU() << "\n";
for( UInt uiY = 0; uiY < uiHeight; uiY++ )
{
ss << "###: ";
if (bDebugPred)
{
ss << " - pred: ";
for( UInt uiX = 0; uiX < uiWidth; uiX++ )
{
ss << pPred[ uiX ] << ", ";
}
}
if (bDebugResi) ss << " - resi: ";
for( UInt uiX = 0; uiX < uiWidth; uiX++ )
{
if (bDebugResi) ss << pResi[ uiX ] << ", ";
pReco [ uiX ] = Pel(ClipBD<Int>( Int(pPred[uiX]) + Int(pResi[uiX]), clipbd ));
pRecQt [ uiX ] = pReco[ uiX ];
pRecIPred[ uiX ] = pReco[ uiX ];
}
if (bDebugReco)
{
ss << " - reco: ";
for( UInt uiX = 0; uiX < uiWidth; uiX++ )
{
ss << pReco[ uiX ] << ", ";
}
}
pPred += uiStride;
pResi += uiStride;
pReco += uiStride;
pRecQt += uiRecQtStride;
pRecIPred += uiRecIPredStride;
ss << "\n";
}
DEBUG_STRING_APPEND(sDebug, ss.str())
}
else
#endif
{
for( UInt uiY = 0; uiY < uiHeight; uiY++ )
{
for( UInt uiX = 0; uiX < uiWidth; uiX++ )
{
pReco [ uiX ] = Pel(ClipBD<Int>( Int(pPred[uiX]) + Int(pResi[uiX]), clipbd ));
pRecQt [ uiX ] = pReco[ uiX ];
pRecIPred[ uiX ] = pReco[ uiX ];
}
pPred += uiStride;
pResi += uiStride;
pReco += uiStride;
pRecQt += uiRecQtStride;
pRecIPred += uiRecIPredStride;
}
}
}
//===== update distortion =====
ruiDist += m_pcRdCost->getDistPart( g_bitDepth[chType], piReco, uiStride, piOrg, uiStride, uiWidth, uiHeight, compID );
}
Void
TEncSearch::xRecurIntraCodingQT(Bool bLumaOnly,
TComYuv* pcOrgYuv,
TComYuv* pcPredYuv,
TComYuv* pcResiYuv,
Pel resiLuma[NUMBER_OF_STORED_RESIDUAL_TYPES][MAX_CU_SIZE * MAX_CU_SIZE],
Distortion& ruiDistY,
Distortion& ruiDistC,
#if HHI_RQT_INTRA_SPEEDUP
Bool bCheckFirst,
#endif
Double& dRDCost,
TComTU& rTu
DEBUG_STRING_FN_DECLARE(sDebug))
{
TComDataCU *pcCU = rTu.getCU();
const UInt uiAbsPartIdx = rTu.GetAbsPartIdxTU();
const UInt uiFullDepth = rTu.GetTransformDepthTotal();
const UInt uiTrDepth = rTu.GetTransformDepthRel();
const UInt uiLog2TrSize = rTu.GetLog2LumaTrSize();
Bool bCheckFull = ( uiLog2TrSize <= pcCU->getSlice()->getSPS()->getQuadtreeTULog2MaxSize() );
Bool bCheckSplit = ( uiLog2TrSize > pcCU->getQuadtreeTULog2MinSizeInCU(uiAbsPartIdx) );
const UInt numValidComp = (bLumaOnly) ? 1 : pcOrgYuv->getNumberValidComponents();
Pel resiLumaSplit [NUMBER_OF_STORED_RESIDUAL_TYPES][MAX_CU_SIZE * MAX_CU_SIZE];
Pel resiLumaSingle[NUMBER_OF_STORED_RESIDUAL_TYPES][MAX_CU_SIZE * MAX_CU_SIZE];
Bool bMaintainResidual[NUMBER_OF_STORED_RESIDUAL_TYPES];
for (UInt residualTypeIndex = 0; residualTypeIndex < NUMBER_OF_STORED_RESIDUAL_TYPES; residualTypeIndex++)
{
bMaintainResidual[residualTypeIndex] = true; //assume true unless specified otherwise
}
bMaintainResidual[RESIDUAL_ENCODER_SIDE] = !(m_pcEncCfg->getUseReconBasedCrossCPredictionEstimate());
#if HHI_RQT_INTRA_SPEEDUP
Int maxTuSize = pcCU->getSlice()->getSPS()->getQuadtreeTULog2MaxSize();
Int isIntraSlice = (pcCU->getSlice()->getSliceType() == I_SLICE);
// don't check split if TU size is less or equal to max TU size
Bool noSplitIntraMaxTuSize = bCheckFull;
if(m_pcEncCfg->getRDpenalty() && ! isIntraSlice)
{
// in addition don't check split if TU size is less or equal to 16x16 TU size for non-intra slice
noSplitIntraMaxTuSize = ( uiLog2TrSize <= min(maxTuSize,4) );
// if maximum RD-penalty don't check TU size 32x32
if(m_pcEncCfg->getRDpenalty()==2)
{
bCheckFull = ( uiLog2TrSize <= min(maxTuSize,4));
}
}
if( bCheckFirst && noSplitIntraMaxTuSize )
{
bCheckSplit = false;
}
#else
Int maxTuSize = pcCU->getSlice()->getSPS()->getQuadtreeTULog2MaxSize();
Int isIntraSlice = (pcCU->getSlice()->getSliceType() == I_SLICE);
// if maximum RD-penalty don't check TU size 32x32
if((m_pcEncCfg->getRDpenalty()==2) && !isIntraSlice)
{
bCheckFull = ( uiLog2TrSize <= min(maxTuSize,4));
}
#endif
Double dSingleCost = MAX_DOUBLE;
Distortion uiSingleDist[MAX_NUM_CHANNEL_TYPE] = {0,0};
UInt uiSingleCbf[MAX_NUM_COMPONENT] = {0,0,0};
Bool checkTransformSkip = pcCU->getSlice()->getPPS()->getUseTransformSkip();
Int bestModeId[MAX_NUM_COMPONENT] = { 0, 0, 0};
checkTransformSkip &= TUCompRectHasAssociatedTransformSkipFlag(rTu.getRect(COMPONENT_Y), pcCU->getSlice()->getPPS()->getTransformSkipLog2MaxSize());
checkTransformSkip &= (!pcCU->getCUTransquantBypass(0));
if ( m_pcEncCfg->getUseTransformSkipFast() )
{
checkTransformSkip &= (pcCU->getPartitionSize(uiAbsPartIdx)==SIZE_NxN);
}
if( bCheckFull )
{
if(checkTransformSkip == true)
{
//----- store original entropy coding status -----
m_pcRDGoOnSbacCoder->store( m_pppcRDSbacCoder[ uiFullDepth ][ CI_QT_TRAFO_ROOT ] );
Distortion singleDistTmp[MAX_NUM_CHANNEL_TYPE] = { 0, 0 };
UInt singleCbfTmp[MAX_NUM_COMPONENT] = { 0, 0, 0 };
Double singleCostTmp = 0;
Int firstCheckId = 0;
for(Int modeId = firstCheckId; modeId < 2; modeId ++)
{
DEBUG_STRING_NEW(sModeString)
Int default0Save1Load2 = 0;
singleDistTmp[0]=singleDistTmp[1]=0;
if(modeId == firstCheckId)
{
default0Save1Load2 = 1;
}
else
{
default0Save1Load2 = 2;
}
for(UInt ch=COMPONENT_Y; ch<numValidComp; ch++)
{
const ComponentID compID = ComponentID(ch);
if (rTu.ProcessComponentSection(compID))
{
const UInt totalAdjustedDepthChan = rTu.GetTransformDepthTotalAdj(compID);
pcCU->setTransformSkipSubParts ( modeId, compID, uiAbsPartIdx, totalAdjustedDepthChan );
xIntraCodingTUBlock( pcOrgYuv, pcPredYuv, pcResiYuv, resiLumaSingle, false, singleDistTmp[toChannelType(compID)], compID, rTu DEBUG_STRING_PASS_INTO(sModeString), default0Save1Load2 );
}
singleCbfTmp[compID] = pcCU->getCbf( uiAbsPartIdx, compID, uiTrDepth );
}
//----- determine rate and r-d cost -----
if(modeId == 1 && singleCbfTmp[COMPONENT_Y] == 0)
{
//In order not to code TS flag when cbf is zero, the case for TS with cbf being zero is forbidden.
singleCostTmp = MAX_DOUBLE;
}
else
{
UInt uiSingleBits = xGetIntraBitsQT( rTu, true, !bLumaOnly, false );
singleCostTmp = m_pcRdCost->calcRdCost( uiSingleBits, singleDistTmp[CHANNEL_TYPE_LUMA] + singleDistTmp[CHANNEL_TYPE_CHROMA] );
}
if(singleCostTmp < dSingleCost)
{
DEBUG_STRING_SWAP(sDebug, sModeString)
dSingleCost = singleCostTmp;
uiSingleDist[CHANNEL_TYPE_LUMA] = singleDistTmp[CHANNEL_TYPE_LUMA];
uiSingleDist[CHANNEL_TYPE_CHROMA] = singleDistTmp[CHANNEL_TYPE_CHROMA];
for (UInt ch=0; ch<MAX_NUM_COMPONENT; ch++)
uiSingleCbf[ch] = singleCbfTmp[ch];
bestModeId[COMPONENT_Y] = modeId;
if(bestModeId[COMPONENT_Y] == firstCheckId)
{
xStoreIntraResultQT(COMPONENT_Y, bLumaOnly?COMPONENT_Y:COMPONENT_Cr, rTu );
m_pcRDGoOnSbacCoder->store( m_pppcRDSbacCoder[ uiFullDepth ][ CI_TEMP_BEST ] );
}
if (pcCU->getSlice()->getPPS()->getUseCrossComponentPrediction())
{
const Int xOffset = rTu.getRect( COMPONENT_Y ).x0;
const Int yOffset = rTu.getRect( COMPONENT_Y ).y0;
for (UInt storedResidualIndex = 0; storedResidualIndex < NUMBER_OF_STORED_RESIDUAL_TYPES; storedResidualIndex++)
{
if (bMaintainResidual[storedResidualIndex])
{
xStoreCrossComponentPredictionResult(resiLuma[storedResidualIndex], resiLumaSingle[storedResidualIndex], rTu, xOffset, yOffset, MAX_CU_SIZE, MAX_CU_SIZE);
}
}
}
}
if (modeId == firstCheckId)
{
m_pcRDGoOnSbacCoder->load ( m_pppcRDSbacCoder[ uiFullDepth ][ CI_QT_TRAFO_ROOT ] );
}
}
for(UInt ch=COMPONENT_Y; ch<numValidComp; ch++)
{
const ComponentID compID=ComponentID(ch);
if (rTu.ProcessComponentSection(compID))
{
const UInt totalAdjustedDepthChan = rTu.GetTransformDepthTotalAdj(compID);
pcCU ->setTransformSkipSubParts ( bestModeId[COMPONENT_Y], compID, uiAbsPartIdx, totalAdjustedDepthChan );
}
}
if(bestModeId[COMPONENT_Y] == firstCheckId)
{
xLoadIntraResultQT(COMPONENT_Y, bLumaOnly?COMPONENT_Y:COMPONENT_Cr, rTu );
for(UInt ch=COMPONENT_Y; ch< numValidComp; ch++)
{
const ComponentID compID=ComponentID(ch);
if (rTu.ProcessComponentSection(compID))
pcCU->setCbfSubParts ( uiSingleCbf[compID] << uiTrDepth, compID, uiAbsPartIdx, rTu.GetTransformDepthTotalAdj(compID) );
}
m_pcRDGoOnSbacCoder->load( m_pppcRDSbacCoder[ uiFullDepth ][ CI_TEMP_BEST ] );
}
if( !bLumaOnly )
{
bestModeId[COMPONENT_Cb] = bestModeId[COMPONENT_Cr] = bestModeId[COMPONENT_Y];
if (rTu.ProcessComponentSection(COMPONENT_Cb) && bestModeId[COMPONENT_Y] == 1)
{
//In order not to code TS flag when cbf is zero, the case for TS with cbf being zero is forbidden.
for (UInt ch=COMPONENT_Cb; ch<numValidComp; ch++)
{
if (uiSingleCbf[ch] == 0)
{
const ComponentID compID=ComponentID(ch);
const UInt totalAdjustedDepthChan = rTu.GetTransformDepthTotalAdj(compID);
pcCU ->setTransformSkipSubParts ( 0, compID, uiAbsPartIdx, totalAdjustedDepthChan);
bestModeId[ch] = 0;
}
}
}
}
}
else
{
//----- store original entropy coding status -----
if( bCheckSplit )
{
m_pcRDGoOnSbacCoder->store( m_pppcRDSbacCoder[ uiFullDepth ][ CI_QT_TRAFO_ROOT ] );
}
//----- code luma/chroma block with given intra prediction mode and store Cbf-----
dSingleCost = 0.0;
for (UInt ch=COMPONENT_Y; ch<numValidComp; ch++)
{
const ComponentID compID = ComponentID(ch);
if (rTu.ProcessComponentSection(compID))
{
const UInt totalAdjustedDepthChan = rTu.GetTransformDepthTotalAdj(compID);
pcCU ->setTransformSkipSubParts ( 0, compID, uiAbsPartIdx, totalAdjustedDepthChan );
}
xIntraCodingTUBlock( pcOrgYuv, pcPredYuv, pcResiYuv, resiLumaSingle, false, uiSingleDist[toChannelType(compID)], compID, rTu DEBUG_STRING_PASS_INTO(sDebug));
if( bCheckSplit )
{
uiSingleCbf[compID] = pcCU->getCbf( uiAbsPartIdx, compID, uiTrDepth );
}
}
//----- determine rate and r-d cost -----
UInt uiSingleBits = xGetIntraBitsQT( rTu, true, !bLumaOnly, false );
if(m_pcEncCfg->getRDpenalty() && (uiLog2TrSize==5) && !isIntraSlice)
{
uiSingleBits=uiSingleBits*4;
}
dSingleCost = m_pcRdCost->calcRdCost( uiSingleBits, uiSingleDist[CHANNEL_TYPE_LUMA] + uiSingleDist[CHANNEL_TYPE_CHROMA] );
if (pcCU->getSlice()->getPPS()->getUseCrossComponentPrediction())
{
const Int xOffset = rTu.getRect( COMPONENT_Y ).x0;
const Int yOffset = rTu.getRect( COMPONENT_Y ).y0;
for (UInt storedResidualIndex = 0; storedResidualIndex < NUMBER_OF_STORED_RESIDUAL_TYPES; storedResidualIndex++)
{
if (bMaintainResidual[storedResidualIndex])
{
xStoreCrossComponentPredictionResult(resiLuma[storedResidualIndex], resiLumaSingle[storedResidualIndex], rTu, xOffset, yOffset, MAX_CU_SIZE, MAX_CU_SIZE);
}
}
}
}
}
if( bCheckSplit )
{
//----- store full entropy coding status, load original entropy coding status -----
if( bCheckFull )
{
m_pcRDGoOnSbacCoder->store( m_pppcRDSbacCoder[ uiFullDepth ][ CI_QT_TRAFO_TEST ] );
m_pcRDGoOnSbacCoder->load ( m_pppcRDSbacCoder[ uiFullDepth ][ CI_QT_TRAFO_ROOT ] );
}
else
{
m_pcRDGoOnSbacCoder->store( m_pppcRDSbacCoder[ uiFullDepth ][ CI_QT_TRAFO_ROOT ] );
}
//----- code splitted block -----
Double dSplitCost = 0.0;
Distortion uiSplitDist[MAX_NUM_CHANNEL_TYPE] = {0,0};
UInt uiSplitCbf[MAX_NUM_COMPONENT] = {0,0,0};
TComTURecurse tuRecurseChild(rTu, false);
DEBUG_STRING_NEW(sSplit)
do
{
DEBUG_STRING_NEW(sChild)
#if HHI_RQT_INTRA_SPEEDUP
xRecurIntraCodingQT( bLumaOnly, pcOrgYuv, pcPredYuv, pcResiYuv, resiLumaSplit, uiSplitDist[0], uiSplitDist[1], bCheckFirst, dSplitCost, tuRecurseChild DEBUG_STRING_PASS_INTO(sChild) );
#else
xRecurIntraCodingQT( bLumaOnly, pcOrgYuv, pcPredYuv, pcResiYuv, resiLumaSplit, uiSplitDist[0], uiSplitDist[1], dSplitCost, tuRecurseChild DEBUG_STRING_PASS_INTO(sChild) );
#endif
DEBUG_STRING_APPEND(sSplit, sChild)
for(UInt ch=0; ch<numValidComp; ch++)
{
uiSplitCbf[ch] |= pcCU->getCbf( tuRecurseChild.GetAbsPartIdxTU(), ComponentID(ch), tuRecurseChild.GetTransformDepthRel() );
}
} while (tuRecurseChild.nextSection(rTu) );
UInt uiPartsDiv = rTu.GetAbsPartIdxNumParts();
for(UInt ch=COMPONENT_Y; ch<numValidComp; ch++)
{
if (uiSplitCbf[ch])
{
const UInt flag=1<<uiTrDepth;
const ComponentID compID=ComponentID(ch);
UChar *pBase=pcCU->getCbf( compID );
for( UInt uiOffs = 0; uiOffs < uiPartsDiv; uiOffs++ )
{
pBase[ uiAbsPartIdx + uiOffs ] |= flag;
}
}
}
//----- restore context states -----
m_pcRDGoOnSbacCoder->load ( m_pppcRDSbacCoder[ uiFullDepth ][ CI_QT_TRAFO_ROOT ] );
//----- determine rate and r-d cost -----
UInt uiSplitBits = xGetIntraBitsQT( rTu, true, !bLumaOnly, false );
dSplitCost = m_pcRdCost->calcRdCost( uiSplitBits, uiSplitDist[CHANNEL_TYPE_LUMA] + uiSplitDist[CHANNEL_TYPE_CHROMA] );
//===== compare and set best =====
if( dSplitCost < dSingleCost )
{
//--- update cost ---
DEBUG_STRING_SWAP(sSplit, sDebug)
ruiDistY += uiSplitDist[CHANNEL_TYPE_LUMA];
ruiDistC += uiSplitDist[CHANNEL_TYPE_CHROMA];
dRDCost += dSplitCost;
if (pcCU->getSlice()->getPPS()->getUseCrossComponentPrediction())
{
const Int xOffset = rTu.getRect( COMPONENT_Y ).x0;
const Int yOffset = rTu.getRect( COMPONENT_Y ).y0;
for (UInt storedResidualIndex = 0; storedResidualIndex < NUMBER_OF_STORED_RESIDUAL_TYPES; storedResidualIndex++)
{
if (bMaintainResidual[storedResidualIndex])
{
xStoreCrossComponentPredictionResult(resiLuma[storedResidualIndex], resiLumaSplit[storedResidualIndex], rTu, xOffset, yOffset, MAX_CU_SIZE, MAX_CU_SIZE);
}
}
}
return;
}
//----- set entropy coding status -----
m_pcRDGoOnSbacCoder->load ( m_pppcRDSbacCoder[ uiFullDepth ][ CI_QT_TRAFO_TEST ] );
//--- set transform index and Cbf values ---
pcCU->setTrIdxSubParts( uiTrDepth, uiAbsPartIdx, uiFullDepth );
for(UInt ch=0; ch<numValidComp; ch++)
{
const ComponentID compID=ComponentID(ch);
const TComRectangle &tuRect=rTu.getRect(compID);
const UInt totalAdjustedDepthChan = rTu.GetTransformDepthTotalAdj(compID);
pcCU->setCbfSubParts ( uiSingleCbf[compID] << uiTrDepth, compID, uiAbsPartIdx, totalAdjustedDepthChan );
pcCU ->setTransformSkipSubParts ( bestModeId[compID], compID, uiAbsPartIdx, totalAdjustedDepthChan );
//--- set reconstruction for next intra prediction blocks ---
const UInt uiQTLayer = pcCU->getSlice()->getSPS()->getQuadtreeTULog2MaxSize() - uiLog2TrSize;
const UInt uiZOrder = pcCU->getZorderIdxInCtu() + uiAbsPartIdx;
const UInt uiWidth = tuRect.width;
const UInt uiHeight = tuRect.height;
Pel* piSrc = m_pcQTTempTComYuv[ uiQTLayer ].getAddr( compID, uiAbsPartIdx );
UInt uiSrcStride = m_pcQTTempTComYuv[ uiQTLayer ].getStride ( compID );
Pel* piDes = pcCU->getPic()->getPicYuvRec()->getAddr( compID, pcCU->getCtuRsAddr(), uiZOrder );
UInt uiDesStride = pcCU->getPic()->getPicYuvRec()->getStride ( compID );
for( UInt uiY = 0; uiY < uiHeight; uiY++, piSrc += uiSrcStride, piDes += uiDesStride )
{
for( UInt uiX = 0; uiX < uiWidth; uiX++ )
{
piDes[ uiX ] = piSrc[ uiX ];
}
}
}
}
ruiDistY += uiSingleDist[CHANNEL_TYPE_LUMA];
ruiDistC += uiSingleDist[CHANNEL_TYPE_CHROMA];
dRDCost += dSingleCost;
}
Void
TEncSearch::xSetIntraResultQT(Bool bLumaOnly,
TComYuv* pcRecoYuv,
TComTU &rTu)
{
TComDataCU *pcCU = rTu.getCU();
const UInt uiTrDepth = rTu.GetTransformDepthRel();
const UInt uiAbsPartIdx = rTu.GetAbsPartIdxTU();
UInt uiTrMode = pcCU->getTransformIdx( uiAbsPartIdx );
if( uiTrMode == uiTrDepth )
{
UInt uiLog2TrSize = rTu.GetLog2LumaTrSize();
UInt uiQTLayer = pcCU->getSlice()->getSPS()->getQuadtreeTULog2MaxSize() - uiLog2TrSize;
Bool bSkipChroma = !rTu.ProcessChannelSection(CHANNEL_TYPE_CHROMA);
//===== copy transform coefficients =====
const UInt numChannelsToProcess = (bLumaOnly || bSkipChroma) ? 1 : ::getNumberValidComponents(pcCU->getPic()->getChromaFormat());
for (UInt ch=0; ch<numChannelsToProcess; ch++)
{
const ComponentID compID = ComponentID(ch);
const TComRectangle &tuRect=rTu.getRect(compID);
const UInt coeffOffset = rTu.getCoefficientOffset(compID);
const UInt numCoeffInBlock = tuRect.width * tuRect.height;
if (numCoeffInBlock!=0)
{
const TCoeff* srcCoeff = m_ppcQTTempCoeff[compID][uiQTLayer] + coeffOffset;
TCoeff* destCoeff = pcCU->getCoeff(compID) + coeffOffset;
::memcpy( destCoeff, srcCoeff, sizeof(TCoeff)*numCoeffInBlock );
#if ADAPTIVE_QP_SELECTION
const TCoeff* srcArlCoeff = m_ppcQTTempArlCoeff[compID][ uiQTLayer ] + coeffOffset;
TCoeff* destArlCoeff = pcCU->getArlCoeff (compID) + coeffOffset;
::memcpy( destArlCoeff, srcArlCoeff, sizeof( TCoeff ) * numCoeffInBlock );
#endif
m_pcQTTempTComYuv[ uiQTLayer ].copyPartToPartComponent( compID, pcRecoYuv, uiAbsPartIdx, tuRect.width, tuRect.height );
}
} // End of channel loop
}
else
{
TComTURecurse tuRecurseChild(rTu, false);
do
{
xSetIntraResultQT( bLumaOnly, pcRecoYuv, tuRecurseChild );
} while (tuRecurseChild.nextSection(rTu));
}
}
Void
TEncSearch::xStoreIntraResultQT(const ComponentID first,
const ComponentID lastIncl,
TComTU &rTu )
{
TComDataCU *pcCU=rTu.getCU();
const UInt uiTrDepth = rTu.GetTransformDepthRel();
const UInt uiAbsPartIdx = rTu.GetAbsPartIdxTU();
const UInt uiTrMode = pcCU->getTransformIdx( uiAbsPartIdx );
if ( first==COMPONENT_Y || uiTrMode == uiTrDepth )
{
assert(uiTrMode == uiTrDepth);
const UInt uiLog2TrSize = rTu.GetLog2LumaTrSize();
const UInt uiQTLayer = pcCU->getSlice()->getSPS()->getQuadtreeTULog2MaxSize() - uiLog2TrSize;
for(UInt compID_=first; compID_<=lastIncl; compID_++)
{
ComponentID compID=ComponentID(compID_);
if (rTu.ProcessComponentSection(compID))
{
const TComRectangle &tuRect=rTu.getRect(compID);
//===== copy transform coefficients =====
const UInt uiNumCoeff = tuRect.width * tuRect.height;
TCoeff* pcCoeffSrc = m_ppcQTTempCoeff[compID] [ uiQTLayer ] + rTu.getCoefficientOffset(compID);
TCoeff* pcCoeffDst = m_pcQTTempTUCoeff[compID];
::memcpy( pcCoeffDst, pcCoeffSrc, sizeof( TCoeff ) * uiNumCoeff );
#if ADAPTIVE_QP_SELECTION
TCoeff* pcArlCoeffSrc = m_ppcQTTempArlCoeff[compID] [ uiQTLayer ] + rTu.getCoefficientOffset(compID);
TCoeff* pcArlCoeffDst = m_ppcQTTempTUArlCoeff[compID];
::memcpy( pcArlCoeffDst, pcArlCoeffSrc, sizeof( TCoeff ) * uiNumCoeff );
#endif
//===== copy reconstruction =====
m_pcQTTempTComYuv[ uiQTLayer ].copyPartToPartComponent( compID, &m_pcQTTempTransformSkipTComYuv, uiAbsPartIdx, tuRect.width, tuRect.height );
}
}
}
}
Void
TEncSearch::xLoadIntraResultQT(const ComponentID first,
const ComponentID lastIncl,
TComTU &rTu)
{
TComDataCU *pcCU=rTu.getCU();
const UInt uiTrDepth = rTu.GetTransformDepthRel();
const UInt uiAbsPartIdx = rTu.GetAbsPartIdxTU();
const UInt uiTrMode = pcCU->getTransformIdx( uiAbsPartIdx );
if ( first==COMPONENT_Y || uiTrMode == uiTrDepth )
{
assert(uiTrMode == uiTrDepth);
const UInt uiLog2TrSize = rTu.GetLog2LumaTrSize();
const UInt uiQTLayer = pcCU->getSlice()->getSPS()->getQuadtreeTULog2MaxSize() - uiLog2TrSize;
const UInt uiZOrder = pcCU->getZorderIdxInCtu() + uiAbsPartIdx;
for(UInt compID_=first; compID_<=lastIncl; compID_++)
{
ComponentID compID=ComponentID(compID_);
if (rTu.ProcessComponentSection(compID))
{
const TComRectangle &tuRect=rTu.getRect(compID);
//===== copy transform coefficients =====
const UInt uiNumCoeff = tuRect.width * tuRect.height;
TCoeff* pcCoeffDst = m_ppcQTTempCoeff[compID] [ uiQTLayer ] + rTu.getCoefficientOffset(compID);
TCoeff* pcCoeffSrc = m_pcQTTempTUCoeff[compID];
::memcpy( pcCoeffDst, pcCoeffSrc, sizeof( TCoeff ) * uiNumCoeff );
#if ADAPTIVE_QP_SELECTION
TCoeff* pcArlCoeffDst = m_ppcQTTempArlCoeff[compID] [ uiQTLayer ] + rTu.getCoefficientOffset(compID);
TCoeff* pcArlCoeffSrc = m_ppcQTTempTUArlCoeff[compID];
::memcpy( pcArlCoeffDst, pcArlCoeffSrc, sizeof( TCoeff ) * uiNumCoeff );
#endif
//===== copy reconstruction =====
m_pcQTTempTransformSkipTComYuv.copyPartToPartComponent( compID, &m_pcQTTempTComYuv[ uiQTLayer ], uiAbsPartIdx, tuRect.width, tuRect.height );
Pel* piRecIPred = pcCU->getPic()->getPicYuvRec()->getAddr( compID, pcCU->getCtuRsAddr(), uiZOrder );
UInt uiRecIPredStride = pcCU->getPic()->getPicYuvRec()->getStride (compID);
Pel* piRecQt = m_pcQTTempTComYuv[ uiQTLayer ].getAddr( compID, uiAbsPartIdx );
UInt uiRecQtStride = m_pcQTTempTComYuv[ uiQTLayer ].getStride (compID);
UInt uiWidth = tuRect.width;
UInt uiHeight = tuRect.height;
Pel* pRecQt = piRecQt;
Pel* pRecIPred = piRecIPred;
for( UInt uiY = 0; uiY < uiHeight; uiY++ )
{
for( UInt uiX = 0; uiX < uiWidth; uiX++ )
{
pRecIPred[ uiX ] = pRecQt [ uiX ];
}
pRecQt += uiRecQtStride;
pRecIPred += uiRecIPredStride;
}
}
}
}
}
Void
TEncSearch::xStoreCrossComponentPredictionResult( Pel *pResiDst,
const Pel *pResiSrc,
TComTU &rTu,
const Int xOffset,
const Int yOffset,
const Int strideDst,
const Int strideSrc )
{
const Pel *pSrc = pResiSrc + yOffset * strideSrc + xOffset;
Pel *pDst = pResiDst + yOffset * strideDst + xOffset;
for( Int y = 0; y < rTu.getRect( COMPONENT_Y ).height; y++ )
{
::memcpy( pDst, pSrc, sizeof(Pel) * rTu.getRect( COMPONENT_Y ).width );
pDst += strideDst;
pSrc += strideSrc;
}
}
Char
TEncSearch::xCalcCrossComponentPredictionAlpha( TComTU &rTu,
const ComponentID compID,
const Pel* piResiL,
const Pel* piResiC,
const Int width,
const Int height,
const Int strideL,
const Int strideC )
{
const Pel *pResiL = piResiL;
const Pel *pResiC = piResiC;
TComDataCU *pCU = rTu.getCU();
const Int absPartIdx = rTu.GetAbsPartIdxTU( compID );
const Int diffBitDepth = pCU->getSlice()->getSPS()->getDifferentialLumaChromaBitDepth();
Char alpha = 0;
Int SSxy = 0;
Int SSxx = 0;
for( UInt uiY = 0; uiY < height; uiY++ )
{
for( UInt uiX = 0; uiX < width; uiX++ )
{
const Pel scaledResiL = rightShift( pResiL[ uiX ], diffBitDepth );
SSxy += ( scaledResiL * pResiC[ uiX ] );
SSxx += ( scaledResiL * scaledResiL );
}
pResiL += strideL;
pResiC += strideC;
}
if( SSxx != 0 )
{
Double dAlpha = SSxy / Double( SSxx );
alpha = Char(Clip3<Int>(-16, 16, (Int)(dAlpha * 16)));
static const Char alphaQuant[17] = {0, 1, 1, 2, 2, 2, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8};
alpha = (alpha < 0) ? -alphaQuant[Int(-alpha)] : alphaQuant[Int(alpha)];
}
pCU->setCrossComponentPredictionAlphaPartRange( alpha, compID, absPartIdx, rTu.GetAbsPartIdxNumParts( compID ) );
return alpha;
}
Void
TEncSearch::xRecurIntraChromaCodingQT(TComYuv* pcOrgYuv,
TComYuv* pcPredYuv,
TComYuv* pcResiYuv,
Pel resiLuma[NUMBER_OF_STORED_RESIDUAL_TYPES][MAX_CU_SIZE * MAX_CU_SIZE],
Distortion& ruiDist,
TComTU& rTu
DEBUG_STRING_FN_DECLARE(sDebug))
{
TComDataCU *pcCU = rTu.getCU();
const UInt uiTrDepth = rTu.GetTransformDepthRel();
const UInt uiAbsPartIdx = rTu.GetAbsPartIdxTU();
const ChromaFormat format = rTu.GetChromaFormat();
UInt uiTrMode = pcCU->getTransformIdx( uiAbsPartIdx );
const UInt numberValidComponents = getNumberValidComponents(format);
if( uiTrMode == uiTrDepth )
{
if (!rTu.ProcessChannelSection(CHANNEL_TYPE_CHROMA)) return;
const UInt uiFullDepth = rTu.GetTransformDepthTotal();
Bool checkTransformSkip = pcCU->getSlice()->getPPS()->getUseTransformSkip();
checkTransformSkip &= TUCompRectHasAssociatedTransformSkipFlag(rTu.getRect(COMPONENT_Cb), pcCU->getSlice()->getPPS()->getTransformSkipLog2MaxSize());
if ( m_pcEncCfg->getUseTransformSkipFast() )
{
checkTransformSkip &= TUCompRectHasAssociatedTransformSkipFlag(rTu.getRect(COMPONENT_Y), pcCU->getSlice()->getPPS()->getTransformSkipLog2MaxSize());
if (checkTransformSkip)
{
Int nbLumaSkip = 0;
const UInt maxAbsPartIdxSub=uiAbsPartIdx + (rTu.ProcessingAllQuadrants(COMPONENT_Cb)?1:4);
for(UInt absPartIdxSub = uiAbsPartIdx; absPartIdxSub < maxAbsPartIdxSub; absPartIdxSub ++)
{
nbLumaSkip += pcCU->getTransformSkip(absPartIdxSub, COMPONENT_Y);
}
checkTransformSkip &= (nbLumaSkip > 0);
}
}
for (UInt ch=COMPONENT_Cb; ch<numberValidComponents; ch++)
{
const ComponentID compID = ComponentID(ch);
DEBUG_STRING_NEW(sDebugBestMode)
//use RDO to decide whether Cr/Cb takes TS
m_pcRDGoOnSbacCoder->store( m_pppcRDSbacCoder[uiFullDepth][CI_QT_TRAFO_ROOT] );
const Bool splitIntoSubTUs = rTu.getRect(compID).width != rTu.getRect(compID).height;
TComTURecurse TUIterator(rTu, false, (splitIntoSubTUs ? TComTU::VERTICAL_SPLIT : TComTU::DONT_SPLIT), true, compID);
const UInt partIdxesPerSubTU = TUIterator.GetAbsPartIdxNumParts(compID);
do
{
const UInt subTUAbsPartIdx = TUIterator.GetAbsPartIdxTU(compID);
Double dSingleCost = MAX_DOUBLE;
Int bestModeId = 0;
Distortion singleDistC = 0;
UInt singleCbfC = 0;
Distortion singleDistCTmp = 0;
Double singleCostTmp = 0;
UInt singleCbfCTmp = 0;
Char bestCrossCPredictionAlpha = 0;
Int bestTransformSkipMode = 0;
const Bool checkCrossComponentPrediction = (pcCU->getIntraDir(CHANNEL_TYPE_CHROMA, subTUAbsPartIdx) == DM_CHROMA_IDX)
&& pcCU->getSlice()->getPPS()->getUseCrossComponentPrediction()
&& (pcCU->getCbf(subTUAbsPartIdx, COMPONENT_Y, uiTrDepth) != 0);
const Int crossCPredictionModesToTest = checkCrossComponentPrediction ? 2 : 1;
const Int transformSkipModesToTest = checkTransformSkip ? 2 : 1;
const Int totalModesToTest = crossCPredictionModesToTest * transformSkipModesToTest;
Int currModeId = 0;
Int default0Save1Load2 = 0;
for(Int transformSkipModeId = 0; transformSkipModeId < transformSkipModesToTest; transformSkipModeId++)
{
for(Int crossCPredictionModeId = 0; crossCPredictionModeId < crossCPredictionModesToTest; crossCPredictionModeId++)
{
pcCU->setCrossComponentPredictionAlphaPartRange(0, compID, subTUAbsPartIdx, partIdxesPerSubTU);
DEBUG_STRING_NEW(sDebugMode)
pcCU->setTransformSkipPartRange( transformSkipModeId, compID, subTUAbsPartIdx, partIdxesPerSubTU );
currModeId++;
const Bool isOneMode = (totalModesToTest == 1);
const Bool isLastMode = (currModeId == totalModesToTest); // currModeId is indexed from 1
if (isOneMode)
{
default0Save1Load2 = 0;
}
else if (!isOneMode && (transformSkipModeId == 0) && (crossCPredictionModeId == 0))
{
default0Save1Load2 = 1; //save prediction on first mode
}
else
{
default0Save1Load2 = 2; //load it on subsequent modes
}
singleDistCTmp = 0;
xIntraCodingTUBlock( pcOrgYuv, pcPredYuv, pcResiYuv, resiLuma, (crossCPredictionModeId != 0), singleDistCTmp, compID, TUIterator DEBUG_STRING_PASS_INTO(sDebugMode), default0Save1Load2);
singleCbfCTmp = pcCU->getCbf( subTUAbsPartIdx, compID, uiTrDepth);
if ( ((crossCPredictionModeId == 1) && (pcCU->getCrossComponentPredictionAlpha(subTUAbsPartIdx, compID) == 0))
|| ((transformSkipModeId == 1) && (singleCbfCTmp == 0))) //In order not to code TS flag when cbf is zero, the case for TS with cbf being zero is forbidden.
{
singleCostTmp = MAX_DOUBLE;
}
else if (!isOneMode)
{
UInt bitsTmp = xGetIntraBitsQTChroma( TUIterator, compID, false );
singleCostTmp = m_pcRdCost->calcRdCost( bitsTmp, singleDistCTmp);
}
if(singleCostTmp < dSingleCost)
{
DEBUG_STRING_SWAP(sDebugBestMode, sDebugMode)
dSingleCost = singleCostTmp;
singleDistC = singleDistCTmp;
bestCrossCPredictionAlpha = (crossCPredictionModeId != 0) ? pcCU->getCrossComponentPredictionAlpha(subTUAbsPartIdx, compID) : 0;
bestTransformSkipMode = transformSkipModeId;
bestModeId = currModeId;
singleCbfC = singleCbfCTmp;
if (!isOneMode && !isLastMode)
{
xStoreIntraResultQT(compID, compID, TUIterator);
m_pcRDGoOnSbacCoder->store( m_pppcRDSbacCoder[ uiFullDepth ][ CI_TEMP_BEST ] );
}
}
if (!isOneMode && !isLastMode)
{
m_pcRDGoOnSbacCoder->load ( m_pppcRDSbacCoder[ uiFullDepth ][ CI_QT_TRAFO_ROOT ] );
}
}
}
if(bestModeId < totalModesToTest)
{
xLoadIntraResultQT(compID, compID, TUIterator);
pcCU->setCbfPartRange( singleCbfC << uiTrDepth, compID, subTUAbsPartIdx, partIdxesPerSubTU );
m_pcRDGoOnSbacCoder->load( m_pppcRDSbacCoder[ uiFullDepth ][ CI_TEMP_BEST ] );
}
DEBUG_STRING_APPEND(sDebug, sDebugBestMode)
pcCU ->setTransformSkipPartRange ( bestTransformSkipMode, compID, subTUAbsPartIdx, partIdxesPerSubTU );
pcCU ->setCrossComponentPredictionAlphaPartRange( bestCrossCPredictionAlpha, compID, subTUAbsPartIdx, partIdxesPerSubTU );
ruiDist += singleDistC;
}
while (TUIterator.nextSection(rTu));
if (splitIntoSubTUs) offsetSubTUCBFs(rTu, compID);
}
}
else
{
UInt uiSplitCbf[MAX_NUM_COMPONENT] = {0,0,0};
TComTURecurse tuRecurseChild(rTu, false);
const UInt uiTrDepthChild = tuRecurseChild.GetTransformDepthRel();
do
{
DEBUG_STRING_NEW(sChild)
xRecurIntraChromaCodingQT( pcOrgYuv, pcPredYuv, pcResiYuv, resiLuma, ruiDist, tuRecurseChild DEBUG_STRING_PASS_INTO(sChild) );
DEBUG_STRING_APPEND(sDebug, sChild)
const UInt uiAbsPartIdxSub=tuRecurseChild.GetAbsPartIdxTU();
for(UInt ch=COMPONENT_Cb; ch<numberValidComponents; ch++)
{
uiSplitCbf[ch] |= pcCU->getCbf( uiAbsPartIdxSub, ComponentID(ch), uiTrDepthChild );
}
} while ( tuRecurseChild.nextSection(rTu) );
UInt uiPartsDiv = rTu.GetAbsPartIdxNumParts();
for(UInt ch=COMPONENT_Cb; ch<numberValidComponents; ch++)
{
if (uiSplitCbf[ch])
{
const UInt flag=1<<uiTrDepth;
ComponentID compID=ComponentID(ch);
UChar *pBase=pcCU->getCbf( compID );
for( UInt uiOffs = 0; uiOffs < uiPartsDiv; uiOffs++ )
{
pBase[ uiAbsPartIdx + uiOffs ] |= flag;
}
}
}
}
}
Void
TEncSearch::xSetIntraResultChromaQT(TComYuv* pcRecoYuv, TComTU &rTu)
{
if (!rTu.ProcessChannelSection(CHANNEL_TYPE_CHROMA)) return;
TComDataCU *pcCU=rTu.getCU();
const UInt uiAbsPartIdx = rTu.GetAbsPartIdxTU();
const UInt uiTrDepth = rTu.GetTransformDepthRel();
UInt uiTrMode = pcCU->getTransformIdx( uiAbsPartIdx );
if( uiTrMode == uiTrDepth )
{
UInt uiLog2TrSize = rTu.GetLog2LumaTrSize();
UInt uiQTLayer = pcCU->getSlice()->getSPS()->getQuadtreeTULog2MaxSize() - uiLog2TrSize;
//===== copy transform coefficients =====
const TComRectangle &tuRectCb=rTu.getRect(COMPONENT_Cb);
UInt uiNumCoeffC = tuRectCb.width*tuRectCb.height;//( pcCU->getSlice()->getSPS()->getMaxCUWidth() * pcCU->getSlice()->getSPS()->getMaxCUHeight() ) >> ( uiFullDepth << 1 );
const UInt offset = rTu.getCoefficientOffset(COMPONENT_Cb);
const UInt numberValidComponents = getNumberValidComponents(rTu.GetChromaFormat());
for (UInt ch=COMPONENT_Cb; ch<numberValidComponents; ch++)
{
const ComponentID component = ComponentID(ch);
const TCoeff* src = m_ppcQTTempCoeff[component][uiQTLayer] + offset;//(uiNumCoeffIncC*uiAbsPartIdx);
TCoeff* dest = pcCU->getCoeff(component) + offset;//(uiNumCoeffIncC*uiAbsPartIdx);
::memcpy( dest, src, sizeof(TCoeff)*uiNumCoeffC );
#if ADAPTIVE_QP_SELECTION
TCoeff* pcArlCoeffSrc = m_ppcQTTempArlCoeff[component][ uiQTLayer ] + offset;//( uiNumCoeffIncC * uiAbsPartIdx );
TCoeff* pcArlCoeffDst = pcCU->getArlCoeff(component) + offset;//( uiNumCoeffIncC * uiAbsPartIdx );
::memcpy( pcArlCoeffDst, pcArlCoeffSrc, sizeof( TCoeff ) * uiNumCoeffC );
#endif
}
//===== copy reconstruction =====
m_pcQTTempTComYuv[ uiQTLayer ].copyPartToPartComponent( COMPONENT_Cb, pcRecoYuv, uiAbsPartIdx, tuRectCb.width, tuRectCb.height );
m_pcQTTempTComYuv[ uiQTLayer ].copyPartToPartComponent( COMPONENT_Cr, pcRecoYuv, uiAbsPartIdx, tuRectCb.width, tuRectCb.height );
}
else
{
TComTURecurse tuRecurseChild(rTu, false);
do
{
xSetIntraResultChromaQT( pcRecoYuv, tuRecurseChild );
} while (tuRecurseChild.nextSection(rTu));
}
}
Void
TEncSearch::preestChromaPredMode( TComDataCU* pcCU,
TComYuv* pcOrgYuv,
TComYuv* pcPredYuv )
{
//===== loop over partitions =====
const UInt uiInitTrDepth = pcCU->getPartitionSize(0) != SIZE_2Nx2N && enable4ChromaPUsInIntraNxNCU(pcOrgYuv->getChromaFormat()) ? 1 : 0;
TComTURecurse tuRecurseCU(pcCU, 0);
TComTURecurse tuRecurseWithPU(tuRecurseCU, false, (uiInitTrDepth==0)?TComTU::DONT_SPLIT : TComTU::QUAD_SPLIT);
const ChromaFormat chFmt = tuRecurseWithPU.GetChromaFormat();
Bool bFilterEnabled=filterIntraReferenceSamples(CHANNEL_TYPE_CHROMA, chFmt, pcCU->getSlice()->getSPS()->getDisableIntraReferenceSmoothing());
do
{
if (tuRecurseWithPU.ProcessChannelSection(CHANNEL_TYPE_CHROMA))
{
const TComRectangle &rect=tuRecurseWithPU.getRect(COMPONENT_Cb);
const UInt uiWidth = rect.width;
const UInt uiHeight = rect.height;
const UInt partIdx = tuRecurseWithPU.GetAbsPartIdxCU();
const UInt uiStride = pcOrgYuv ->getStride(COMPONENT_Cb);
Pel* piOrgU = pcOrgYuv ->getAddr ( COMPONENT_Cb, partIdx ); //TODO: Change this into an array and loop over chroma components below
Pel* piOrgV = pcOrgYuv ->getAddr ( COMPONENT_Cr, partIdx );
Pel* piPredU = pcPredYuv->getAddr ( COMPONENT_Cb, partIdx );
Pel* piPredV = pcPredYuv->getAddr ( COMPONENT_Cr, partIdx );
//===== init pattern =====
Bool bAboveAvail = false;
Bool bLeftAvail = false;
DEBUG_STRING_NEW(sTemp)
initAdiPatternChType( tuRecurseWithPU, bAboveAvail, bLeftAvail, COMPONENT_Cb, bFilterEnabled DEBUG_STRING_PASS_INTO(sTemp) );
initAdiPatternChType( tuRecurseWithPU, bAboveAvail, bLeftAvail, COMPONENT_Cr, bFilterEnabled DEBUG_STRING_PASS_INTO(sTemp) );
//===== get best prediction modes (using SAD) =====
UInt uiMinMode = 0;
UInt uiMaxMode = 4;
UInt uiBestMode = MAX_UINT;
Distortion uiMinSAD = std::numeric_limits<Distortion>::max();
const UInt mappedModeTable[4] = {PLANAR_IDX,DC_IDX,HOR_IDX,VER_IDX};
DistParam distParamU, distParamV;
const Bool bUseHadamard=pcCU->getCUTransquantBypass(0) == 0;
m_pcRdCost->setDistParam(distParamU, g_bitDepth[CHANNEL_TYPE_CHROMA], piOrgU, uiStride, piPredU, uiStride, uiWidth, uiHeight, bUseHadamard);
m_pcRdCost->setDistParam(distParamV, g_bitDepth[CHANNEL_TYPE_CHROMA], piOrgV, uiStride, piPredV, uiStride, uiWidth, uiHeight, bUseHadamard);
distParamU.bApplyWeight = false;
distParamV.bApplyWeight = false;
for( UInt uiMode_ = uiMinMode; uiMode_ < uiMaxMode; uiMode_++ )
{
UInt uiMode=mappedModeTable[uiMode_];
//--- get prediction ---
const Bool bUseFilter=TComPrediction::filteringIntraReferenceSamples(COMPONENT_Cb, uiMode, uiWidth, uiHeight, chFmt, pcCU->getSlice()->getSPS()->getDisableIntraReferenceSmoothing());
predIntraAng( COMPONENT_Cb, uiMode, piOrgU, uiStride, piPredU, uiStride, tuRecurseCU, bAboveAvail, bLeftAvail, bUseFilter );
predIntraAng( COMPONENT_Cr, uiMode, piOrgV, uiStride, piPredV, uiStride, tuRecurseCU, bAboveAvail, bLeftAvail, bUseFilter );
//--- get SAD ---
Distortion uiSAD = distParamU.DistFunc(&distParamU);
uiSAD += distParamV.DistFunc(&distParamV);
//--- check ---
if( uiSAD < uiMinSAD )
{
uiMinSAD = uiSAD;
uiBestMode = uiMode;
}
}
//===== set chroma pred mode =====
pcCU->setIntraDirSubParts( CHANNEL_TYPE_CHROMA, uiBestMode, partIdx, tuRecurseWithPU.getCUDepth() + uiInitTrDepth );
}
} while (tuRecurseWithPU.nextSection(tuRecurseCU));
}
Void
TEncSearch::estIntraPredQT(TComDataCU* pcCU,
TComYuv* pcOrgYuv,
TComYuv* pcPredYuv,
TComYuv* pcResiYuv,
TComYuv* pcRecoYuv,
Pel resiLuma[NUMBER_OF_STORED_RESIDUAL_TYPES][MAX_CU_SIZE * MAX_CU_SIZE],
Distortion& ruiDistC,
Bool bLumaOnly
DEBUG_STRING_FN_DECLARE(sDebug))
{
const UInt uiDepth = pcCU->getDepth(0);
const UInt uiInitTrDepth = pcCU->getPartitionSize(0) == SIZE_2Nx2N ? 0 : 1;
const UInt uiInitTrDepthC = pcCU->getPartitionSize(0) != SIZE_2Nx2N && enable4ChromaPUsInIntraNxNCU(pcOrgYuv->getChromaFormat()) ? 1 : 0;
const UInt uiNumPU = 1<<(2*uiInitTrDepth);
const UInt uiQNumParts = pcCU->getTotalNumPart() >> 2;
const UInt uiWidthBit = pcCU->getIntraSizeIdx(0);
const ChromaFormat chFmt = pcCU->getPic()->getChromaFormat();
const UInt numberValidComponents = getNumberValidComponents(chFmt);
Distortion uiOverallDistY = 0;
Distortion uiOverallDistC = 0;
UInt CandNum;
Double CandCostList[ FAST_UDI_MAX_RDMODE_NUM ];
Pel resiLumaPU[NUMBER_OF_STORED_RESIDUAL_TYPES][MAX_CU_SIZE * MAX_CU_SIZE];
Bool bMaintainResidual[NUMBER_OF_STORED_RESIDUAL_TYPES];
for (UInt residualTypeIndex = 0; residualTypeIndex < NUMBER_OF_STORED_RESIDUAL_TYPES; residualTypeIndex++)
{
bMaintainResidual[residualTypeIndex] = true; //assume true unless specified otherwise
}
bMaintainResidual[RESIDUAL_ENCODER_SIDE] = !(m_pcEncCfg->getUseReconBasedCrossCPredictionEstimate());
// Lambda calculation at equivalent Qp of 4 is recommended because at that Qp, the quantisation divisor is 1.
#if FULL_NBIT
const Double sqrtLambdaForFirstPass= (m_pcEncCfg->getCostMode()==COST_MIXED_LOSSLESS_LOSSY_CODING && pcCU->getCUTransquantBypass(0)) ?
sqrt(0.57 * pow(2.0, ((LOSSLESS_AND_MIXED_LOSSLESS_RD_COST_TEST_QP_PRIME - 12) / 3.0)))
: m_pcRdCost->getSqrtLambda();
#else
const Double sqrtLambdaForFirstPass= (m_pcEncCfg->getCostMode()==COST_MIXED_LOSSLESS_LOSSY_CODING && pcCU->getCUTransquantBypass(0)) ?
sqrt(0.57 * pow(2.0, ((LOSSLESS_AND_MIXED_LOSSLESS_RD_COST_TEST_QP_PRIME - 12 - 6 * (g_bitDepth[CHANNEL_TYPE_LUMA] - 8)) / 3.0)))
: m_pcRdCost->getSqrtLambda();
#endif
//===== set QP and clear Cbf =====
if ( pcCU->getSlice()->getPPS()->getUseDQP() == true)
{
pcCU->setQPSubParts( pcCU->getQP(0), 0, uiDepth );
}
else
{
pcCU->setQPSubParts( pcCU->getSlice()->getSliceQp(), 0, uiDepth );
}
//===== loop over partitions =====
TComTURecurse tuRecurseCU(pcCU, 0);
TComTURecurse tuRecurseWithPU(tuRecurseCU, false, (uiInitTrDepth==0)?TComTU::DONT_SPLIT : TComTU::QUAD_SPLIT);
do
{
const UInt uiPartOffset=tuRecurseWithPU.GetAbsPartIdxTU();
// for( UInt uiPU = 0, uiPartOffset=0; uiPU < uiNumPU; uiPU++, uiPartOffset += uiQNumParts )
//{
//===== init pattern for luma prediction =====
Bool bAboveAvail = false;
Bool bLeftAvail = false;
DEBUG_STRING_NEW(sTemp2)
//===== determine set of modes to be tested (using prediction signal only) =====
Int numModesAvailable = 35; //total number of Intra modes
UInt uiRdModeList[FAST_UDI_MAX_RDMODE_NUM];
Int numModesForFullRD = g_aucIntraModeNumFast[ uiWidthBit ];
if (tuRecurseWithPU.ProcessComponentSection(COMPONENT_Y))
initAdiPatternChType( tuRecurseWithPU, bAboveAvail, bLeftAvail, COMPONENT_Y, true DEBUG_STRING_PASS_INTO(sTemp2) );
Bool doFastSearch = (numModesForFullRD != numModesAvailable);
if (doFastSearch)
{
assert(numModesForFullRD < numModesAvailable);
for( Int i=0; i < numModesForFullRD; i++ )
{
CandCostList[ i ] = MAX_DOUBLE;
}
CandNum = 0;
const TComRectangle &puRect=tuRecurseWithPU.getRect(COMPONENT_Y);
const UInt uiAbsPartIdx=tuRecurseWithPU.GetAbsPartIdxTU();
Pel* piOrg = pcOrgYuv ->getAddr( COMPONENT_Y, uiAbsPartIdx );
Pel* piPred = pcPredYuv->getAddr( COMPONENT_Y, uiAbsPartIdx );
UInt uiStride = pcPredYuv->getStride( COMPONENT_Y );
DistParam distParam;
const Bool bUseHadamard=pcCU->getCUTransquantBypass(0) == 0;
m_pcRdCost->setDistParam(distParam, g_bitDepth[CHANNEL_TYPE_LUMA], piOrg, uiStride, piPred, uiStride, puRect.width, puRect.height, bUseHadamard);
distParam.bApplyWeight = false;
for( Int modeIdx = 0; modeIdx < numModesAvailable; modeIdx++ )
{
UInt uiMode = modeIdx;
Distortion uiSad = 0;
const Bool bUseFilter=TComPrediction::filteringIntraReferenceSamples(COMPONENT_Y, uiMode, puRect.width, puRect.height, chFmt, pcCU->getSlice()->getSPS()->getDisableIntraReferenceSmoothing());
predIntraAng( COMPONENT_Y, uiMode, piOrg, uiStride, piPred, uiStride, tuRecurseWithPU, bAboveAvail, bLeftAvail, bUseFilter, TComPrediction::UseDPCMForFirstPassIntraEstimation(tuRecurseWithPU, uiMode) );
// use hadamard transform here
uiSad+=distParam.DistFunc(&distParam);
UInt iModeBits = 0;
// NB xModeBitsIntra will not affect the mode for chroma that may have already been pre-estimated.
iModeBits+=xModeBitsIntra( pcCU, uiMode, uiPartOffset, uiDepth, uiInitTrDepth, CHANNEL_TYPE_LUMA );
Double cost = (Double)uiSad + (Double)iModeBits * sqrtLambdaForFirstPass;
#ifdef DEBUG_INTRA_SEARCH_COSTS
std::cout << "1st pass mode " << uiMode << " SAD = " << uiSad << ", mode bits = " << iModeBits << ", cost = " << cost << "\n";
#endif
CandNum += xUpdateCandList( uiMode, cost, numModesForFullRD, uiRdModeList, CandCostList );
}
#if FAST_UDI_USE_MPM
Int uiPreds[NUM_MOST_PROBABLE_MODES] = {-1, -1, -1};
Int iMode = -1;
Int numCand = pcCU->getIntraDirPredictor( uiPartOffset, uiPreds, COMPONENT_Y, &iMode );
if( iMode >= 0 )
{
numCand = iMode;
}
for( Int j=0; j < numCand; j++)
{
Bool mostProbableModeIncluded = false;
Int mostProbableMode = uiPreds[j];
for( Int i=0; i < numModesForFullRD; i++)
{
mostProbableModeIncluded |= (mostProbableMode == uiRdModeList[i]);
}
if (!mostProbableModeIncluded)
{
uiRdModeList[numModesForFullRD++] = mostProbableMode;
}
}
#endif // FAST_UDI_USE_MPM
}
else
{
for( Int i=0; i < numModesForFullRD; i++)
{
uiRdModeList[i] = i;
}
}
//===== check modes (using r-d costs) =====
#if HHI_RQT_INTRA_SPEEDUP_MOD
UInt uiSecondBestMode = MAX_UINT;
Double dSecondBestPUCost = MAX_DOUBLE;
#endif
DEBUG_STRING_NEW(sPU)
UInt uiBestPUMode = 0;
Distortion uiBestPUDistY = 0;
Distortion uiBestPUDistC = 0;
Double dBestPUCost = MAX_DOUBLE;
#if ENVIRONMENT_VARIABLE_DEBUG_AND_TEST
UInt max=numModesForFullRD;
if (DebugOptionList::ForceLumaMode.isSet()) max=0; // we are forcing a direction, so don't bother with mode check
for ( UInt uiMode = 0; uiMode < max; uiMode++)
#else
for( UInt uiMode = 0; uiMode < numModesForFullRD; uiMode++ )
#endif
{
// set luma prediction mode
UInt uiOrgMode = uiRdModeList[uiMode];
pcCU->setIntraDirSubParts ( CHANNEL_TYPE_LUMA, uiOrgMode, uiPartOffset, uiDepth + uiInitTrDepth );
DEBUG_STRING_NEW(sMode)
// set context models
m_pcRDGoOnSbacCoder->load( m_pppcRDSbacCoder[uiDepth][CI_CURR_BEST] );
// determine residual for partition
Distortion uiPUDistY = 0;
Distortion uiPUDistC = 0;
Double dPUCost = 0.0;
#if HHI_RQT_INTRA_SPEEDUP
xRecurIntraCodingQT( bLumaOnly, pcOrgYuv, pcPredYuv, pcResiYuv, resiLumaPU, uiPUDistY, uiPUDistC, true, dPUCost, tuRecurseWithPU DEBUG_STRING_PASS_INTO(sMode) );
#else
xRecurIntraCodingQT( bLumaOnly, pcOrgYuv, pcPredYuv, pcResiYuv, resiLumaPU, uiPUDistY, uiPUDistC, dPUCost, tuRecurseWithPU DEBUG_STRING_PASS_INTO(sMode) );
#endif
#ifdef DEBUG_INTRA_SEARCH_COSTS
std::cout << "2nd pass [luma,chroma] mode [" << Int(pcCU->getIntraDir(CHANNEL_TYPE_LUMA, uiPartOffset)) << "," << Int(pcCU->getIntraDir(CHANNEL_TYPE_CHROMA, uiPartOffset)) << "] cost = " << dPUCost << "\n";
#endif
// check r-d cost
if( dPUCost < dBestPUCost )
{
DEBUG_STRING_SWAP(sPU, sMode)
#if HHI_RQT_INTRA_SPEEDUP_MOD
uiSecondBestMode = uiBestPUMode;
dSecondBestPUCost = dBestPUCost;
#endif
uiBestPUMode = uiOrgMode;
uiBestPUDistY = uiPUDistY;
uiBestPUDistC = uiPUDistC;
dBestPUCost = dPUCost;
xSetIntraResultQT( bLumaOnly, pcRecoYuv, tuRecurseWithPU );
if (pcCU->getSlice()->getPPS()->getUseCrossComponentPrediction())
{
const Int xOffset = tuRecurseWithPU.getRect( COMPONENT_Y ).x0;
const Int yOffset = tuRecurseWithPU.getRect( COMPONENT_Y ).y0;
for (UInt storedResidualIndex = 0; storedResidualIndex < NUMBER_OF_STORED_RESIDUAL_TYPES; storedResidualIndex++)
{
if (bMaintainResidual[storedResidualIndex])
{
xStoreCrossComponentPredictionResult(resiLuma[storedResidualIndex], resiLumaPU[storedResidualIndex], tuRecurseWithPU, xOffset, yOffset, MAX_CU_SIZE, MAX_CU_SIZE );
}
}
}
UInt uiQPartNum = tuRecurseWithPU.GetAbsPartIdxNumParts();
::memcpy( m_puhQTTempTrIdx, pcCU->getTransformIdx() + uiPartOffset, uiQPartNum * sizeof( UChar ) );
for (UInt component = 0; component < numberValidComponents; component++)
{
const ComponentID compID = ComponentID(component);
::memcpy( m_puhQTTempCbf[compID], pcCU->getCbf( compID ) + uiPartOffset, uiQPartNum * sizeof( UChar ) );
::memcpy( m_puhQTTempTransformSkipFlag[compID], pcCU->getTransformSkip(compID) + uiPartOffset, uiQPartNum * sizeof( UChar ) );
}
}
#if HHI_RQT_INTRA_SPEEDUP_MOD
else if( dPUCost < dSecondBestPUCost )
{
uiSecondBestMode = uiOrgMode;
dSecondBestPUCost = dPUCost;
}
#endif
} // Mode loop
#if HHI_RQT_INTRA_SPEEDUP
#if HHI_RQT_INTRA_SPEEDUP_MOD
for( UInt ui =0; ui < 2; ++ui )
#endif
{
#if HHI_RQT_INTRA_SPEEDUP_MOD
UInt uiOrgMode = ui ? uiSecondBestMode : uiBestPUMode;
if( uiOrgMode == MAX_UINT )
{
break;
}
#else
UInt uiOrgMode = uiBestPUMode;
#endif
#if ENVIRONMENT_VARIABLE_DEBUG_AND_TEST
if (DebugOptionList::ForceLumaMode.isSet())
uiOrgMode = DebugOptionList::ForceLumaMode.getInt();
#endif
pcCU->setIntraDirSubParts ( CHANNEL_TYPE_LUMA, uiOrgMode, uiPartOffset, uiDepth + uiInitTrDepth );
DEBUG_STRING_NEW(sModeTree)
// set context models
m_pcRDGoOnSbacCoder->load( m_pppcRDSbacCoder[uiDepth][CI_CURR_BEST] );
// determine residual for partition
Distortion uiPUDistY = 0;
Distortion uiPUDistC = 0;
Double dPUCost = 0.0;
xRecurIntraCodingQT( bLumaOnly, pcOrgYuv, pcPredYuv, pcResiYuv, resiLumaPU, uiPUDistY, uiPUDistC, false, dPUCost, tuRecurseWithPU DEBUG_STRING_PASS_INTO(sModeTree));
// check r-d cost
if( dPUCost < dBestPUCost )
{
DEBUG_STRING_SWAP(sPU, sModeTree)
uiBestPUMode = uiOrgMode;
uiBestPUDistY = uiPUDistY;
uiBestPUDistC = uiPUDistC;
dBestPUCost = dPUCost;
xSetIntraResultQT( bLumaOnly, pcRecoYuv, tuRecurseWithPU );
if (pcCU->getSlice()->getPPS()->getUseCrossComponentPrediction())
{
const Int xOffset = tuRecurseWithPU.getRect( COMPONENT_Y ).x0;
const Int yOffset = tuRecurseWithPU.getRect( COMPONENT_Y ).y0;
for (UInt storedResidualIndex = 0; storedResidualIndex < NUMBER_OF_STORED_RESIDUAL_TYPES; storedResidualIndex++)
{
if (bMaintainResidual[storedResidualIndex])
{
xStoreCrossComponentPredictionResult(resiLuma[storedResidualIndex], resiLumaPU[storedResidualIndex], tuRecurseWithPU, xOffset, yOffset, MAX_CU_SIZE, MAX_CU_SIZE );
}
}
}
const UInt uiQPartNum = tuRecurseWithPU.GetAbsPartIdxNumParts();
::memcpy( m_puhQTTempTrIdx, pcCU->getTransformIdx() + uiPartOffset, uiQPartNum * sizeof( UChar ) );
for (UInt component = 0; component < numberValidComponents; component++)
{
const ComponentID compID = ComponentID(component);
::memcpy( m_puhQTTempCbf[compID], pcCU->getCbf( compID ) + uiPartOffset, uiQPartNum * sizeof( UChar ) );
::memcpy( m_puhQTTempTransformSkipFlag[compID], pcCU->getTransformSkip(compID) + uiPartOffset, uiQPartNum * sizeof( UChar ) );
}
}
} // Mode loop
#endif
DEBUG_STRING_APPEND(sDebug, sPU)
//--- update overall distortion ---
uiOverallDistY += uiBestPUDistY;
uiOverallDistC += uiBestPUDistC;
//--- update transform index and cbf ---
const UInt uiQPartNum = tuRecurseWithPU.GetAbsPartIdxNumParts();
::memcpy( pcCU->getTransformIdx() + uiPartOffset, m_puhQTTempTrIdx, uiQPartNum * sizeof( UChar ) );
for (UInt component = 0; component < numberValidComponents; component++)
{
const ComponentID compID = ComponentID(component);
::memcpy( pcCU->getCbf( compID ) + uiPartOffset, m_puhQTTempCbf[compID], uiQPartNum * sizeof( UChar ) );
::memcpy( pcCU->getTransformSkip( compID ) + uiPartOffset, m_puhQTTempTransformSkipFlag[compID ], uiQPartNum * sizeof( UChar ) );
}
//--- set reconstruction for next intra prediction blocks ---
if( !tuRecurseWithPU.IsLastSection() )
{
const Bool bSkipChroma = tuRecurseWithPU.ProcessChannelSection(CHANNEL_TYPE_CHROMA);
const UInt numChannelToProcess = (bLumaOnly || bSkipChroma) ? 1 : getNumberValidComponents(pcCU->getPic()->getChromaFormat());
for (UInt ch=0; ch<numChannelToProcess; ch++)
{
const ComponentID compID = ComponentID(ch);
const TComRectangle &puRect=tuRecurseWithPU.getRect(compID);
const UInt uiCompWidth = puRect.width;
const UInt uiCompHeight = puRect.height;
const UInt uiZOrder = pcCU->getZorderIdxInCtu() + uiPartOffset;
Pel* piDes = pcCU->getPic()->getPicYuvRec()->getAddr( compID, pcCU->getCtuRsAddr(), uiZOrder );
const UInt uiDesStride = pcCU->getPic()->getPicYuvRec()->getStride( compID);
const Pel* piSrc = pcRecoYuv->getAddr( compID, uiPartOffset );
const UInt uiSrcStride = pcRecoYuv->getStride( compID);
for( UInt uiY = 0; uiY < uiCompHeight; uiY++, piSrc += uiSrcStride, piDes += uiDesStride )
{
for( UInt uiX = 0; uiX < uiCompWidth; uiX++ )
{
piDes[ uiX ] = piSrc[ uiX ];
}
}
}
}
//=== update PU data ====
pcCU->setIntraDirSubParts ( CHANNEL_TYPE_LUMA, uiBestPUMode, uiPartOffset, uiDepth + uiInitTrDepth );
if (!bLumaOnly && getChromasCorrespondingPULumaIdx(uiPartOffset, chFmt)==uiPartOffset)
{
UInt chromaDir=pcCU->getIntraDir(CHANNEL_TYPE_CHROMA, getChromasCorrespondingPULumaIdx(uiPartOffset, chFmt));
if (chromaDir == uiBestPUMode && tuRecurseWithPU.ProcessChannelSection(CHANNEL_TYPE_CHROMA))
{
pcCU->setIntraDirSubParts ( CHANNEL_TYPE_CHROMA, DM_CHROMA_IDX, getChromasCorrespondingPULumaIdx(uiPartOffset, chFmt), uiDepth + uiInitTrDepthC );
}
}
//pcCU->copyToPic ( uiDepth, uiPU, uiInitTrDepth ); // Unnecessary copy?
} while (tuRecurseWithPU.nextSection(tuRecurseCU));
if( uiNumPU > 1 )
{ // set Cbf for all blocks
UInt uiCombCbfY = 0;
UInt uiCombCbfU = 0;
UInt uiCombCbfV = 0;
UInt uiPartIdx = 0;
for( UInt uiPart = 0; uiPart < 4; uiPart++, uiPartIdx += uiQNumParts )
{
uiCombCbfY |= pcCU->getCbf( uiPartIdx, COMPONENT_Y, 1 );
uiCombCbfU |= pcCU->getCbf( uiPartIdx, COMPONENT_Cb, 1 );
uiCombCbfV |= pcCU->getCbf( uiPartIdx, COMPONENT_Cr, 1 );
}
for( UInt uiOffs = 0; uiOffs < 4 * uiQNumParts; uiOffs++ )
{
pcCU->getCbf( COMPONENT_Y )[ uiOffs ] |= uiCombCbfY;
pcCU->getCbf( COMPONENT_Cb )[ uiOffs ] |= uiCombCbfU;
pcCU->getCbf( COMPONENT_Cr )[ uiOffs ] |= uiCombCbfV;
}
}
//===== reset context models =====
m_pcRDGoOnSbacCoder->load(m_pppcRDSbacCoder[uiDepth][CI_CURR_BEST]);
//===== set distortion (rate and r-d costs are determined later) =====
ruiDistC = uiOverallDistC;
pcCU->getTotalDistortion() = uiOverallDistY + uiOverallDistC;
}
Void
TEncSearch::estIntraPredChromaQT(TComDataCU* pcCU,
TComYuv* pcOrgYuv,
TComYuv* pcPredYuv,
TComYuv* pcResiYuv,
TComYuv* pcRecoYuv,
Pel resiLuma[NUMBER_OF_STORED_RESIDUAL_TYPES][MAX_CU_SIZE * MAX_CU_SIZE],
Distortion uiPreCalcDistC
DEBUG_STRING_FN_DECLARE(sDebug))
{
pcCU->getTotalDistortion () -= uiPreCalcDistC;
//const UInt uiDepthCU = pcCU->getDepth(0);
const UInt uiInitTrDepth = pcCU->getPartitionSize(0) != SIZE_2Nx2N && enable4ChromaPUsInIntraNxNCU(pcOrgYuv->getChromaFormat()) ? 1 : 0;
// const UInt uiNumPU = 1<<(2*uiInitTrDepth);
TComTURecurse tuRecurseCU(pcCU, 0);
TComTURecurse tuRecurseWithPU(tuRecurseCU, false, (uiInitTrDepth==0)?TComTU::DONT_SPLIT : TComTU::QUAD_SPLIT);
const UInt uiQNumParts = tuRecurseWithPU.GetAbsPartIdxNumParts();
const UInt uiDepthCU=tuRecurseWithPU.getCUDepth();
const UInt numberValidComponents = pcCU->getPic()->getNumberValidComponents();
do
{
UInt uiBestMode = 0;
Distortion uiBestDist = 0;
Double dBestCost = MAX_DOUBLE;
//----- init mode list -----
if (tuRecurseWithPU.ProcessChannelSection(CHANNEL_TYPE_CHROMA))
{
UInt uiModeList[FAST_UDI_MAX_RDMODE_NUM];
const UInt uiQPartNum = uiQNumParts;
const UInt uiPartOffset = tuRecurseWithPU.GetAbsPartIdxTU();
{
UInt uiMinMode = 0;
UInt uiMaxMode = NUM_CHROMA_MODE;
//----- check chroma modes -----
pcCU->getAllowedChromaDir( uiPartOffset, uiModeList );
#if ENVIRONMENT_VARIABLE_DEBUG_AND_TEST
if (DebugOptionList::ForceChromaMode.isSet())
{
uiMinMode=DebugOptionList::ForceChromaMode.getInt();
if (uiModeList[uiMinMode]==34) uiMinMode=4; // if the fixed mode has been renumbered because DM_CHROMA covers it, use DM_CHROMA.
uiMaxMode=uiMinMode+1;
}
#endif
DEBUG_STRING_NEW(sPU)
for( UInt uiMode = uiMinMode; uiMode < uiMaxMode; uiMode++ )
{
//----- restore context models -----
m_pcRDGoOnSbacCoder->load( m_pppcRDSbacCoder[uiDepthCU][CI_CURR_BEST] );
DEBUG_STRING_NEW(sMode)
//----- chroma coding -----
Distortion uiDist = 0;
pcCU->setIntraDirSubParts ( CHANNEL_TYPE_CHROMA, uiModeList[uiMode], uiPartOffset, uiDepthCU+uiInitTrDepth );
xRecurIntraChromaCodingQT ( pcOrgYuv, pcPredYuv, pcResiYuv, resiLuma, uiDist, tuRecurseWithPU DEBUG_STRING_PASS_INTO(sMode) );
if( pcCU->getSlice()->getPPS()->getUseTransformSkip() )
{
m_pcRDGoOnSbacCoder->load( m_pppcRDSbacCoder[uiDepthCU][CI_CURR_BEST] );
}
UInt uiBits = xGetIntraBitsQT( tuRecurseWithPU, false, true, false );
Double dCost = m_pcRdCost->calcRdCost( uiBits, uiDist );
//----- compare -----
if( dCost < dBestCost )
{
DEBUG_STRING_SWAP(sPU, sMode);
dBestCost = dCost;
uiBestDist = uiDist;
uiBestMode = uiModeList[uiMode];
xSetIntraResultChromaQT( pcRecoYuv, tuRecurseWithPU );
for (UInt componentIndex = COMPONENT_Cb; componentIndex < numberValidComponents; componentIndex++)
{
const ComponentID compID = ComponentID(componentIndex);
::memcpy( m_puhQTTempCbf[compID], pcCU->getCbf( compID )+uiPartOffset, uiQPartNum * sizeof( UChar ) );
::memcpy( m_puhQTTempTransformSkipFlag[compID], pcCU->getTransformSkip( compID )+uiPartOffset, uiQPartNum * sizeof( UChar ) );
::memcpy( m_phQTTempCrossComponentPredictionAlpha[compID], pcCU->getCrossComponentPredictionAlpha(compID)+uiPartOffset, uiQPartNum * sizeof( Char ) );
}
}
}
DEBUG_STRING_APPEND(sDebug, sPU)
//----- set data -----
for (UInt componentIndex = COMPONENT_Cb; componentIndex < numberValidComponents; componentIndex++)
{
const ComponentID compID = ComponentID(componentIndex);
::memcpy( pcCU->getCbf( compID )+uiPartOffset, m_puhQTTempCbf[compID], uiQPartNum * sizeof( UChar ) );
::memcpy( pcCU->getTransformSkip( compID )+uiPartOffset, m_puhQTTempTransformSkipFlag[compID], uiQPartNum * sizeof( UChar ) );
::memcpy( pcCU->getCrossComponentPredictionAlpha(compID)+uiPartOffset, m_phQTTempCrossComponentPredictionAlpha[compID], uiQPartNum * sizeof( Char ) );
}
}
if( ! tuRecurseWithPU.IsLastSection() )
{
for (UInt ch=COMPONENT_Cb; ch<numberValidComponents; ch++)
{
const ComponentID compID = ComponentID(ch);
const TComRectangle &tuRect = tuRecurseWithPU.getRect(compID);
const UInt uiCompWidth = tuRect.width;
const UInt uiCompHeight = tuRect.height;
const UInt uiZOrder = pcCU->getZorderIdxInCtu() + tuRecurseWithPU.GetAbsPartIdxTU();
Pel* piDes = pcCU->getPic()->getPicYuvRec()->getAddr( compID, pcCU->getCtuRsAddr(), uiZOrder );
const UInt uiDesStride = pcCU->getPic()->getPicYuvRec()->getStride( compID);
const Pel* piSrc = pcRecoYuv->getAddr( compID, uiPartOffset );
const UInt uiSrcStride = pcRecoYuv->getStride( compID);
for( UInt uiY = 0; uiY < uiCompHeight; uiY++, piSrc += uiSrcStride, piDes += uiDesStride )
{
for( UInt uiX = 0; uiX < uiCompWidth; uiX++ )
{
piDes[ uiX ] = piSrc[ uiX ];
}
}
}
}
pcCU->setIntraDirSubParts( CHANNEL_TYPE_CHROMA, uiBestMode, uiPartOffset, uiDepthCU+uiInitTrDepth );
pcCU->getTotalDistortion () += uiBestDist;
}
} while (tuRecurseWithPU.nextSection(tuRecurseCU));
//----- restore context models -----
if( uiInitTrDepth != 0 )
{ // set Cbf for all blocks
UInt uiCombCbfU = 0;
UInt uiCombCbfV = 0;
UInt uiPartIdx = 0;
for( UInt uiPart = 0; uiPart < 4; uiPart++, uiPartIdx += uiQNumParts )
{
uiCombCbfU |= pcCU->getCbf( uiPartIdx, COMPONENT_Cb, 1 );
uiCombCbfV |= pcCU->getCbf( uiPartIdx, COMPONENT_Cr, 1 );
}
for( UInt uiOffs = 0; uiOffs < 4 * uiQNumParts; uiOffs++ )
{
pcCU->getCbf( COMPONENT_Cb )[ uiOffs ] |= uiCombCbfU;
pcCU->getCbf( COMPONENT_Cr )[ uiOffs ] |= uiCombCbfV;
}
}
m_pcRDGoOnSbacCoder->load( m_pppcRDSbacCoder[uiDepthCU][CI_CURR_BEST] );
}
/** Function for encoding and reconstructing luma/chroma samples of a PCM mode CU.
* \param pcCU pointer to current CU
* \param uiAbsPartIdx part index
* \param piOrg pointer to original sample arrays
* \param piPCM pointer to PCM code arrays
* \param piPred pointer to prediction signal arrays
* \param piResi pointer to residual signal arrays
* \param piReco pointer to reconstructed sample arrays
* \param uiStride stride of the original/prediction/residual sample arrays
* \param uiWidth block width
* \param uiHeight block height
* \param ttText texture component type
* \returns Void
*/
Void TEncSearch::xEncPCM (TComDataCU* pcCU, UInt uiAbsPartIdx, Pel* pOrg, Pel* pPCM, Pel* pPred, Pel* pResi, Pel* pReco, UInt uiStride, UInt uiWidth, UInt uiHeight, const ComponentID compID )
{
const UInt uiReconStride = pcCU->getPic()->getPicYuvRec()->getStride(compID);
const UInt uiPCMBitDepth = pcCU->getSlice()->getSPS()->getPCMBitDepth(toChannelType(compID));
Pel* pRecoPic = pcCU->getPic()->getPicYuvRec()->getAddr(compID, pcCU->getCtuRsAddr(), pcCU->getZorderIdxInCtu()+uiAbsPartIdx);
const Int pcmShiftRight=(g_bitDepth[toChannelType(compID)] - Int(uiPCMBitDepth));
assert(pcmShiftRight >= 0);
for( UInt uiY = 0; uiY < uiHeight; uiY++ )
{
for( UInt uiX = 0; uiX < uiWidth; uiX++ )
{
// Reset pred and residual
pPred[uiX] = 0;
pResi[uiX] = 0;
// Encode
pPCM[uiX] = (pOrg[uiX]>>pcmShiftRight);
// Reconstruction
pReco [uiX] = (pPCM[uiX]<<(pcmShiftRight));
pRecoPic[uiX] = pReco[uiX];
}
pPred += uiStride;
pResi += uiStride;
pPCM += uiWidth;
pOrg += uiStride;
pReco += uiStride;
pRecoPic += uiReconStride;
}
}
/** Function for PCM mode estimation.
* \param pcCU
* \param pcOrgYuv
* \param rpcPredYuv
* \param rpcResiYuv
* \param rpcRecoYuv
* \returns Void
*/
Void TEncSearch::IPCMSearch( TComDataCU* pcCU, TComYuv* pcOrgYuv, TComYuv* pcPredYuv, TComYuv* pcResiYuv, TComYuv* pcRecoYuv )
{
UInt uiDepth = pcCU->getDepth(0);
const UInt uiDistortion = 0;
UInt uiBits;
Double dCost;
for (UInt ch=0; ch < pcCU->getPic()->getNumberValidComponents(); ch++)
{
const ComponentID compID = ComponentID(ch);
const UInt width = pcCU->getWidth(0) >> pcCU->getPic()->getComponentScaleX(compID);
const UInt height = pcCU->getHeight(0) >> pcCU->getPic()->getComponentScaleY(compID);
const UInt stride = pcPredYuv->getStride(compID);
Pel * pOrig = pcOrgYuv->getAddr (compID, 0, width);
Pel * pResi = pcResiYuv->getAddr(compID, 0, width);
Pel * pPred = pcPredYuv->getAddr(compID, 0, width);
Pel * pReco = pcRecoYuv->getAddr(compID, 0, width);
Pel * pPCM = pcCU->getPCMSample (compID);
xEncPCM ( pcCU, 0, pOrig, pPCM, pPred, pResi, pReco, stride, width, height, compID );
}
m_pcEntropyCoder->resetBits();
xEncIntraHeader ( pcCU, uiDepth, 0, true, false);
uiBits = m_pcEntropyCoder->getNumberOfWrittenBits();
dCost = m_pcRdCost->calcRdCost( uiBits, uiDistortion );
m_pcRDGoOnSbacCoder->load(m_pppcRDSbacCoder[uiDepth][CI_CURR_BEST]);
pcCU->getTotalBits() = uiBits;
pcCU->getTotalCost() = dCost;
pcCU->getTotalDistortion() = uiDistortion;
pcCU->copyToPic(uiDepth, 0, 0);
}
Void TEncSearch::xGetInterPredictionError( TComDataCU* pcCU, TComYuv* pcYuvOrg, Int iPartIdx, Distortion& ruiErr, Bool /*bHadamard*/ )
{
motionCompensation( pcCU, &m_tmpYuvPred, REF_PIC_LIST_X, iPartIdx );
UInt uiAbsPartIdx = 0;
Int iWidth = 0;
Int iHeight = 0;
pcCU->getPartIndexAndSize( iPartIdx, uiAbsPartIdx, iWidth, iHeight );
DistParam cDistParam;
cDistParam.bApplyWeight = false;
m_pcRdCost->setDistParam( cDistParam, g_bitDepth[CHANNEL_TYPE_LUMA],
pcYuvOrg->getAddr( COMPONENT_Y, uiAbsPartIdx ), pcYuvOrg->getStride(COMPONENT_Y),
m_tmpYuvPred .getAddr( COMPONENT_Y, uiAbsPartIdx ), m_tmpYuvPred.getStride(COMPONENT_Y),
iWidth, iHeight, m_pcEncCfg->getUseHADME() && (pcCU->getCUTransquantBypass(iPartIdx) == 0) );
ruiErr = cDistParam.DistFunc( &cDistParam );
}
/** estimation of best merge coding
* \param pcCU
* \param pcYuvOrg
* \param iPUIdx
* \param uiInterDir
* \param pacMvField
* \param uiMergeIndex
* \param ruiCost
* \param ruiBits
* \param puhNeighCands
* \param bValid
* \returns Void
*/
Void TEncSearch::xMergeEstimation( TComDataCU* pcCU, TComYuv* pcYuvOrg, Int iPUIdx, UInt& uiInterDir, TComMvField* pacMvField, UInt& uiMergeIndex, Distortion& ruiCost, TComMvField* cMvFieldNeighbours, UChar* uhInterDirNeighbours, Int& numValidMergeCand )
{
UInt uiAbsPartIdx = 0;
Int iWidth = 0;
Int iHeight = 0;
pcCU->getPartIndexAndSize( iPUIdx, uiAbsPartIdx, iWidth, iHeight );
UInt uiDepth = pcCU->getDepth( uiAbsPartIdx );
PartSize partSize = pcCU->getPartitionSize( 0 );
if ( pcCU->getSlice()->getPPS()->getLog2ParallelMergeLevelMinus2() && partSize != SIZE_2Nx2N && pcCU->getWidth( 0 ) <= 8 )
{
pcCU->setPartSizeSubParts( SIZE_2Nx2N, 0, uiDepth );
if ( iPUIdx == 0 )
{
pcCU->getInterMergeCandidates( 0, 0, cMvFieldNeighbours,uhInterDirNeighbours, numValidMergeCand );
}
pcCU->setPartSizeSubParts( partSize, 0, uiDepth );
}
else
{
pcCU->getInterMergeCandidates( uiAbsPartIdx, iPUIdx, cMvFieldNeighbours, uhInterDirNeighbours, numValidMergeCand );
}
xRestrictBipredMergeCand( pcCU, iPUIdx, cMvFieldNeighbours, uhInterDirNeighbours, numValidMergeCand );
ruiCost = std::numeric_limits<Distortion>::max();
for( UInt uiMergeCand = 0; uiMergeCand < numValidMergeCand; ++uiMergeCand )
{
Distortion uiCostCand = std::numeric_limits<Distortion>::max();
UInt uiBitsCand = 0;
PartSize ePartSize = pcCU->getPartitionSize( 0 );
pcCU->getCUMvField(REF_PIC_LIST_0)->setAllMvField( cMvFieldNeighbours[0 + 2*uiMergeCand], ePartSize, uiAbsPartIdx, 0, iPUIdx );
pcCU->getCUMvField(REF_PIC_LIST_1)->setAllMvField( cMvFieldNeighbours[1 + 2*uiMergeCand], ePartSize, uiAbsPartIdx, 0, iPUIdx );
xGetInterPredictionError( pcCU, pcYuvOrg, iPUIdx, uiCostCand, m_pcEncCfg->getUseHADME() );
uiBitsCand = uiMergeCand + 1;
if (uiMergeCand == m_pcEncCfg->getMaxNumMergeCand() -1)
{
uiBitsCand--;
}
uiCostCand = uiCostCand + m_pcRdCost->getCost( uiBitsCand );
if ( uiCostCand < ruiCost )
{
ruiCost = uiCostCand;
pacMvField[0] = cMvFieldNeighbours[0 + 2*uiMergeCand];
pacMvField[1] = cMvFieldNeighbours[1 + 2*uiMergeCand];
uiInterDir = uhInterDirNeighbours[uiMergeCand];
uiMergeIndex = uiMergeCand;
}
}
}
/** convert bi-pred merge candidates to uni-pred
* \param pcCU
* \param puIdx
* \param mvFieldNeighbours
* \param interDirNeighbours
* \param numValidMergeCand
* \returns Void
*/
Void TEncSearch::xRestrictBipredMergeCand( TComDataCU* pcCU, UInt puIdx, TComMvField* mvFieldNeighbours, UChar* interDirNeighbours, Int numValidMergeCand )
{
if ( pcCU->isBipredRestriction(puIdx) )
{
for( UInt mergeCand = 0; mergeCand < numValidMergeCand; ++mergeCand )
{
if ( interDirNeighbours[mergeCand] == 3 )
{
interDirNeighbours[mergeCand] = 1;
mvFieldNeighbours[(mergeCand << 1) + 1].setMvField(TComMv(0,0), -1);
}
}
}
}
/** search of the best candidate for inter prediction
* \param pcCU
* \param pcOrgYuv
* \param rpcPredYuv
* \param rpcResiYuv
* \param rpcRecoYuv
* \param bUseRes
* \returns Void
*/
#if AMP_MRG
Void TEncSearch::predInterSearch( TComDataCU* pcCU, TComYuv* pcOrgYuv, TComYuv* pcPredYuv, TComYuv* pcResiYuv, TComYuv* pcRecoYuv DEBUG_STRING_FN_DECLARE(sDebug), Bool bUseRes, Bool bUseMRG )
#else
Void TEncSearch::predInterSearch( TComDataCU* pcCU, TComYuv* pcOrgYuv, TComYuv* pcPredYuv, TComYuv* pcResiYuv, TComYuv* pcRecoYuv, Bool bUseRes )
#endif
{
for(UInt i=0; i<NUM_REF_PIC_LIST_01; i++)
{
m_acYuvPred[i].clear();
}
m_cYuvPredTemp.clear();
pcPredYuv->clear();
if ( !bUseRes )
{
pcResiYuv->clear();
}
pcRecoYuv->clear();
TComMv cMvSrchRngLT;
TComMv cMvSrchRngRB;
TComMv cMvZero;
TComMv TempMv; //kolya
TComMv cMv[2];
TComMv cMvBi[2];
TComMv cMvTemp[2][33];
Int iNumPart = pcCU->getNumPartitions();
Int iNumPredDir = pcCU->getSlice()->isInterP() ? 1 : 2;
TComMv cMvPred[2][33];
TComMv cMvPredBi[2][33];
Int aaiMvpIdxBi[2][33];
Int aaiMvpIdx[2][33];
Int aaiMvpNum[2][33];
AMVPInfo aacAMVPInfo[2][33];
Int iRefIdx[2]={0,0}; //If un-initialized, may cause SEGV in bi-directional prediction iterative stage.
Int iRefIdxBi[2];
UInt uiPartAddr;
Int iRoiWidth, iRoiHeight;
UInt uiMbBits[3] = {1, 1, 0};
UInt uiLastMode = 0;
Int iRefStart, iRefEnd;
PartSize ePartSize = pcCU->getPartitionSize( 0 );
Int bestBiPRefIdxL1 = 0;
Int bestBiPMvpL1 = 0;
Distortion biPDistTemp = std::numeric_limits<Distortion>::max();
TComMvField cMvFieldNeighbours[MRG_MAX_NUM_CANDS << 1]; // double length for mv of both lists
UChar uhInterDirNeighbours[MRG_MAX_NUM_CANDS];
Int numValidMergeCand = 0 ;
for ( Int iPartIdx = 0; iPartIdx < iNumPart; iPartIdx++ )
{
Distortion uiCost[2] = { std::numeric_limits<Distortion>::max(), std::numeric_limits<Distortion>::max() };
Distortion uiCostBi = std::numeric_limits<Distortion>::max();
Distortion uiCostTemp;
UInt uiBits[3];
UInt uiBitsTemp;
Distortion bestBiPDist = std::numeric_limits<Distortion>::max();
Distortion uiCostTempL0[MAX_NUM_REF];
for (Int iNumRef=0; iNumRef < MAX_NUM_REF; iNumRef++)
{
uiCostTempL0[iNumRef] = std::numeric_limits<Distortion>::max();
}
UInt uiBitsTempL0[MAX_NUM_REF];
TComMv mvValidList1;
Int refIdxValidList1 = 0;
UInt bitsValidList1 = MAX_UINT;
Distortion costValidList1 = std::numeric_limits<Distortion>::max();
xGetBlkBits( ePartSize, pcCU->getSlice()->isInterP(), iPartIdx, uiLastMode, uiMbBits);
pcCU->getPartIndexAndSize( iPartIdx, uiPartAddr, iRoiWidth, iRoiHeight );
#if AMP_MRG
Bool bTestNormalMC = true;
if ( bUseMRG && pcCU->getWidth( 0 ) > 8 && iNumPart == 2 )
{
bTestNormalMC = false;
}
if (bTestNormalMC)
{
#endif
// Uni-directional prediction
for ( Int iRefList = 0; iRefList < iNumPredDir; iRefList++ )
{
RefPicList eRefPicList = ( iRefList ? REF_PIC_LIST_1 : REF_PIC_LIST_0 );
for ( Int iRefIdxTemp = 0; iRefIdxTemp < pcCU->getSlice()->getNumRefIdx(eRefPicList); iRefIdxTemp++ )
{
uiBitsTemp = uiMbBits[iRefList];
if ( pcCU->getSlice()->getNumRefIdx(eRefPicList) > 1 )
{
uiBitsTemp += iRefIdxTemp+1;
if ( iRefIdxTemp == pcCU->getSlice()->getNumRefIdx(eRefPicList)-1 ) uiBitsTemp--;
}
xEstimateMvPredAMVP( pcCU, pcOrgYuv, iPartIdx, eRefPicList, iRefIdxTemp, cMvPred[iRefList][iRefIdxTemp], false, &biPDistTemp);
aaiMvpIdx[iRefList][iRefIdxTemp] = pcCU->getMVPIdx(eRefPicList, uiPartAddr);
aaiMvpNum[iRefList][iRefIdxTemp] = pcCU->getMVPNum(eRefPicList, uiPartAddr);
if(pcCU->getSlice()->getMvdL1ZeroFlag() && iRefList==1 && biPDistTemp < bestBiPDist)
{
bestBiPDist = biPDistTemp;
bestBiPMvpL1 = aaiMvpIdx[iRefList][iRefIdxTemp];
bestBiPRefIdxL1 = iRefIdxTemp;
}
uiBitsTemp += m_auiMVPIdxCost[aaiMvpIdx[iRefList][iRefIdxTemp]][AMVP_MAX_NUM_CANDS];
#if GPB_SIMPLE_UNI
if ( iRefList == 1 ) // list 1
{
if ( pcCU->getSlice()->getList1IdxToList0Idx( iRefIdxTemp ) >= 0 )
{
cMvTemp[1][iRefIdxTemp] = cMvTemp[0][pcCU->getSlice()->getList1IdxToList0Idx( iRefIdxTemp )];
uiCostTemp = uiCostTempL0[pcCU->getSlice()->getList1IdxToList0Idx( iRefIdxTemp )];
/*first subtract the bit-rate part of the cost of the other list*/
uiCostTemp -= m_pcRdCost->getCost( uiBitsTempL0[pcCU->getSlice()->getList1IdxToList0Idx( iRefIdxTemp )] );
/*correct the bit-rate part of the current ref*/
m_pcRdCost->setPredictor ( cMvPred[iRefList][iRefIdxTemp] );
uiBitsTemp += m_pcRdCost->getBits( cMvTemp[1][iRefIdxTemp].getHor(), cMvTemp[1][iRefIdxTemp].getVer() );
/*calculate the correct cost*/
uiCostTemp += m_pcRdCost->getCost( uiBitsTemp );
}
else
{
xMotionEstimation ( pcCU, pcOrgYuv, iPartIdx, eRefPicList, &cMvPred[iRefList][iRefIdxTemp], iRefIdxTemp, cMvTemp[iRefList][iRefIdxTemp], uiBitsTemp, uiCostTemp );
}
}
else
{
xMotionEstimation ( pcCU, pcOrgYuv, iPartIdx, eRefPicList, &cMvPred[iRefList][iRefIdxTemp], iRefIdxTemp, cMvTemp[iRefList][iRefIdxTemp], uiBitsTemp, uiCostTemp );
}
#else
xMotionEstimation ( pcCU, pcOrgYuv, iPartIdx, eRefPicList, &cMvPred[iRefList][iRefIdxTemp], iRefIdxTemp, cMvTemp[iRefList][iRefIdxTemp], uiBitsTemp, uiCostTemp );
#endif
xCopyAMVPInfo(pcCU->getCUMvField(eRefPicList)->getAMVPInfo(), &aacAMVPInfo[iRefList][iRefIdxTemp]); // must always be done ( also when AMVP_MODE = AM_NONE )
xCheckBestMVP(pcCU, eRefPicList, cMvTemp[iRefList][iRefIdxTemp], cMvPred[iRefList][iRefIdxTemp], aaiMvpIdx[iRefList][iRefIdxTemp], uiBitsTemp, uiCostTemp);
if ( iRefList == 0 )
{
uiCostTempL0[iRefIdxTemp] = uiCostTemp;
uiBitsTempL0[iRefIdxTemp] = uiBitsTemp;
}
if ( uiCostTemp < uiCost[iRefList] )
{
uiCost[iRefList] = uiCostTemp;
uiBits[iRefList] = uiBitsTemp; // storing for bi-prediction
// set motion
cMv[iRefList] = cMvTemp[iRefList][iRefIdxTemp];
iRefIdx[iRefList] = iRefIdxTemp;
}
if ( iRefList == 1 && uiCostTemp < costValidList1 && pcCU->getSlice()->getList1IdxToList0Idx( iRefIdxTemp ) < 0 )
{
costValidList1 = uiCostTemp;
bitsValidList1 = uiBitsTemp;
// set motion
mvValidList1 = cMvTemp[iRefList][iRefIdxTemp];
refIdxValidList1 = iRefIdxTemp;
}
}
}
// Bi-directional prediction
if ( (pcCU->getSlice()->isInterB()) && (pcCU->isBipredRestriction(iPartIdx) == false) )
{
cMvBi[0] = cMv[0]; cMvBi[1] = cMv[1];
iRefIdxBi[0] = iRefIdx[0]; iRefIdxBi[1] = iRefIdx[1];
::memcpy(cMvPredBi, cMvPred, sizeof(cMvPred));
::memcpy(aaiMvpIdxBi, aaiMvpIdx, sizeof(aaiMvpIdx));
UInt uiMotBits[2];
if(pcCU->getSlice()->getMvdL1ZeroFlag())
{
xCopyAMVPInfo(&aacAMVPInfo[1][bestBiPRefIdxL1], pcCU->getCUMvField(REF_PIC_LIST_1)->getAMVPInfo());
pcCU->setMVPIdxSubParts( bestBiPMvpL1, REF_PIC_LIST_1, uiPartAddr, iPartIdx, pcCU->getDepth(uiPartAddr));
aaiMvpIdxBi[1][bestBiPRefIdxL1] = bestBiPMvpL1;
cMvPredBi[1][bestBiPRefIdxL1] = pcCU->getCUMvField(REF_PIC_LIST_1)->getAMVPInfo()->m_acMvCand[bestBiPMvpL1];
cMvBi[1] = cMvPredBi[1][bestBiPRefIdxL1];
iRefIdxBi[1] = bestBiPRefIdxL1;
pcCU->getCUMvField( REF_PIC_LIST_1 )->setAllMv( cMvBi[1], ePartSize, uiPartAddr, 0, iPartIdx );
pcCU->getCUMvField( REF_PIC_LIST_1 )->setAllRefIdx( iRefIdxBi[1], ePartSize, uiPartAddr, 0, iPartIdx );
TComYuv* pcYuvPred = &m_acYuvPred[REF_PIC_LIST_1];
motionCompensation( pcCU, pcYuvPred, REF_PIC_LIST_1, iPartIdx );
uiMotBits[0] = uiBits[0] - uiMbBits[0];
uiMotBits[1] = uiMbBits[1];
if ( pcCU->getSlice()->getNumRefIdx(REF_PIC_LIST_1) > 1 )
{
uiMotBits[1] += bestBiPRefIdxL1+1;
if ( bestBiPRefIdxL1 == pcCU->getSlice()->getNumRefIdx(REF_PIC_LIST_1)-1 ) uiMotBits[1]--;
}
uiMotBits[1] += m_auiMVPIdxCost[aaiMvpIdxBi[1][bestBiPRefIdxL1]][AMVP_MAX_NUM_CANDS];
uiBits[2] = uiMbBits[2] + uiMotBits[0] + uiMotBits[1];
cMvTemp[1][bestBiPRefIdxL1] = cMvBi[1];
}
else
{
uiMotBits[0] = uiBits[0] - uiMbBits[0];
uiMotBits[1] = uiBits[1] - uiMbBits[1];
uiBits[2] = uiMbBits[2] + uiMotBits[0] + uiMotBits[1];
}
// 4-times iteration (default)
Int iNumIter = 4;
// fast encoder setting: only one iteration
if ( m_pcEncCfg->getUseFastEnc() || pcCU->getSlice()->getMvdL1ZeroFlag())
{
iNumIter = 1;
}
for ( Int iIter = 0; iIter < iNumIter; iIter++ )
{
Int iRefList = iIter % 2;
if ( m_pcEncCfg->getUseFastEnc() )
{
if( uiCost[0] <= uiCost[1] )
{
iRefList = 1;
}
else
{
iRefList = 0;
}
}
else if ( iIter == 0 )
{
iRefList = 0;
}
if ( iIter == 0 && !pcCU->getSlice()->getMvdL1ZeroFlag())
{
pcCU->getCUMvField(RefPicList(1-iRefList))->setAllMv( cMv[1-iRefList], ePartSize, uiPartAddr, 0, iPartIdx );
pcCU->getCUMvField(RefPicList(1-iRefList))->setAllRefIdx( iRefIdx[1-iRefList], ePartSize, uiPartAddr, 0, iPartIdx );
TComYuv* pcYuvPred = &m_acYuvPred[1-iRefList];
motionCompensation ( pcCU, pcYuvPred, RefPicList(1-iRefList), iPartIdx );
}
RefPicList eRefPicList = ( iRefList ? REF_PIC_LIST_1 : REF_PIC_LIST_0 );
if(pcCU->getSlice()->getMvdL1ZeroFlag())
{
iRefList = 0;
eRefPicList = REF_PIC_LIST_0;
}
Bool bChanged = false;
iRefStart = 0;
iRefEnd = pcCU->getSlice()->getNumRefIdx(eRefPicList)-1;
for ( Int iRefIdxTemp = iRefStart; iRefIdxTemp <= iRefEnd; iRefIdxTemp++ )
{
uiBitsTemp = uiMbBits[2] + uiMotBits[1-iRefList];
if ( pcCU->getSlice()->getNumRefIdx(eRefPicList) > 1 )
{
uiBitsTemp += iRefIdxTemp+1;
if ( iRefIdxTemp == pcCU->getSlice()->getNumRefIdx(eRefPicList)-1 ) uiBitsTemp--;
}
uiBitsTemp += m_auiMVPIdxCost[aaiMvpIdxBi[iRefList][iRefIdxTemp]][AMVP_MAX_NUM_CANDS];
// call ME
xMotionEstimation ( pcCU, pcOrgYuv, iPartIdx, eRefPicList, &cMvPredBi[iRefList][iRefIdxTemp], iRefIdxTemp, cMvTemp[iRefList][iRefIdxTemp], uiBitsTemp, uiCostTemp, true );
xCopyAMVPInfo(&aacAMVPInfo[iRefList][iRefIdxTemp], pcCU->getCUMvField(eRefPicList)->getAMVPInfo());
xCheckBestMVP(pcCU, eRefPicList, cMvTemp[iRefList][iRefIdxTemp], cMvPredBi[iRefList][iRefIdxTemp], aaiMvpIdxBi[iRefList][iRefIdxTemp], uiBitsTemp, uiCostTemp);
if ( uiCostTemp < uiCostBi )
{
bChanged = true;
cMvBi[iRefList] = cMvTemp[iRefList][iRefIdxTemp];
iRefIdxBi[iRefList] = iRefIdxTemp;
uiCostBi = uiCostTemp;
uiMotBits[iRefList] = uiBitsTemp - uiMbBits[2] - uiMotBits[1-iRefList];
uiBits[2] = uiBitsTemp;
if(iNumIter!=1)
{
// Set motion
pcCU->getCUMvField( eRefPicList )->setAllMv( cMvBi[iRefList], ePartSize, uiPartAddr, 0, iPartIdx );
pcCU->getCUMvField( eRefPicList )->setAllRefIdx( iRefIdxBi[iRefList], ePartSize, uiPartAddr, 0, iPartIdx );
TComYuv* pcYuvPred = &m_acYuvPred[iRefList];
motionCompensation( pcCU, pcYuvPred, eRefPicList, iPartIdx );
}
}
} // for loop-iRefIdxTemp
if ( !bChanged )
{
if ( uiCostBi <= uiCost[0] && uiCostBi <= uiCost[1] )
{
xCopyAMVPInfo(&aacAMVPInfo[0][iRefIdxBi[0]], pcCU->getCUMvField(REF_PIC_LIST_0)->getAMVPInfo());
xCheckBestMVP(pcCU, REF_PIC_LIST_0, cMvBi[0], cMvPredBi[0][iRefIdxBi[0]], aaiMvpIdxBi[0][iRefIdxBi[0]], uiBits[2], uiCostBi);
if(!pcCU->getSlice()->getMvdL1ZeroFlag())
{
xCopyAMVPInfo(&aacAMVPInfo[1][iRefIdxBi[1]], pcCU->getCUMvField(REF_PIC_LIST_1)->getAMVPInfo());
xCheckBestMVP(pcCU, REF_PIC_LIST_1, cMvBi[1], cMvPredBi[1][iRefIdxBi[1]], aaiMvpIdxBi[1][iRefIdxBi[1]], uiBits[2], uiCostBi);
}
}
break;
}
} // for loop-iter
} // if (B_SLICE)
#if AMP_MRG
} //end if bTestNormalMC
#endif
// Clear Motion Field
pcCU->getCUMvField(REF_PIC_LIST_0)->setAllMvField( TComMvField(), ePartSize, uiPartAddr, 0, iPartIdx );
pcCU->getCUMvField(REF_PIC_LIST_1)->setAllMvField( TComMvField(), ePartSize, uiPartAddr, 0, iPartIdx );
pcCU->getCUMvField(REF_PIC_LIST_0)->setAllMvd ( cMvZero, ePartSize, uiPartAddr, 0, iPartIdx );
pcCU->getCUMvField(REF_PIC_LIST_1)->setAllMvd ( cMvZero, ePartSize, uiPartAddr, 0, iPartIdx );
pcCU->setMVPIdxSubParts( -1, REF_PIC_LIST_0, uiPartAddr, iPartIdx, pcCU->getDepth(uiPartAddr));
pcCU->setMVPNumSubParts( -1, REF_PIC_LIST_0, uiPartAddr, iPartIdx, pcCU->getDepth(uiPartAddr));
pcCU->setMVPIdxSubParts( -1, REF_PIC_LIST_1, uiPartAddr, iPartIdx, pcCU->getDepth(uiPartAddr));
pcCU->setMVPNumSubParts( -1, REF_PIC_LIST_1, uiPartAddr, iPartIdx, pcCU->getDepth(uiPartAddr));
UInt uiMEBits = 0;
// Set Motion Field_
cMv[1] = mvValidList1;
iRefIdx[1] = refIdxValidList1;
uiBits[1] = bitsValidList1;
uiCost[1] = costValidList1;
#if AMP_MRG
if (bTestNormalMC)
{
#endif
if ( uiCostBi <= uiCost[0] && uiCostBi <= uiCost[1])
{
uiLastMode = 2;
pcCU->getCUMvField(REF_PIC_LIST_0)->setAllMv( cMvBi[0], ePartSize, uiPartAddr, 0, iPartIdx );
pcCU->getCUMvField(REF_PIC_LIST_0)->setAllRefIdx( iRefIdxBi[0], ePartSize, uiPartAddr, 0, iPartIdx );
pcCU->getCUMvField(REF_PIC_LIST_1)->setAllMv( cMvBi[1], ePartSize, uiPartAddr, 0, iPartIdx );
pcCU->getCUMvField(REF_PIC_LIST_1)->setAllRefIdx( iRefIdxBi[1], ePartSize, uiPartAddr, 0, iPartIdx );
TempMv = cMvBi[0] - cMvPredBi[0][iRefIdxBi[0]];
pcCU->getCUMvField(REF_PIC_LIST_0)->setAllMvd ( TempMv, ePartSize, uiPartAddr, 0, iPartIdx );
TempMv = cMvBi[1] - cMvPredBi[1][iRefIdxBi[1]];
pcCU->getCUMvField(REF_PIC_LIST_1)->setAllMvd ( TempMv, ePartSize, uiPartAddr, 0, iPartIdx );
pcCU->setInterDirSubParts( 3, uiPartAddr, iPartIdx, pcCU->getDepth(0) );
pcCU->setMVPIdxSubParts( aaiMvpIdxBi[0][iRefIdxBi[0]], REF_PIC_LIST_0, uiPartAddr, iPartIdx, pcCU->getDepth(uiPartAddr));
pcCU->setMVPNumSubParts( aaiMvpNum[0][iRefIdxBi[0]], REF_PIC_LIST_0, uiPartAddr, iPartIdx, pcCU->getDepth(uiPartAddr));
pcCU->setMVPIdxSubParts( aaiMvpIdxBi[1][iRefIdxBi[1]], REF_PIC_LIST_1, uiPartAddr, iPartIdx, pcCU->getDepth(uiPartAddr));
pcCU->setMVPNumSubParts( aaiMvpNum[1][iRefIdxBi[1]], REF_PIC_LIST_1, uiPartAddr, iPartIdx, pcCU->getDepth(uiPartAddr));
uiMEBits = uiBits[2];
}
else if ( uiCost[0] <= uiCost[1] )
{
uiLastMode = 0;
pcCU->getCUMvField(REF_PIC_LIST_0)->setAllMv( cMv[0], ePartSize, uiPartAddr, 0, iPartIdx );
pcCU->getCUMvField(REF_PIC_LIST_0)->setAllRefIdx( iRefIdx[0], ePartSize, uiPartAddr, 0, iPartIdx );
TempMv = cMv[0] - cMvPred[0][iRefIdx[0]];
pcCU->getCUMvField(REF_PIC_LIST_0)->setAllMvd ( TempMv, ePartSize, uiPartAddr, 0, iPartIdx );
pcCU->setInterDirSubParts( 1, uiPartAddr, iPartIdx, pcCU->getDepth(0) );
pcCU->setMVPIdxSubParts( aaiMvpIdx[0][iRefIdx[0]], REF_PIC_LIST_0, uiPartAddr, iPartIdx, pcCU->getDepth(uiPartAddr));
pcCU->setMVPNumSubParts( aaiMvpNum[0][iRefIdx[0]], REF_PIC_LIST_0, uiPartAddr, iPartIdx, pcCU->getDepth(uiPartAddr));
uiMEBits = uiBits[0];
}
else
{
uiLastMode = 1;
pcCU->getCUMvField(REF_PIC_LIST_1)->setAllMv( cMv[1], ePartSize, uiPartAddr, 0, iPartIdx );
pcCU->getCUMvField(REF_PIC_LIST_1)->setAllRefIdx( iRefIdx[1], ePartSize, uiPartAddr, 0, iPartIdx );
TempMv = cMv[1] - cMvPred[1][iRefIdx[1]];
pcCU->getCUMvField(REF_PIC_LIST_1)->setAllMvd ( TempMv, ePartSize, uiPartAddr, 0, iPartIdx );
pcCU->setInterDirSubParts( 2, uiPartAddr, iPartIdx, pcCU->getDepth(0) );
pcCU->setMVPIdxSubParts( aaiMvpIdx[1][iRefIdx[1]], REF_PIC_LIST_1, uiPartAddr, iPartIdx, pcCU->getDepth(uiPartAddr));
pcCU->setMVPNumSubParts( aaiMvpNum[1][iRefIdx[1]], REF_PIC_LIST_1, uiPartAddr, iPartIdx, pcCU->getDepth(uiPartAddr));
uiMEBits = uiBits[1];
}
#if AMP_MRG
} // end if bTestNormalMC
#endif
if ( pcCU->getPartitionSize( uiPartAddr ) != SIZE_2Nx2N )
{
UInt uiMRGInterDir = 0;
TComMvField cMRGMvField[2];
UInt uiMRGIndex = 0;
UInt uiMEInterDir = 0;
TComMvField cMEMvField[2];
m_pcRdCost->getMotionCost( true, 0, pcCU->getCUTransquantBypass(uiPartAddr) );
#if AMP_MRG
// calculate ME cost
Distortion uiMEError = std::numeric_limits<Distortion>::max();
Distortion uiMECost = std::numeric_limits<Distortion>::max();
if (bTestNormalMC)
{
xGetInterPredictionError( pcCU, pcOrgYuv, iPartIdx, uiMEError, m_pcEncCfg->getUseHADME() );
uiMECost = uiMEError + m_pcRdCost->getCost( uiMEBits );
}
#else
// calculate ME cost
Distortion uiMEError = std::numeric_limits<Distortion>::max();
xGetInterPredictionError( pcCU, pcOrgYuv, iPartIdx, uiMEError, m_pcEncCfg->getUseHADME() );
Distortion uiMECost = uiMEError + m_pcRdCost->getCost( uiMEBits );
#endif
// save ME result.
uiMEInterDir = pcCU->getInterDir( uiPartAddr );
pcCU->getMvField( pcCU, uiPartAddr, REF_PIC_LIST_0, cMEMvField[0] );
pcCU->getMvField( pcCU, uiPartAddr, REF_PIC_LIST_1, cMEMvField[1] );
// find Merge result
Distortion uiMRGCost = std::numeric_limits<Distortion>::max();
xMergeEstimation( pcCU, pcOrgYuv, iPartIdx, uiMRGInterDir, cMRGMvField, uiMRGIndex, uiMRGCost, cMvFieldNeighbours, uhInterDirNeighbours, numValidMergeCand);
if ( uiMRGCost < uiMECost )
{
// set Merge result
pcCU->setMergeFlagSubParts ( true, uiPartAddr, iPartIdx, pcCU->getDepth( uiPartAddr ) );
pcCU->setMergeIndexSubParts( uiMRGIndex, uiPartAddr, iPartIdx, pcCU->getDepth( uiPartAddr ) );
pcCU->setInterDirSubParts ( uiMRGInterDir, uiPartAddr, iPartIdx, pcCU->getDepth( uiPartAddr ) );
pcCU->getCUMvField( REF_PIC_LIST_0 )->setAllMvField( cMRGMvField[0], ePartSize, uiPartAddr, 0, iPartIdx );
pcCU->getCUMvField( REF_PIC_LIST_1 )->setAllMvField( cMRGMvField[1], ePartSize, uiPartAddr, 0, iPartIdx );
pcCU->getCUMvField(REF_PIC_LIST_0)->setAllMvd ( cMvZero, ePartSize, uiPartAddr, 0, iPartIdx );
pcCU->getCUMvField(REF_PIC_LIST_1)->setAllMvd ( cMvZero, ePartSize, uiPartAddr, 0, iPartIdx );
pcCU->setMVPIdxSubParts( -1, REF_PIC_LIST_0, uiPartAddr, iPartIdx, pcCU->getDepth(uiPartAddr));
pcCU->setMVPNumSubParts( -1, REF_PIC_LIST_0, uiPartAddr, iPartIdx, pcCU->getDepth(uiPartAddr));
pcCU->setMVPIdxSubParts( -1, REF_PIC_LIST_1, uiPartAddr, iPartIdx, pcCU->getDepth(uiPartAddr));
pcCU->setMVPNumSubParts( -1, REF_PIC_LIST_1, uiPartAddr, iPartIdx, pcCU->getDepth(uiPartAddr));
}
else
{
// set ME result
pcCU->setMergeFlagSubParts( false, uiPartAddr, iPartIdx, pcCU->getDepth( uiPartAddr ) );
pcCU->setInterDirSubParts ( uiMEInterDir, uiPartAddr, iPartIdx, pcCU->getDepth( uiPartAddr ) );
pcCU->getCUMvField( REF_PIC_LIST_0 )->setAllMvField( cMEMvField[0], ePartSize, uiPartAddr, 0, iPartIdx );
pcCU->getCUMvField( REF_PIC_LIST_1 )->setAllMvField( cMEMvField[1], ePartSize, uiPartAddr, 0, iPartIdx );
}
}
// MC
motionCompensation ( pcCU, pcPredYuv, REF_PIC_LIST_X, iPartIdx );
} // end of for ( Int iPartIdx = 0; iPartIdx < iNumPart; iPartIdx++ )
setWpScalingDistParam( pcCU, -1, REF_PIC_LIST_X );
return;
}
// AMVP
Void TEncSearch::xEstimateMvPredAMVP( TComDataCU* pcCU, TComYuv* pcOrgYuv, UInt uiPartIdx, RefPicList eRefPicList, Int iRefIdx, TComMv& rcMvPred, Bool bFilled, Distortion* puiDistBiP )
{
AMVPInfo* pcAMVPInfo = pcCU->getCUMvField(eRefPicList)->getAMVPInfo();
TComMv cBestMv;
Int iBestIdx = 0;
TComMv cZeroMv;
TComMv cMvPred;
Distortion uiBestCost = std::numeric_limits<Distortion>::max();
UInt uiPartAddr = 0;
Int iRoiWidth, iRoiHeight;
Int i;
pcCU->getPartIndexAndSize( uiPartIdx, uiPartAddr, iRoiWidth, iRoiHeight );
// Fill the MV Candidates
if (!bFilled)
{
pcCU->fillMvpCand( uiPartIdx, uiPartAddr, eRefPicList, iRefIdx, pcAMVPInfo );
}
// initialize Mvp index & Mvp
iBestIdx = 0;
cBestMv = pcAMVPInfo->m_acMvCand[0];
if (pcAMVPInfo->iN <= 1)
{
rcMvPred = cBestMv;
pcCU->setMVPIdxSubParts( iBestIdx, eRefPicList, uiPartAddr, uiPartIdx, pcCU->getDepth(uiPartAddr));
pcCU->setMVPNumSubParts( pcAMVPInfo->iN, eRefPicList, uiPartAddr, uiPartIdx, pcCU->getDepth(uiPartAddr));
if(pcCU->getSlice()->getMvdL1ZeroFlag() && eRefPicList==REF_PIC_LIST_1)
{
(*puiDistBiP) = xGetTemplateCost( pcCU, uiPartIdx, uiPartAddr, pcOrgYuv, &m_cYuvPredTemp, rcMvPred, 0, AMVP_MAX_NUM_CANDS, eRefPicList, iRefIdx, iRoiWidth, iRoiHeight);
}
return;
}
if (bFilled)
{
assert(pcCU->getMVPIdx(eRefPicList,uiPartAddr) >= 0);
rcMvPred = pcAMVPInfo->m_acMvCand[pcCU->getMVPIdx(eRefPicList,uiPartAddr)];
return;
}
m_cYuvPredTemp.clear();
//-- Check Minimum Cost.
for ( i = 0 ; i < pcAMVPInfo->iN; i++)
{
Distortion uiTmpCost;
uiTmpCost = xGetTemplateCost( pcCU, uiPartIdx, uiPartAddr, pcOrgYuv, &m_cYuvPredTemp, pcAMVPInfo->m_acMvCand[i], i, AMVP_MAX_NUM_CANDS, eRefPicList, iRefIdx, iRoiWidth, iRoiHeight);
if ( uiBestCost > uiTmpCost )
{
uiBestCost = uiTmpCost;
cBestMv = pcAMVPInfo->m_acMvCand[i];
iBestIdx = i;
(*puiDistBiP) = uiTmpCost;
}
}
m_cYuvPredTemp.clear();
// Setting Best MVP
rcMvPred = cBestMv;
pcCU->setMVPIdxSubParts( iBestIdx, eRefPicList, uiPartAddr, uiPartIdx, pcCU->getDepth(uiPartAddr));
pcCU->setMVPNumSubParts( pcAMVPInfo->iN, eRefPicList, uiPartAddr, uiPartIdx, pcCU->getDepth(uiPartAddr));
return;
}
UInt TEncSearch::xGetMvpIdxBits(Int iIdx, Int iNum)
{
assert(iIdx >= 0 && iNum >= 0 && iIdx < iNum);
if (iNum == 1)
{
return 0;
}
UInt uiLength = 1;
Int iTemp = iIdx;
if ( iTemp == 0 )
{
return uiLength;
}
Bool bCodeLast = ( iNum-1 > iTemp );
uiLength += (iTemp-1);
if( bCodeLast )
{
uiLength++;
}
return uiLength;
}
Void TEncSearch::xGetBlkBits( PartSize eCUMode, Bool bPSlice, Int iPartIdx, UInt uiLastMode, UInt uiBlkBit[3])
{
if ( eCUMode == SIZE_2Nx2N )
{
uiBlkBit[0] = (! bPSlice) ? 3 : 1;
uiBlkBit[1] = 3;
uiBlkBit[2] = 5;
}
else if ( (eCUMode == SIZE_2NxN || eCUMode == SIZE_2NxnU) || eCUMode == SIZE_2NxnD )
{
UInt aauiMbBits[2][3][3] = { { {0,0,3}, {0,0,0}, {0,0,0} } , { {5,7,7}, {7,5,7}, {9-3,9-3,9-3} } };
if ( bPSlice )
{
uiBlkBit[0] = 3;
uiBlkBit[1] = 0;
uiBlkBit[2] = 0;
}
else
{
::memcpy( uiBlkBit, aauiMbBits[iPartIdx][uiLastMode], 3*sizeof(UInt) );
}
}
else if ( (eCUMode == SIZE_Nx2N || eCUMode == SIZE_nLx2N) || eCUMode == SIZE_nRx2N )
{
UInt aauiMbBits[2][3][3] = { { {0,2,3}, {0,0,0}, {0,0,0} } , { {5,7,7}, {7-2,7-2,9-2}, {9-3,9-3,9-3} } };
if ( bPSlice )
{
uiBlkBit[0] = 3;
uiBlkBit[1] = 0;
uiBlkBit[2] = 0;
}
else
{
::memcpy( uiBlkBit, aauiMbBits[iPartIdx][uiLastMode], 3*sizeof(UInt) );
}
}
else if ( eCUMode == SIZE_NxN )
{
uiBlkBit[0] = (! bPSlice) ? 3 : 1;
uiBlkBit[1] = 3;
uiBlkBit[2] = 5;
}
else
{
printf("Wrong!\n");
assert( 0 );
}
}
Void TEncSearch::xCopyAMVPInfo (AMVPInfo* pSrc, AMVPInfo* pDst)
{
pDst->iN = pSrc->iN;
for (Int i = 0; i < pSrc->iN; i++)
{
pDst->m_acMvCand[i] = pSrc->m_acMvCand[i];
}
}
Void TEncSearch::xCheckBestMVP ( TComDataCU* pcCU, RefPicList eRefPicList, TComMv cMv, TComMv& rcMvPred, Int& riMVPIdx, UInt& ruiBits, Distortion& ruiCost )
{
AMVPInfo* pcAMVPInfo = pcCU->getCUMvField(eRefPicList)->getAMVPInfo();
assert(pcAMVPInfo->m_acMvCand[riMVPIdx] == rcMvPred);
if (pcAMVPInfo->iN < 2) return;
m_pcRdCost->getMotionCost( true, 0, pcCU->getCUTransquantBypass(0) );
m_pcRdCost->setCostScale ( 0 );
Int iBestMVPIdx = riMVPIdx;
m_pcRdCost->setPredictor( rcMvPred );
Int iOrgMvBits = m_pcRdCost->getBits(cMv.getHor(), cMv.getVer());
iOrgMvBits += m_auiMVPIdxCost[riMVPIdx][AMVP_MAX_NUM_CANDS];
Int iBestMvBits = iOrgMvBits;
for (Int iMVPIdx = 0; iMVPIdx < pcAMVPInfo->iN; iMVPIdx++)
{
if (iMVPIdx == riMVPIdx) continue;
m_pcRdCost->setPredictor( pcAMVPInfo->m_acMvCand[iMVPIdx] );
Int iMvBits = m_pcRdCost->getBits(cMv.getHor(), cMv.getVer());
iMvBits += m_auiMVPIdxCost[iMVPIdx][AMVP_MAX_NUM_CANDS];
if (iMvBits < iBestMvBits)
{
iBestMvBits = iMvBits;
iBestMVPIdx = iMVPIdx;
}
}
if (iBestMVPIdx != riMVPIdx) //if changed
{
rcMvPred = pcAMVPInfo->m_acMvCand[iBestMVPIdx];
riMVPIdx = iBestMVPIdx;
UInt uiOrgBits = ruiBits;
ruiBits = uiOrgBits - iOrgMvBits + iBestMvBits;
ruiCost = (ruiCost - m_pcRdCost->getCost( uiOrgBits )) + m_pcRdCost->getCost( ruiBits );
}
}
Distortion TEncSearch::xGetTemplateCost( TComDataCU* pcCU,
UInt uiPartIdx,
UInt uiPartAddr,
TComYuv* pcOrgYuv,
TComYuv* pcTemplateCand,
TComMv cMvCand,
Int iMVPIdx,
Int iMVPNum,
RefPicList eRefPicList,
Int iRefIdx,
Int iSizeX,
Int iSizeY
)
{
Distortion uiCost = std::numeric_limits<Distortion>::max();
TComPicYuv* pcPicYuvRef = pcCU->getSlice()->getRefPic( eRefPicList, iRefIdx )->getPicYuvRec();
pcCU->clipMv( cMvCand );
// prediction pattern
if ( pcCU->getSlice()->getPPS()->getUseWP() && pcCU->getSlice()->getSliceType()==P_SLICE )
{
xPredInterBlk( COMPONENT_Y, pcCU, pcPicYuvRef, uiPartAddr, &cMvCand, iSizeX, iSizeY, pcTemplateCand, true );
}
else
{
xPredInterBlk( COMPONENT_Y, pcCU, pcPicYuvRef, uiPartAddr, &cMvCand, iSizeX, iSizeY, pcTemplateCand, false );
}
if ( pcCU->getSlice()->getPPS()->getUseWP() && pcCU->getSlice()->getSliceType()==P_SLICE )
{
xWeightedPredictionUni( pcCU, pcTemplateCand, uiPartAddr, iSizeX, iSizeY, eRefPicList, pcTemplateCand, iRefIdx );
}
// calc distortion
uiCost = m_pcRdCost->getDistPart( g_bitDepth[CHANNEL_TYPE_LUMA], pcTemplateCand->getAddr(COMPONENT_Y, uiPartAddr), pcTemplateCand->getStride(COMPONENT_Y), pcOrgYuv->getAddr(COMPONENT_Y, uiPartAddr), pcOrgYuv->getStride(COMPONENT_Y), iSizeX, iSizeY, COMPONENT_Y, DF_SAD );
uiCost = (UInt) m_pcRdCost->calcRdCost( m_auiMVPIdxCost[iMVPIdx][iMVPNum], uiCost, false, DF_SAD );
return uiCost;
}
Void TEncSearch::xMotionEstimation( TComDataCU* pcCU, TComYuv* pcYuvOrg, Int iPartIdx, RefPicList eRefPicList, TComMv* pcMvPred, Int iRefIdxPred, TComMv& rcMv, UInt& ruiBits, Distortion& ruiCost, Bool bBi )
{
UInt uiPartAddr;
Int iRoiWidth;
Int iRoiHeight;
TComMv cMvHalf, cMvQter;
TComMv cMvSrchRngLT;
TComMv cMvSrchRngRB;
TComYuv* pcYuv = pcYuvOrg;
assert(eRefPicList < MAX_NUM_REF_LIST_ADAPT_SR && iRefIdxPred<Int(MAX_IDX_ADAPT_SR));
m_iSearchRange = m_aaiAdaptSR[eRefPicList][iRefIdxPred];
Int iSrchRng = ( bBi ? m_bipredSearchRange : m_iSearchRange );
TComPattern tmpPattern;
TComPattern* pcPatternKey = &tmpPattern;
Double fWeight = 1.0;
pcCU->getPartIndexAndSize( iPartIdx, uiPartAddr, iRoiWidth, iRoiHeight );
if ( bBi )
{
TComYuv* pcYuvOther = &m_acYuvPred[1-(Int)eRefPicList];
pcYuv = &m_cYuvPredTemp;
pcYuvOrg->copyPartToPartYuv( pcYuv, uiPartAddr, iRoiWidth, iRoiHeight );
pcYuv->removeHighFreq( pcYuvOther, uiPartAddr, iRoiWidth, iRoiHeight );
fWeight = 0.5;
}
// Search key pattern initialization
pcPatternKey->initPattern( pcYuv->getAddr ( COMPONENT_Y, uiPartAddr ),
iRoiWidth,
iRoiHeight,
pcYuv->getStride(COMPONENT_Y) );
Pel* piRefY = pcCU->getSlice()->getRefPic( eRefPicList, iRefIdxPred )->getPicYuvRec()->getAddr( COMPONENT_Y, pcCU->getCtuRsAddr(), pcCU->getZorderIdxInCtu() + uiPartAddr );
Int iRefStride = pcCU->getSlice()->getRefPic( eRefPicList, iRefIdxPred )->getPicYuvRec()->getStride(COMPONENT_Y);
TComMv cMvPred = *pcMvPred;
if ( bBi ) xSetSearchRange ( pcCU, rcMv , iSrchRng, cMvSrchRngLT, cMvSrchRngRB );
else xSetSearchRange ( pcCU, cMvPred, iSrchRng, cMvSrchRngLT, cMvSrchRngRB );
m_pcRdCost->getMotionCost( true, 0, pcCU->getCUTransquantBypass(uiPartAddr) );
m_pcRdCost->setPredictor ( *pcMvPred );
m_pcRdCost->setCostScale ( 2 );
setWpScalingDistParam( pcCU, iRefIdxPred, eRefPicList );
// Do integer search
if ( !m_iFastSearch || bBi )
{
xPatternSearch ( pcPatternKey, piRefY, iRefStride, &cMvSrchRngLT, &cMvSrchRngRB, rcMv, ruiCost );
}
else
{
rcMv = *pcMvPred;
const TComMv *pIntegerMv2Nx2NPred=0;
if (pcCU->getPartitionSize(0) != SIZE_2Nx2N || pcCU->getDepth(0) != 0)
{
pIntegerMv2Nx2NPred = &(m_integerMv2Nx2N[eRefPicList][iRefIdxPred]);
}
xPatternSearchFast ( pcCU, pcPatternKey, piRefY, iRefStride, &cMvSrchRngLT, &cMvSrchRngRB, rcMv, ruiCost, pIntegerMv2Nx2NPred );
if (pcCU->getPartitionSize(0) == SIZE_2Nx2N)
{
m_integerMv2Nx2N[eRefPicList][iRefIdxPred] = rcMv;
}
}
m_pcRdCost->getMotionCost( true, 0, pcCU->getCUTransquantBypass(uiPartAddr) );
m_pcRdCost->setCostScale ( 1 );
const Bool bIsLosslessCoded = pcCU->getCUTransquantBypass(uiPartAddr) != 0;
xPatternSearchFracDIF( bIsLosslessCoded, pcPatternKey, piRefY, iRefStride, &rcMv, cMvHalf, cMvQter, ruiCost ,bBi );
m_pcRdCost->setCostScale( 0 );
rcMv <<= 2;
rcMv += (cMvHalf <<= 1);
rcMv += cMvQter;
UInt uiMvBits = m_pcRdCost->getBits( rcMv.getHor(), rcMv.getVer() );
ruiBits += uiMvBits;
ruiCost = (Distortion)( floor( fWeight * ( (Double)ruiCost - (Double)m_pcRdCost->getCost( uiMvBits ) ) ) + (Double)m_pcRdCost->getCost( ruiBits ) );
}
Void TEncSearch::xSetSearchRange ( TComDataCU* pcCU, TComMv& cMvPred, Int iSrchRng, TComMv& rcMvSrchRngLT, TComMv& rcMvSrchRngRB )
{
Int iMvShift = 2;
TComMv cTmpMvPred = cMvPred;
pcCU->clipMv( cTmpMvPred );
rcMvSrchRngLT.setHor( cTmpMvPred.getHor() - (iSrchRng << iMvShift) );
rcMvSrchRngLT.setVer( cTmpMvPred.getVer() - (iSrchRng << iMvShift) );
rcMvSrchRngRB.setHor( cTmpMvPred.getHor() + (iSrchRng << iMvShift) );
rcMvSrchRngRB.setVer( cTmpMvPred.getVer() + (iSrchRng << iMvShift) );
pcCU->clipMv ( rcMvSrchRngLT );
pcCU->clipMv ( rcMvSrchRngRB );
rcMvSrchRngLT >>= iMvShift;
rcMvSrchRngRB >>= iMvShift;
}
Void TEncSearch::xPatternSearch( TComPattern* pcPatternKey, Pel* piRefY, Int iRefStride, TComMv* pcMvSrchRngLT, TComMv* pcMvSrchRngRB, TComMv& rcMv, Distortion& ruiSAD )
{
Int iSrchRngHorLeft = pcMvSrchRngLT->getHor();
Int iSrchRngHorRight = pcMvSrchRngRB->getHor();
Int iSrchRngVerTop = pcMvSrchRngLT->getVer();
Int iSrchRngVerBottom = pcMvSrchRngRB->getVer();
Distortion uiSad;
Distortion uiSadBest = std::numeric_limits<Distortion>::max();
Int iBestX = 0;
Int iBestY = 0;
Pel* piRefSrch;
//-- jclee for using the SAD function pointer
m_pcRdCost->setDistParam( pcPatternKey, piRefY, iRefStride, m_cDistParam );
// fast encoder decision: use subsampled SAD for integer ME
if ( m_pcEncCfg->getUseFastEnc() )
{
if ( m_cDistParam.iRows > 8 )
{
m_cDistParam.iSubShift = 1;
}
}
piRefY += (iSrchRngVerTop * iRefStride);
for ( Int y = iSrchRngVerTop; y <= iSrchRngVerBottom; y++ )
{
for ( Int x = iSrchRngHorLeft; x <= iSrchRngHorRight; x++ )
{
// find min. distortion position
piRefSrch = piRefY + x;
m_cDistParam.pCur = piRefSrch;
setDistParamComp(COMPONENT_Y);
m_cDistParam.bitDepth = g_bitDepth[CHANNEL_TYPE_LUMA];
uiSad = m_cDistParam.DistFunc( &m_cDistParam );
// motion cost
uiSad += m_pcRdCost->getCost( x, y );
if ( uiSad < uiSadBest )
{
uiSadBest = uiSad;
iBestX = x;
iBestY = y;
}
}
piRefY += iRefStride;
}
rcMv.set( iBestX, iBestY );
ruiSAD = uiSadBest - m_pcRdCost->getCost( iBestX, iBestY );
return;
}
Void TEncSearch::xPatternSearchFast( TComDataCU* pcCU,
TComPattern* pcPatternKey,
Pel* piRefY,
Int iRefStride,
TComMv* pcMvSrchRngLT,
TComMv* pcMvSrchRngRB,
TComMv &rcMv,
Distortion &ruiSAD,
const TComMv* pIntegerMv2Nx2NPred )
{
assert (MD_LEFT < NUM_MV_PREDICTORS);
pcCU->getMvPredLeft ( m_acMvPredictors[MD_LEFT] );
assert (MD_ABOVE < NUM_MV_PREDICTORS);
pcCU->getMvPredAbove ( m_acMvPredictors[MD_ABOVE] );
assert (MD_ABOVE_RIGHT < NUM_MV_PREDICTORS);
pcCU->getMvPredAboveRight ( m_acMvPredictors[MD_ABOVE_RIGHT] );
switch ( m_iFastSearch )
{
case 1:
xTZSearch( pcCU, pcPatternKey, piRefY, iRefStride, pcMvSrchRngLT, pcMvSrchRngRB, rcMv, ruiSAD, pIntegerMv2Nx2NPred );
break;
case 2:
xTZSearchSelective( pcCU, pcPatternKey, piRefY, iRefStride, pcMvSrchRngLT, pcMvSrchRngRB, rcMv, ruiSAD, pIntegerMv2Nx2NPred );
break;
default:
break;
}
}
Void TEncSearch::xTZSearch( TComDataCU* pcCU,
TComPattern* pcPatternKey,
Pel* piRefY,
Int iRefStride,
TComMv* pcMvSrchRngLT,
TComMv* pcMvSrchRngRB,
TComMv &rcMv,
Distortion &ruiSAD,
const TComMv* pIntegerMv2Nx2NPred )
{
Int iSrchRngHorLeft = pcMvSrchRngLT->getHor();
Int iSrchRngHorRight = pcMvSrchRngRB->getHor();
Int iSrchRngVerTop = pcMvSrchRngLT->getVer();
Int iSrchRngVerBottom = pcMvSrchRngRB->getVer();
TZ_SEARCH_CONFIGURATION
UInt uiSearchRange = m_iSearchRange;
pcCU->clipMv( rcMv );
rcMv >>= 2;
// init TZSearchStruct
IntTZSearchStruct cStruct;
cStruct.iYStride = iRefStride;
cStruct.piRefY = piRefY;
cStruct.uiBestSad = MAX_UINT;
// set rcMv (Median predictor) as start point and as best point
xTZSearchHelp( pcPatternKey, cStruct, rcMv.getHor(), rcMv.getVer(), 0, 0 );
// test whether one of PRED_A, PRED_B, PRED_C MV is better start point than Median predictor
if ( bTestOtherPredictedMV )
{
for ( UInt index = 0; index < NUM_MV_PREDICTORS; index++ )
{
TComMv cMv = m_acMvPredictors[index];
pcCU->clipMv( cMv );
cMv >>= 2;
xTZSearchHelp( pcPatternKey, cStruct, cMv.getHor(), cMv.getVer(), 0, 0 );
}
}
// test whether zero Mv is better start point than Median predictor
if ( bTestZeroVector )
{
xTZSearchHelp( pcPatternKey, cStruct, 0, 0, 0, 0 );
}
if (pIntegerMv2Nx2NPred != 0)
{
TComMv integerMv2Nx2NPred = *pIntegerMv2Nx2NPred;
integerMv2Nx2NPred <<= 2;
pcCU->clipMv( integerMv2Nx2NPred );
integerMv2Nx2NPred >>= 2;
xTZSearchHelp(pcPatternKey, cStruct, integerMv2Nx2NPred.getHor(), integerMv2Nx2NPred.getVer(), 0, 0);
// reset search range
TComMv cMvSrchRngLT;
TComMv cMvSrchRngRB;
Int iSrchRng = m_iSearchRange;
TComMv currBestMv(cStruct.iBestX, cStruct.iBestY );
currBestMv <<= 2;
xSetSearchRange( pcCU, currBestMv, iSrchRng, cMvSrchRngLT, cMvSrchRngRB );
iSrchRngHorLeft = cMvSrchRngLT.getHor();
iSrchRngHorRight = cMvSrchRngRB.getHor();
iSrchRngVerTop = cMvSrchRngLT.getVer();
iSrchRngVerBottom = cMvSrchRngRB.getVer();
}
// start search
Int iDist = 0;
Int iStartX = cStruct.iBestX;
Int iStartY = cStruct.iBestY;
// first search
for ( iDist = 1; iDist <= (Int)uiSearchRange; iDist*=2 )
{
if ( bFirstSearchDiamond == 1 )
{
xTZ8PointDiamondSearch ( pcPatternKey, cStruct, pcMvSrchRngLT, pcMvSrchRngRB, iStartX, iStartY, iDist );
}
else
{
xTZ8PointSquareSearch ( pcPatternKey, cStruct, pcMvSrchRngLT, pcMvSrchRngRB, iStartX, iStartY, iDist );
}
if ( bFirstSearchStop && ( cStruct.uiBestRound >= uiFirstSearchRounds ) ) // stop criterion
{
break;
}
}
// test whether zero Mv is a better start point than Median predictor
if ( bTestZeroVectorStart && ((cStruct.iBestX != 0) || (cStruct.iBestY != 0)) )
{
xTZSearchHelp( pcPatternKey, cStruct, 0, 0, 0, 0 );
if ( (cStruct.iBestX == 0) && (cStruct.iBestY == 0) )
{
// test its neighborhood
for ( iDist = 1; iDist <= (Int)uiSearchRange; iDist*=2 )
{
xTZ8PointDiamondSearch( pcPatternKey, cStruct, pcMvSrchRngLT, pcMvSrchRngRB, 0, 0, iDist );
if ( bTestZeroVectorStop && (cStruct.uiBestRound > 0) ) // stop criterion
{
break;
}
}
}
}
// calculate only 2 missing points instead 8 points if cStruct.uiBestDistance == 1
if ( cStruct.uiBestDistance == 1 )
{
cStruct.uiBestDistance = 0;
xTZ2PointSearch( pcPatternKey, cStruct, pcMvSrchRngLT, pcMvSrchRngRB );
}
// raster search if distance is too big
if ( bEnableRasterSearch && ( ((Int)(cStruct.uiBestDistance) > iRaster) || bAlwaysRasterSearch ) )
{
cStruct.uiBestDistance = iRaster;
for ( iStartY = iSrchRngVerTop; iStartY <= iSrchRngVerBottom; iStartY += iRaster )
{
for ( iStartX = iSrchRngHorLeft; iStartX <= iSrchRngHorRight; iStartX += iRaster )
{
xTZSearchHelp( pcPatternKey, cStruct, iStartX, iStartY, 0, iRaster );
}
}
}
// raster refinement
if ( bRasterRefinementEnable && cStruct.uiBestDistance > 0 )
{
while ( cStruct.uiBestDistance > 0 )
{
iStartX = cStruct.iBestX;
iStartY = cStruct.iBestY;
if ( cStruct.uiBestDistance > 1 )
{
iDist = cStruct.uiBestDistance >>= 1;
if ( bRasterRefinementDiamond == 1 )
{
xTZ8PointDiamondSearch ( pcPatternKey, cStruct, pcMvSrchRngLT, pcMvSrchRngRB, iStartX, iStartY, iDist );
}
else
{
xTZ8PointSquareSearch ( pcPatternKey, cStruct, pcMvSrchRngLT, pcMvSrchRngRB, iStartX, iStartY, iDist );
}
}
// calculate only 2 missing points instead 8 points if cStruct.uiBestDistance == 1
if ( cStruct.uiBestDistance == 1 )
{
cStruct.uiBestDistance = 0;
if ( cStruct.ucPointNr != 0 )
{
xTZ2PointSearch( pcPatternKey, cStruct, pcMvSrchRngLT, pcMvSrchRngRB );
}
}
}
}
// start refinement
if ( bStarRefinementEnable && cStruct.uiBestDistance > 0 )
{
while ( cStruct.uiBestDistance > 0 )
{
iStartX = cStruct.iBestX;
iStartY = cStruct.iBestY;
cStruct.uiBestDistance = 0;
cStruct.ucPointNr = 0;
for ( iDist = 1; iDist < (Int)uiSearchRange + 1; iDist*=2 )
{
if ( bStarRefinementDiamond == 1 )
{
xTZ8PointDiamondSearch ( pcPatternKey, cStruct, pcMvSrchRngLT, pcMvSrchRngRB, iStartX, iStartY, iDist );
}
else
{
xTZ8PointSquareSearch ( pcPatternKey, cStruct, pcMvSrchRngLT, pcMvSrchRngRB, iStartX, iStartY, iDist );
}
if ( bStarRefinementStop && (cStruct.uiBestRound >= uiStarRefinementRounds) ) // stop criterion
{
break;
}
}
// calculate only 2 missing points instead 8 points if cStrukt.uiBestDistance == 1
if ( cStruct.uiBestDistance == 1 )
{
cStruct.uiBestDistance = 0;
if ( cStruct.ucPointNr != 0 )
{
xTZ2PointSearch( pcPatternKey, cStruct, pcMvSrchRngLT, pcMvSrchRngRB );
}
}
}
}
// write out best match
rcMv.set( cStruct.iBestX, cStruct.iBestY );
ruiSAD = cStruct.uiBestSad - m_pcRdCost->getCost( cStruct.iBestX, cStruct.iBestY );
}
Void TEncSearch::xTZSearchSelective( TComDataCU* pcCU,
TComPattern* pcPatternKey,
Pel* piRefY,
Int iRefStride,
TComMv* pcMvSrchRngLT,
TComMv* pcMvSrchRngRB,
TComMv &rcMv,
Distortion &ruiSAD,
const TComMv* pIntegerMv2Nx2NPred )
{
SEL_SEARCH_CONFIGURATION
Int iSrchRngHorLeft = pcMvSrchRngLT->getHor();
Int iSrchRngHorRight = pcMvSrchRngRB->getHor();
Int iSrchRngVerTop = pcMvSrchRngLT->getVer();
Int iSrchRngVerBottom = pcMvSrchRngRB->getVer();
Int iFirstSrchRngHorLeft = 0;
Int iFirstSrchRngHorRight = 0;
Int iFirstSrchRngVerTop = 0;
Int iFirstSrchRngVerBottom = 0;
Int iStartX = 0;
Int iStartY = 0;
Int iBestX = 0;
Int iBestY = 0;
Int iDist = 0;
pcCU->clipMv( rcMv );
rcMv >>= 2;
// init TZSearchStruct
IntTZSearchStruct cStruct;
cStruct.iYStride = iRefStride;
cStruct.piRefY = piRefY;
cStruct.uiBestSad = MAX_UINT;
cStruct.iBestX = 0;
cStruct.iBestY = 0;
// set rcMv (Median predictor) as start point and as best point
xTZSearchHelp( pcPatternKey, cStruct, rcMv.getHor(), rcMv.getVer(), 0, 0 );
// test whether one of PRED_A, PRED_B, PRED_C MV is better start point than Median predictor
if ( bTestOtherPredictedMV )
{
for ( UInt index = 0; index < NUM_MV_PREDICTORS; index++ )
{
TComMv cMv = m_acMvPredictors[index];
pcCU->clipMv( cMv );
cMv >>= 2;
xTZSearchHelp( pcPatternKey, cStruct, cMv.getHor(), cMv.getVer(), 0, 0 );
}
}
// test whether zero Mv is better start point than Median predictor
if ( bTestZeroVector )
{
xTZSearchHelp( pcPatternKey, cStruct, 0, 0, 0, 0 );
}
if ( pIntegerMv2Nx2NPred != 0 )
{
TComMv integerMv2Nx2NPred = *pIntegerMv2Nx2NPred;
integerMv2Nx2NPred <<= 2;
pcCU->clipMv( integerMv2Nx2NPred );
integerMv2Nx2NPred >>= 2;
xTZSearchHelp(pcPatternKey, cStruct, integerMv2Nx2NPred.getHor(), integerMv2Nx2NPred.getVer(), 0, 0);
// reset search range
TComMv cMvSrchRngLT;
TComMv cMvSrchRngRB;
Int iSrchRng = m_iSearchRange;
TComMv currBestMv(cStruct.iBestX, cStruct.iBestY );
currBestMv <<= 2;
xSetSearchRange( pcCU, currBestMv, iSrchRng, cMvSrchRngLT, cMvSrchRngRB );
iSrchRngHorLeft = cMvSrchRngLT.getHor();
iSrchRngHorRight = cMvSrchRngRB.getHor();
iSrchRngVerTop = cMvSrchRngLT.getVer();
iSrchRngVerBottom = cMvSrchRngRB.getVer();
}
// Initial search
iBestX = cStruct.iBestX;
iBestY = cStruct.iBestY;
iFirstSrchRngHorLeft = ((iBestX - uiSearchRangeInitial) > iSrchRngHorLeft) ? (iBestX - uiSearchRangeInitial) : iSrchRngHorLeft;
iFirstSrchRngVerTop = ((iBestY - uiSearchRangeInitial) > iSrchRngVerTop) ? (iBestY - uiSearchRangeInitial) : iSrchRngVerTop;
iFirstSrchRngHorRight = ((iBestX + uiSearchRangeInitial) < iSrchRngHorRight) ? (iBestX + uiSearchRangeInitial) : iSrchRngHorRight;
iFirstSrchRngVerBottom = ((iBestY + uiSearchRangeInitial) < iSrchRngVerBottom) ? (iBestY + uiSearchRangeInitial) : iSrchRngVerBottom;
for ( iStartY = iFirstSrchRngVerTop; iStartY <= iFirstSrchRngVerBottom; iStartY += uiSearchStep )
{
for ( iStartX = iFirstSrchRngHorLeft; iStartX <= iFirstSrchRngHorRight; iStartX += uiSearchStep )
{
xTZSearchHelp( pcPatternKey, cStruct, iStartX, iStartY, 0, 0 );
xTZ8PointDiamondSearch ( pcPatternKey, cStruct, pcMvSrchRngLT, pcMvSrchRngRB, iStartX, iStartY, 1 );
xTZ8PointDiamondSearch ( pcPatternKey, cStruct, pcMvSrchRngLT, pcMvSrchRngRB, iStartX, iStartY, 2 );
}
}
Int iMaxMVDistToPred = (abs(cStruct.iBestX - iBestX) > iMVDistThresh || abs(cStruct.iBestY - iBestY) > iMVDistThresh);
//full search with early exit if MV is distant from predictors
if ( bEnableRasterSearch && (iMaxMVDistToPred || bAlwaysRasterSearch) )
{
for ( iStartY = iSrchRngVerTop; iStartY <= iSrchRngVerBottom; iStartY += 1 )
{
for ( iStartX = iSrchRngHorLeft; iStartX <= iSrchRngHorRight; iStartX += 1 )
{
xTZSearchHelp( pcPatternKey, cStruct, iStartX, iStartY, 0, 1 );
}
}
}
//Smaller MV, refine around predictor
else if ( bStarRefinementEnable && cStruct.uiBestDistance > 0 )
{
// start refinement
while ( cStruct.uiBestDistance > 0 )
{
iStartX = cStruct.iBestX;
iStartY = cStruct.iBestY;
cStruct.uiBestDistance = 0;
cStruct.ucPointNr = 0;
for ( iDist = 1; iDist < (Int)uiSearchRange + 1; iDist*=2 )
{
if ( bStarRefinementDiamond == 1 )
{
xTZ8PointDiamondSearch ( pcPatternKey, cStruct, pcMvSrchRngLT, pcMvSrchRngRB, iStartX, iStartY, iDist );
}
else
{
xTZ8PointSquareSearch ( pcPatternKey, cStruct, pcMvSrchRngLT, pcMvSrchRngRB, iStartX, iStartY, iDist );
}
if ( bStarRefinementStop && (cStruct.uiBestRound >= uiStarRefinementRounds) ) // stop criterion
{
break;
}
}
// calculate only 2 missing points instead 8 points if cStrukt.uiBestDistance == 1
if ( cStruct.uiBestDistance == 1 )
{
cStruct.uiBestDistance = 0;
if ( cStruct.ucPointNr != 0 )
{
xTZ2PointSearch( pcPatternKey, cStruct, pcMvSrchRngLT, pcMvSrchRngRB );
}
}
}
}
// write out best match
rcMv.set( cStruct.iBestX, cStruct.iBestY );
ruiSAD = cStruct.uiBestSad - m_pcRdCost->getCost( cStruct.iBestX, cStruct.iBestY );
}
Void TEncSearch::xPatternSearchFracDIF(
Bool bIsLosslessCoded,
TComPattern* pcPatternKey,
Pel* piRefY,
Int iRefStride,
TComMv* pcMvInt,
TComMv& rcMvHalf,
TComMv& rcMvQter,
Distortion& ruiCost,
Bool biPred
)
{
// Reference pattern initialization (integer scale)
TComPattern cPatternRoi;
Int iOffset = pcMvInt->getHor() + pcMvInt->getVer() * iRefStride;
cPatternRoi.initPattern(piRefY + iOffset,
pcPatternKey->getROIYWidth(),
pcPatternKey->getROIYHeight(),
iRefStride );
// Half-pel refinement
xExtDIFUpSamplingH ( &cPatternRoi, biPred );
rcMvHalf = *pcMvInt; rcMvHalf <<= 1; // for mv-cost
TComMv baseRefMv(0, 0);
ruiCost = xPatternRefinement( pcPatternKey, baseRefMv, 2, rcMvHalf, !bIsLosslessCoded );
m_pcRdCost->setCostScale( 0 );
xExtDIFUpSamplingQ ( &cPatternRoi, rcMvHalf, biPred );
baseRefMv = rcMvHalf;
baseRefMv <<= 1;
rcMvQter = *pcMvInt; rcMvQter <<= 1; // for mv-cost
rcMvQter += rcMvHalf; rcMvQter <<= 1;
ruiCost = xPatternRefinement( pcPatternKey, baseRefMv, 1, rcMvQter, !bIsLosslessCoded );
}
/** encode residual and calculate rate-distortion for a CU block
* \param pcCU
* \param pcYuvOrg
* \param pcYuvPred
* \param rpcYuvResi
* \param rpcYuvResiBest
* \param rpcYuvRec
* \param bSkipRes
* \returns Void
*/
Void TEncSearch::encodeResAndCalcRdInterCU( TComDataCU* pcCU, TComYuv* pcYuvOrg, TComYuv* pcYuvPred,
TComYuv* pcYuvResi, TComYuv* pcYuvResiBest, TComYuv* pcYuvRec,
Bool bSkipRes DEBUG_STRING_FN_DECLARE(sDebug) )
{
if ( pcCU->isIntra(0) )
{
return;
}
Bool bHighPass = pcCU->getSlice()->getDepth() ? true : false;
UInt uiBits = 0, uiBitsBest = 0;
Distortion uiDistortion = 0, uiDistortionBest = 0;
UInt uiWidth = pcCU->getWidth ( 0 );
UInt uiHeight = pcCU->getHeight( 0 );
// No residual coding : SKIP mode
if ( bSkipRes )
{
pcCU->setSkipFlagSubParts( true, 0, pcCU->getDepth(0) );
pcYuvResi->clear();
pcYuvPred->copyToPartYuv( pcYuvRec, 0 );
for (UInt ch=0; ch < pcCU->getPic()->getNumberValidComponents(); ch++)
{
const ComponentID compID=ComponentID(ch);
const UInt csx=pcYuvOrg->getComponentScaleX(compID);
const UInt csy=pcYuvOrg->getComponentScaleY(compID);
uiDistortion += m_pcRdCost->getDistPart( g_bitDepth[toChannelType(compID)], pcYuvRec->getAddr(compID), pcYuvRec->getStride(compID), pcYuvOrg->getAddr(compID),
pcYuvOrg->getStride(compID), uiWidth >> csx, uiHeight >> csy, compID);
}
m_pcRDGoOnSbacCoder->load(m_pppcRDSbacCoder[pcCU->getDepth(0)][CI_CURR_BEST]);
m_pcEntropyCoder->resetBits();
if (pcCU->getSlice()->getPPS()->getTransquantBypassEnableFlag())
{
m_pcEntropyCoder->encodeCUTransquantBypassFlag(pcCU, 0, true);
}
m_pcEntropyCoder->encodeSkipFlag(pcCU, 0, true);
m_pcEntropyCoder->encodeMergeIndex( pcCU, 0, true );
uiBits = m_pcEntropyCoder->getNumberOfWrittenBits();
pcCU->getTotalBits() = uiBits;
pcCU->getTotalDistortion() = uiDistortion;
pcCU->getTotalCost() = m_pcRdCost->calcRdCost( uiBits, uiDistortion );
m_pcRDGoOnSbacCoder->store(m_pppcRDSbacCoder[pcCU->getDepth(0)][CI_TEMP_BEST]);
static const UInt cbfZero[MAX_NUM_COMPONENT]={0,0,0};
pcCU->setCbfSubParts( cbfZero, 0, pcCU->getDepth( 0 ) );
pcCU->setTrIdxSubParts( 0, 0, pcCU->getDepth(0) );
#ifdef DEBUG_STRING
pcYuvResiBest->clear(); // Clear the residual image, if we didn't code it.
for(UInt i=0; i<MAX_NUM_COMPONENT+1; i++)
{
sDebug+=debug_reorder_data_inter_token[i];
}
#endif
return;
}
// Residual coding.
Int qp;
Int qpBest = 0;
Int qpMin;
Int qpMax;
Double dCost, dCostBest = MAX_DOUBLE;
UInt uiTrLevel = 0;
if( (pcCU->getWidth(0) > pcCU->getSlice()->getSPS()->getMaxTrSize()) )
{
while( pcCU->getWidth(0) > (pcCU->getSlice()->getSPS()->getMaxTrSize()<<uiTrLevel) ) uiTrLevel++;
}
qpMin = bHighPass ? Clip3( -pcCU->getSlice()->getSPS()->getQpBDOffset(CHANNEL_TYPE_LUMA), MAX_QP, pcCU->getQP(0) - m_iMaxDeltaQP ) : pcCU->getQP( 0 );
qpMax = bHighPass ? Clip3( -pcCU->getSlice()->getSPS()->getQpBDOffset(CHANNEL_TYPE_LUMA), MAX_QP, pcCU->getQP(0) + m_iMaxDeltaQP ) : pcCU->getQP( 0 );
pcYuvResi->subtract( pcYuvOrg, pcYuvPred, 0, uiWidth );
TComTURecurse tuLevel0(pcCU, 0);
for ( qp = qpMin; qp <= qpMax; qp++ )
{
dCost = 0.;
uiBits = 0;
uiDistortion = 0;
m_pcRDGoOnSbacCoder->load( m_pppcRDSbacCoder[ pcCU->getDepth( 0 ) ][ CI_CURR_BEST ] );
Distortion uiZeroDistortion = 0;
xEstimateResidualQT( pcYuvResi, dCost, uiBits, uiDistortion, &uiZeroDistortion, tuLevel0 DEBUG_STRING_PASS_INTO(sDebug) );
// -------------------------------------------------------
// set the coefficients in the pcCU, and also calculates the residual data.
// If a block full of 0's is efficient, then just use 0's.
// The costs at this point do not include header bits.
m_pcEntropyCoder->resetBits();
m_pcEntropyCoder->encodeQtRootCbfZero( pcCU );
UInt zeroResiBits = m_pcEntropyCoder->getNumberOfWrittenBits();
Double dZeroCost = m_pcRdCost->calcRdCost( zeroResiBits, uiZeroDistortion );
if(pcCU->isLosslessCoded( 0 ))
{
dZeroCost = dCost + 1;
}
if ( dZeroCost < dCost )
{
if ( dZeroCost < dCost )
{
dCost = dZeroCost;
}
uiDistortion = uiZeroDistortion;
const UInt uiQPartNum = tuLevel0.GetAbsPartIdxNumParts();
::memset( pcCU->getTransformIdx() , 0, uiQPartNum * sizeof(UChar) );
for (UInt ch=0; ch < pcCU->getPic()->getNumberValidComponents(); ch++)
{
const ComponentID component = ComponentID(ch);
const UInt componentShift = pcCU->getPic()->getComponentScaleX(component) + pcCU->getPic()->getComponentScaleY(component);
::memset( pcCU->getCbf( component ) , 0, uiQPartNum * sizeof(UChar) );
::memset( pcCU->getCoeff(component), 0, (uiWidth*uiHeight*sizeof(TCoeff))>>componentShift );
::memset( pcCU->getCrossComponentPredictionAlpha(component), 0, ( uiQPartNum * sizeof(Char) ) );
}
static const UInt useTS[MAX_NUM_COMPONENT]={0,0,0};
pcCU->setTransformSkipSubParts ( useTS, 0, pcCU->getDepth(0) );
#ifdef DEBUG_STRING
sDebug.clear();
for(UInt i=0; i<MAX_NUM_COMPONENT+1; i++)
{
sDebug+=debug_reorder_data_inter_token[i];
}
#endif
}
else
{
xSetResidualQTData( NULL, false, tuLevel0); // Call first time to set coefficients.
}
m_pcRDGoOnSbacCoder->load( m_pppcRDSbacCoder[pcCU->getDepth(0)][CI_CURR_BEST] );
uiBits = 0;
xAddSymbolBitsInter( pcCU, 0, 0, uiBits );
// we've now encoded the pcCU, and so have a valid bit cost
Double dExactCost = m_pcRdCost->calcRdCost( uiBits, uiDistortion );
dCost = dExactCost;
// Is our new cost better?
if ( dCost < dCostBest )
{
if ( !pcCU->getQtRootCbf( 0 ) )
{
pcYuvResiBest->clear(); // Clear the residual image, if we didn't code it.
}
else
{
xSetResidualQTData( pcYuvResiBest, true, tuLevel0 ); // else set the residual image data pcYUVResiBest from the various temp images.
}
if( qpMin != qpMax && qp != qpMax )
{
const UInt uiQPartNum = tuLevel0.GetAbsPartIdxNumParts();
::memcpy( m_puhQTTempTrIdx, pcCU->getTransformIdx(), uiQPartNum * sizeof(UChar) );
for(UInt i=0; i<pcCU->getPic()->getNumberValidComponents(); i++)
{
const ComponentID compID=ComponentID(i);
const UInt csr = pcCU->getPic()->getComponentScaleX(compID) + pcCU->getPic()->getComponentScaleY(compID);
::memcpy( m_puhQTTempCbf[compID], pcCU->getCbf( compID ), uiQPartNum * sizeof(UChar) );
::memcpy( m_pcQTTempCoeff[compID], pcCU->getCoeff(compID), uiWidth * uiHeight * sizeof( TCoeff ) >> csr );
#if ADAPTIVE_QP_SELECTION
::memcpy( m_pcQTTempArlCoeff[compID], pcCU->getArlCoeff(compID), uiWidth * uiHeight * sizeof( TCoeff )>> csr );
#endif
::memcpy( m_puhQTTempTransformSkipFlag[compID], pcCU->getTransformSkip(compID), uiQPartNum * sizeof( UChar ) );
::memcpy( m_phQTTempCrossComponentPredictionAlpha[compID], pcCU->getCrossComponentPredictionAlpha(compID), uiQPartNum * sizeof(Char) );
}
}
uiBitsBest = uiBits;
uiDistortionBest = uiDistortion;
dCostBest = dCost;
qpBest = qp;
m_pcRDGoOnSbacCoder->store( m_pppcRDSbacCoder[ pcCU->getDepth( 0 ) ][ CI_TEMP_BEST ] );
}
}
assert ( dCostBest != MAX_DOUBLE );
if( qpMin != qpMax && qpBest != qpMax )
{
assert( 0 ); // check
m_pcRDGoOnSbacCoder->load( m_pppcRDSbacCoder[ pcCU->getDepth( 0 ) ][ CI_TEMP_BEST ] );
// copy best cbf and trIdx to pcCU
const UInt uiQPartNum = tuLevel0.GetAbsPartIdxNumParts();
::memcpy( pcCU->getTransformIdx(), m_puhQTTempTrIdx, uiQPartNum * sizeof(UChar) );
for(UInt i=0; i<pcCU->getPic()->getNumberValidComponents(); i++)
{
const ComponentID compID=ComponentID(i);
const UInt csr = pcCU->getPic()->getComponentScaleX(compID) + pcCU->getPic()->getComponentScaleY(compID);
::memcpy( pcCU->getCbf( compID ), m_puhQTTempCbf[compID], uiQPartNum * sizeof(UChar) );
::memcpy( pcCU->getCoeff(compID), m_pcQTTempCoeff[compID], uiWidth * uiHeight * sizeof( TCoeff ) >> csr );
#if ADAPTIVE_QP_SELECTION
::memcpy( pcCU->getArlCoeff(compID), m_pcQTTempArlCoeff[compID], uiWidth * uiHeight * sizeof( TCoeff ) >> csr );
#endif
::memcpy( pcCU->getTransformSkip(compID), m_puhQTTempTransformSkipFlag[compID], uiQPartNum * sizeof( UChar ) );
::memcpy( pcCU->getCrossComponentPredictionAlpha(compID), m_phQTTempCrossComponentPredictionAlpha[compID], uiQPartNum * sizeof( Char ) );
}
}
pcYuvRec->addClip ( pcYuvPred, pcYuvResiBest, 0, uiWidth );
// update with clipped distortion and cost (qp estimation loop uses unclipped values)
uiDistortionBest = 0;
for(UInt ch=0; ch<pcYuvRec->getNumberValidComponents(); ch++)
{
const ComponentID compID=ComponentID(ch);
uiDistortionBest += m_pcRdCost->getDistPart( g_bitDepth[toChannelType(compID)], pcYuvRec->getAddr(compID ), pcYuvRec->getStride(compID ), pcYuvOrg->getAddr(compID ), pcYuvOrg->getStride(compID), uiWidth >> pcYuvOrg->getComponentScaleX(compID), uiHeight >> pcYuvOrg->getComponentScaleY(compID), compID);
}
dCostBest = m_pcRdCost->calcRdCost( uiBitsBest, uiDistortionBest );
pcCU->getTotalBits() = uiBitsBest;
pcCU->getTotalDistortion() = uiDistortionBest;
pcCU->getTotalCost() = dCostBest;
if ( pcCU->isSkipped(0) )
{
static const UInt cbfZero[MAX_NUM_COMPONENT]={0,0,0};
pcCU->setCbfSubParts( cbfZero, 0, pcCU->getDepth( 0 ) );
}
pcCU->setQPSubParts( qpBest, 0, pcCU->getDepth(0) );
}
Void TEncSearch::xEstimateResidualQT( TComYuv *pcResi,
Double &rdCost,
UInt &ruiBits,
Distortion &ruiDist,
Distortion *puiZeroDist,
TComTU &rTu
DEBUG_STRING_FN_DECLARE(sDebug) )
{
TComDataCU *pcCU = rTu.getCU();
const UInt uiAbsPartIdx = rTu.GetAbsPartIdxTU();
const UInt uiDepth = rTu.GetTransformDepthTotal();
const UInt uiTrMode = rTu.GetTransformDepthRel();
const UInt subTUDepth = uiTrMode + 1;
const UInt numValidComp = pcCU->getPic()->getNumberValidComponents();
DEBUG_STRING_NEW(sSingleStringComp[MAX_NUM_COMPONENT])
assert( pcCU->getDepth( 0 ) == pcCU->getDepth( uiAbsPartIdx ) );
const UInt uiLog2TrSize = rTu.GetLog2LumaTrSize();
UInt SplitFlag = ((pcCU->getSlice()->getSPS()->getQuadtreeTUMaxDepthInter() == 1) && pcCU->isInter(uiAbsPartIdx) && ( pcCU->getPartitionSize(uiAbsPartIdx) != SIZE_2Nx2N ));
#ifdef DEBUG_STRING
const Int debugPredModeMask = DebugStringGetPredModeMask(pcCU->getPredictionMode(uiAbsPartIdx));
#endif
Bool bCheckFull;
if ( SplitFlag && uiDepth == pcCU->getDepth(uiAbsPartIdx) && ( uiLog2TrSize > pcCU->getQuadtreeTULog2MinSizeInCU(uiAbsPartIdx) ) )
{
bCheckFull = false;
}
else
{
bCheckFull = ( uiLog2TrSize <= pcCU->getSlice()->getSPS()->getQuadtreeTULog2MaxSize() );
}
const Bool bCheckSplit = ( uiLog2TrSize > pcCU->getQuadtreeTULog2MinSizeInCU(uiAbsPartIdx) );
assert( bCheckFull || bCheckSplit );
// code full block
Double dSingleCost = MAX_DOUBLE;
UInt uiSingleBits = 0;
Distortion uiSingleDistComp [MAX_NUM_COMPONENT][2/*0 = top (or whole TU for non-4:2:2) sub-TU, 1 = bottom sub-TU*/] = {{0,0},{0,0},{0,0}};
Distortion uiSingleDist = 0;
TCoeff uiAbsSum [MAX_NUM_COMPONENT][2/*0 = top (or whole TU for non-4:2:2) sub-TU, 1 = bottom sub-TU*/] = {{0,0},{0,0},{0,0}};
UInt uiBestTransformMode [MAX_NUM_COMPONENT][2/*0 = top (or whole TU for non-4:2:2) sub-TU, 1 = bottom sub-TU*/] = {{0,0},{0,0},{0,0}};
// Stores the best explicit RDPCM mode for a TU encoded without split
UInt bestExplicitRdpcmModeUnSplit[MAX_NUM_COMPONENT][2/*0 = top (or whole TU for non-4:2:2) sub-TU, 1 = bottom sub-TU*/] = {{3,3}, {3,3}, {3,3}};
Char bestCrossCPredictionAlpha [MAX_NUM_COMPONENT][2/*0 = top (or whole TU for non-4:2:2) sub-TU, 1 = bottom sub-TU*/] = {{0,0},{0,0},{0,0}};
m_pcRDGoOnSbacCoder->store( m_pppcRDSbacCoder[ uiDepth ][ CI_QT_TRAFO_ROOT ] );
if( bCheckFull )
{
Double minCost[MAX_NUM_COMPONENT][2/*0 = top (or whole TU for non-4:2:2) sub-TU, 1 = bottom sub-TU*/];
Bool checkTransformSkip[MAX_NUM_COMPONENT];
pcCU->setTrIdxSubParts( uiTrMode, uiAbsPartIdx, uiDepth );
m_pcEntropyCoder->resetBits();
memset( m_pTempPel, 0, sizeof( Pel ) * rTu.getRect(COMPONENT_Y).width * rTu.getRect(COMPONENT_Y).height ); // not necessary needed for inside of recursion (only at the beginning)
const UInt uiQTTempAccessLayer = pcCU->getSlice()->getSPS()->getQuadtreeTULog2MaxSize() - uiLog2TrSize;
TCoeff *pcCoeffCurr[MAX_NUM_COMPONENT];
#if ADAPTIVE_QP_SELECTION
TCoeff *pcArlCoeffCurr[MAX_NUM_COMPONENT];
#endif
for(UInt i=0; i<numValidComp; i++)
{
minCost[i][0] = MAX_DOUBLE;
minCost[i][1] = MAX_DOUBLE;
}
Pel crossCPredictedResidualBuffer[ MAX_TU_SIZE * MAX_TU_SIZE ];
for(UInt i=0; i<numValidComp; i++)
{
checkTransformSkip[i]=false;
const ComponentID compID=ComponentID(i);
pcCoeffCurr[compID] = m_ppcQTTempCoeff[compID][uiQTTempAccessLayer] + rTu.getCoefficientOffset(compID);
#if ADAPTIVE_QP_SELECTION
pcArlCoeffCurr[compID] = m_ppcQTTempArlCoeff[compID ][uiQTTempAccessLayer] + rTu.getCoefficientOffset(compID);
#endif
if(rTu.ProcessComponentSection(compID))
{
const QpParam cQP(*pcCU, compID);
checkTransformSkip[compID] = pcCU->getSlice()->getPPS()->getUseTransformSkip() &&
TUCompRectHasAssociatedTransformSkipFlag(rTu.getRect(compID), pcCU->getSlice()->getPPS()->getTransformSkipLog2MaxSize()) &&
(!pcCU->isLosslessCoded(0));
const Bool splitIntoSubTUs = rTu.getRect(compID).width != rTu.getRect(compID).height;
TComTURecurse TUIterator(rTu, false, (splitIntoSubTUs ? TComTU::VERTICAL_SPLIT : TComTU::DONT_SPLIT), true, compID);
const UInt partIdxesPerSubTU = TUIterator.GetAbsPartIdxNumParts(compID);
do
{
const UInt subTUIndex = TUIterator.GetSectionNumber();
const UInt subTUAbsPartIdx = TUIterator.GetAbsPartIdxTU(compID);
const TComRectangle &tuCompRect = TUIterator.getRect(compID);
const UInt subTUBufferOffset = tuCompRect.width * tuCompRect.height * subTUIndex;
TCoeff *currentCoefficients = pcCoeffCurr[compID] + subTUBufferOffset;
#if ADAPTIVE_QP_SELECTION
TCoeff *currentARLCoefficients = pcArlCoeffCurr[compID] + subTUBufferOffset;
#endif
const Bool isCrossCPredictionAvailable = isChroma(compID)
&& pcCU->getSlice()->getPPS()->getUseCrossComponentPrediction()
&& (pcCU->getCbf(subTUAbsPartIdx, COMPONENT_Y, uiTrMode) != 0);
Char preCalcAlpha = 0;
const Pel *pLumaResi = m_pcQTTempTComYuv[uiQTTempAccessLayer].getAddrPix( COMPONENT_Y, rTu.getRect( COMPONENT_Y ).x0, rTu.getRect( COMPONENT_Y ).y0 );
if (isCrossCPredictionAvailable)
{
const Bool bUseReconstructedResidualForEstimate = m_pcEncCfg->getUseReconBasedCrossCPredictionEstimate();
const Pel *const lumaResidualForEstimate = bUseReconstructedResidualForEstimate ? pLumaResi : pcResi->getAddrPix(COMPONENT_Y, tuCompRect.x0, tuCompRect.y0);
const UInt lumaResidualStrideForEstimate = bUseReconstructedResidualForEstimate ? m_pcQTTempTComYuv[uiQTTempAccessLayer].getStride(COMPONENT_Y) : pcResi->getStride(COMPONENT_Y);
preCalcAlpha = xCalcCrossComponentPredictionAlpha(TUIterator,
compID,
lumaResidualForEstimate,
pcResi->getAddrPix(compID, tuCompRect.x0, tuCompRect.y0),
tuCompRect.width,
tuCompRect.height,
lumaResidualStrideForEstimate,
pcResi->getStride(compID));
}
const Int transformSkipModesToTest = checkTransformSkip[compID] ? 2 : 1;
const Int crossCPredictionModesToTest = (preCalcAlpha != 0) ? 2 : 1; // preCalcAlpha cannot be anything other than 0 if isCrossCPredictionAvailable is false
const Bool isOneMode = (crossCPredictionModesToTest == 1) && (transformSkipModesToTest == 1);
for (Int transformSkipModeId = 0; transformSkipModeId < transformSkipModesToTest; transformSkipModeId++)
{
pcCU->setTransformSkipPartRange(transformSkipModeId, compID, subTUAbsPartIdx, partIdxesPerSubTU);
for (Int crossCPredictionModeId = 0; crossCPredictionModeId < crossCPredictionModesToTest; crossCPredictionModeId++)
{
const Bool isFirstMode = (transformSkipModeId == 0) && (crossCPredictionModeId == 0);
const Bool bUseCrossCPrediction = crossCPredictionModeId != 0;
m_pcRDGoOnSbacCoder->load( m_pppcRDSbacCoder[ uiDepth ][ CI_QT_TRAFO_ROOT ] );
m_pcEntropyCoder->resetBits();
pcCU->setTransformSkipPartRange(transformSkipModeId, compID, subTUAbsPartIdx, partIdxesPerSubTU);
pcCU->setCrossComponentPredictionAlphaPartRange((bUseCrossCPrediction ? preCalcAlpha : 0), compID, subTUAbsPartIdx, partIdxesPerSubTU );
if ((compID != COMPONENT_Cr) && ((transformSkipModeId == 1) ? m_pcEncCfg->getUseRDOQTS() : m_pcEncCfg->getUseRDOQ()))
{
m_pcEntropyCoder->estimateBit(m_pcTrQuant->m_pcEstBitsSbac, tuCompRect.width, tuCompRect.height, toChannelType(compID));
}
#if RDOQ_CHROMA_LAMBDA
m_pcTrQuant->selectLambda(compID);
#endif
Pel *pcResiCurrComp = m_pcQTTempTComYuv[uiQTTempAccessLayer].getAddrPix(compID, tuCompRect.x0, tuCompRect.y0);
UInt resiStride = m_pcQTTempTComYuv[uiQTTempAccessLayer].getStride(compID);
TCoeff bestCoeffComp [MAX_TU_SIZE*MAX_TU_SIZE];
Pel bestResiComp [MAX_TU_SIZE*MAX_TU_SIZE];
#if ADAPTIVE_QP_SELECTION
TCoeff bestArlCoeffComp[MAX_TU_SIZE*MAX_TU_SIZE];
#endif
TCoeff currAbsSum = 0;
UInt currCompBits = 0;
Distortion currCompDist = 0;
Double currCompCost = 0;
UInt nonCoeffBits = 0;
Distortion nonCoeffDist = 0;
Double nonCoeffCost = 0;
if(!isOneMode && !isFirstMode)
{
memcpy(bestCoeffComp, currentCoefficients, (sizeof(TCoeff) * tuCompRect.width * tuCompRect.height));
#if ADAPTIVE_QP_SELECTION
memcpy(bestArlCoeffComp, currentARLCoefficients, (sizeof(TCoeff) * tuCompRect.width * tuCompRect.height));
#endif
for(Int y = 0; y < tuCompRect.height; y++)
{
memcpy(&bestResiComp[y * tuCompRect.width], (pcResiCurrComp + (y * resiStride)), (sizeof(Pel) * tuCompRect.width));
}
}
if (bUseCrossCPrediction)
{
TComTrQuant::crossComponentPrediction(TUIterator,
compID,
pLumaResi,
pcResi->getAddrPix(compID, tuCompRect.x0, tuCompRect.y0),
crossCPredictedResidualBuffer,
tuCompRect.width,
tuCompRect.height,
m_pcQTTempTComYuv[uiQTTempAccessLayer].getStride(COMPONENT_Y),
pcResi->getStride(compID),
tuCompRect.width,
false);
m_pcTrQuant->transformNxN(TUIterator, compID, crossCPredictedResidualBuffer, tuCompRect.width, currentCoefficients,
#if ADAPTIVE_QP_SELECTION
currentARLCoefficients,
#endif
currAbsSum, cQP);
}
else
{
m_pcTrQuant->transformNxN(TUIterator, compID, pcResi->getAddrPix( compID, tuCompRect.x0, tuCompRect.y0 ), pcResi->getStride(compID), currentCoefficients,
#if ADAPTIVE_QP_SELECTION
currentARLCoefficients,
#endif
currAbsSum, cQP);
}
if(isFirstMode || (currAbsSum == 0))
{
if (bUseCrossCPrediction)
{
TComTrQuant::crossComponentPrediction(TUIterator,
compID,
pLumaResi,
m_pTempPel,
m_pcQTTempTComYuv[uiQTTempAccessLayer].getAddrPix(compID, tuCompRect.x0, tuCompRect.y0),
tuCompRect.width,
tuCompRect.height,
m_pcQTTempTComYuv[uiQTTempAccessLayer].getStride(COMPONENT_Y),
tuCompRect.width,
m_pcQTTempTComYuv[uiQTTempAccessLayer].getStride(compID),
true);
nonCoeffDist = m_pcRdCost->getDistPart( g_bitDepth[toChannelType(compID)], m_pcQTTempTComYuv[uiQTTempAccessLayer].getAddrPix( compID, tuCompRect.x0, tuCompRect.y0 ),
m_pcQTTempTComYuv[uiQTTempAccessLayer].getStride( compID ), pcResi->getAddrPix( compID, tuCompRect.x0, tuCompRect.y0 ),
pcResi->getStride(compID), tuCompRect.width, tuCompRect.height, compID); // initialized with zero residual destortion
}
else
{
nonCoeffDist = m_pcRdCost->getDistPart( g_bitDepth[toChannelType(compID)], m_pTempPel, tuCompRect.width, pcResi->getAddrPix( compID, tuCompRect.x0, tuCompRect.y0 ),
pcResi->getStride(compID), tuCompRect.width, tuCompRect.height, compID); // initialized with zero residual destortion
}
m_pcEntropyCoder->encodeQtCbfZero( TUIterator, toChannelType(compID) );
if ( isCrossCPredictionAvailable )
{
m_pcEntropyCoder->encodeCrossComponentPrediction( TUIterator, compID );
}
nonCoeffBits = m_pcEntropyCoder->getNumberOfWrittenBits();
nonCoeffCost = m_pcRdCost->calcRdCost( nonCoeffBits, nonCoeffDist );
}
if((puiZeroDist != NULL) && isFirstMode)
{
*puiZeroDist += nonCoeffDist; // initialized with zero residual destortion
}
DEBUG_STRING_NEW(sSingleStringTest)
if( currAbsSum > 0 ) //if non-zero coefficients are present, a residual needs to be derived for further prediction
{
if (isFirstMode)
{
m_pcRDGoOnSbacCoder->load( m_pppcRDSbacCoder[ uiDepth ][ CI_QT_TRAFO_ROOT ] );
m_pcEntropyCoder->resetBits();
}
m_pcEntropyCoder->encodeQtCbf( TUIterator, compID, true );
if (isCrossCPredictionAvailable)
{
m_pcEntropyCoder->encodeCrossComponentPrediction( TUIterator, compID );
}
m_pcEntropyCoder->encodeCoeffNxN( TUIterator, currentCoefficients, compID );
currCompBits = m_pcEntropyCoder->getNumberOfWrittenBits();
pcResiCurrComp = m_pcQTTempTComYuv[uiQTTempAccessLayer].getAddrPix( compID, tuCompRect.x0, tuCompRect.y0 );
m_pcTrQuant->invTransformNxN( TUIterator, compID, pcResiCurrComp, m_pcQTTempTComYuv[uiQTTempAccessLayer].getStride(compID), currentCoefficients, cQP DEBUG_STRING_PASS_INTO_OPTIONAL(&sSingleStringTest, (DebugOptionList::DebugString_InvTran.getInt()&debugPredModeMask)) );
if (bUseCrossCPrediction)
{
TComTrQuant::crossComponentPrediction(TUIterator,
compID,
pLumaResi,
m_pcQTTempTComYuv[uiQTTempAccessLayer].getAddrPix(compID, tuCompRect.x0, tuCompRect.y0),
m_pcQTTempTComYuv[uiQTTempAccessLayer].getAddrPix(compID, tuCompRect.x0, tuCompRect.y0),
tuCompRect.width,
tuCompRect.height,
m_pcQTTempTComYuv[uiQTTempAccessLayer].getStride(COMPONENT_Y),
m_pcQTTempTComYuv[uiQTTempAccessLayer].getStride(compID ),
m_pcQTTempTComYuv[uiQTTempAccessLayer].getStride(compID ),
true);
}
currCompDist = m_pcRdCost->getDistPart( g_bitDepth[toChannelType(compID)], m_pcQTTempTComYuv[uiQTTempAccessLayer].getAddrPix( compID, tuCompRect.x0, tuCompRect.y0 ),
m_pcQTTempTComYuv[uiQTTempAccessLayer].getStride(compID),
pcResi->getAddrPix( compID, tuCompRect.x0, tuCompRect.y0 ),
pcResi->getStride(compID),
tuCompRect.width, tuCompRect.height, compID);
currCompCost = m_pcRdCost->calcRdCost(currCompBits, currCompDist);
if (pcCU->isLosslessCoded(0)) nonCoeffCost = MAX_DOUBLE;
}
else if ((transformSkipModeId == 1) && !bUseCrossCPrediction)
{
currCompCost = MAX_DOUBLE;
}
else
{
currCompBits = nonCoeffBits;
currCompDist = nonCoeffDist;
currCompCost = nonCoeffCost;
}
// evaluate
if ((currCompCost < minCost[compID][subTUIndex]) || ((transformSkipModeId == 1) && (currCompCost == minCost[compID][subTUIndex])))
{
bestExplicitRdpcmModeUnSplit[compID][subTUIndex] = pcCU->getExplicitRdpcmMode(compID, subTUAbsPartIdx);
if(isFirstMode) //check for forced null
{
if((nonCoeffCost < currCompCost) || (currAbsSum == 0))
{
memset(currentCoefficients, 0, (sizeof(TCoeff) * tuCompRect.width * tuCompRect.height));
currAbsSum = 0;
currCompBits = nonCoeffBits;
currCompDist = nonCoeffDist;
currCompCost = nonCoeffCost;
}
}
#ifdef DEBUG_STRING
if (currAbsSum > 0)
{
DEBUG_STRING_SWAP(sSingleStringComp[compID], sSingleStringTest)
}
else
{
sSingleStringComp[compID].clear();
}
#endif
uiAbsSum [compID][subTUIndex] = currAbsSum;
uiSingleDistComp [compID][subTUIndex] = currCompDist;
minCost [compID][subTUIndex] = currCompCost;
uiBestTransformMode [compID][subTUIndex] = transformSkipModeId;
bestCrossCPredictionAlpha[compID][subTUIndex] = (crossCPredictionModeId == 1) ? pcCU->getCrossComponentPredictionAlpha(subTUAbsPartIdx, compID) : 0;
if (uiAbsSum[compID][subTUIndex] == 0)
{
if (bUseCrossCPrediction)
{
TComTrQuant::crossComponentPrediction(TUIterator,
compID,
pLumaResi,
m_pTempPel,
m_pcQTTempTComYuv[uiQTTempAccessLayer].getAddrPix(compID, tuCompRect.x0, tuCompRect.y0),
tuCompRect.width,
tuCompRect.height,
m_pcQTTempTComYuv[uiQTTempAccessLayer].getStride(COMPONENT_Y),
tuCompRect.width,
m_pcQTTempTComYuv[uiQTTempAccessLayer].getStride(compID),
true);
}
else
{
pcResiCurrComp = m_pcQTTempTComYuv[uiQTTempAccessLayer].getAddrPix(compID, tuCompRect.x0, tuCompRect.y0);
const UInt uiStride = m_pcQTTempTComYuv[uiQTTempAccessLayer].getStride(compID);
for(UInt uiY = 0; uiY < tuCompRect.height; uiY++)
{
memset(pcResiCurrComp, 0, (sizeof(Pel) * tuCompRect.width));
pcResiCurrComp += uiStride;
}
}
}
}
else
{
// reset
memcpy(currentCoefficients, bestCoeffComp, (sizeof(TCoeff) * tuCompRect.width * tuCompRect.height));
#if ADAPTIVE_QP_SELECTION
memcpy(currentARLCoefficients, bestArlCoeffComp, (sizeof(TCoeff) * tuCompRect.width * tuCompRect.height));
#endif
for (Int y = 0; y < tuCompRect.height; y++)
{
memcpy((pcResiCurrComp + (y * resiStride)), &bestResiComp[y * tuCompRect.width], (sizeof(Pel) * tuCompRect.width));
}
}
}
}
pcCU->setExplicitRdpcmModePartRange ( bestExplicitRdpcmModeUnSplit[compID][subTUIndex], compID, subTUAbsPartIdx, partIdxesPerSubTU);
pcCU->setTransformSkipPartRange ( uiBestTransformMode [compID][subTUIndex], compID, subTUAbsPartIdx, partIdxesPerSubTU );
pcCU->setCbfPartRange ((((uiAbsSum [compID][subTUIndex] > 0) ? 1 : 0) << uiTrMode), compID, subTUAbsPartIdx, partIdxesPerSubTU );
pcCU->setCrossComponentPredictionAlphaPartRange( bestCrossCPredictionAlpha [compID][subTUIndex], compID, subTUAbsPartIdx, partIdxesPerSubTU );
} //end of sub-TU loop
while (TUIterator.nextSection(rTu));
} // processing section
} // component loop
for(UInt ch = 0; ch < numValidComp; ch++)
{
const ComponentID compID = ComponentID(ch);
if (rTu.ProcessComponentSection(compID) && (rTu.getRect(compID).width != rTu.getRect(compID).height))
{
offsetSubTUCBFs(rTu, compID); //the CBFs up to now have been defined for two sub-TUs - shift them down a level and replace with the parent level CBF
}
}
m_pcRDGoOnSbacCoder->load( m_pppcRDSbacCoder[ uiDepth ][ CI_QT_TRAFO_ROOT ] );
m_pcEntropyCoder->resetBits();
if( uiLog2TrSize > pcCU->getQuadtreeTULog2MinSizeInCU(uiAbsPartIdx) )
{
m_pcEntropyCoder->encodeTransformSubdivFlag( 0, 5 - uiLog2TrSize );
}
for(UInt ch = 0; ch < numValidComp; ch++)
{
const UInt chOrderChange = ((ch + 1) == numValidComp) ? 0 : (ch + 1);
const ComponentID compID=ComponentID(chOrderChange);
if( rTu.ProcessComponentSection(compID) )
{
m_pcEntropyCoder->encodeQtCbf( rTu, compID, true );
}
}
for(UInt ch = 0; ch < numValidComp; ch++)
{
const ComponentID compID=ComponentID(ch);
if (rTu.ProcessComponentSection(compID))
{
if(isChroma(compID) && (uiAbsSum[COMPONENT_Y][0] != 0))
{
m_pcEntropyCoder->encodeCrossComponentPrediction( rTu, compID );
}
m_pcEntropyCoder->encodeCoeffNxN( rTu, pcCoeffCurr[compID], compID );
for (UInt subTUIndex = 0; subTUIndex < 2; subTUIndex++) uiSingleDist += uiSingleDistComp[compID][subTUIndex];
}
}
uiSingleBits = m_pcEntropyCoder->getNumberOfWrittenBits();
dSingleCost = m_pcRdCost->calcRdCost( uiSingleBits, uiSingleDist );
} // check full
// code sub-blocks
if( bCheckSplit )
{
if( bCheckFull )
{
m_pcRDGoOnSbacCoder->store( m_pppcRDSbacCoder[ uiDepth ][ CI_QT_TRAFO_TEST ] );
m_pcRDGoOnSbacCoder->load ( m_pppcRDSbacCoder[ uiDepth ][ CI_QT_TRAFO_ROOT ] );
}
Distortion uiSubdivDist = 0;
UInt uiSubdivBits = 0;
Double dSubdivCost = 0.0;
//save the non-split CBFs in case we need to restore them later
UInt bestCBF [MAX_NUM_COMPONENT];
UInt bestsubTUCBF[MAX_NUM_COMPONENT][2];
for(UInt ch = 0; ch < numValidComp; ch++)
{
const ComponentID compID=ComponentID(ch);
if (rTu.ProcessComponentSection(compID))
{
bestCBF[compID] = pcCU->getCbf(uiAbsPartIdx, compID, uiTrMode);
const TComRectangle &tuCompRect = rTu.getRect(compID);
if (tuCompRect.width != tuCompRect.height)
{
const UInt partIdxesPerSubTU = rTu.GetAbsPartIdxNumParts(compID) >> 1;
for (UInt subTU = 0; subTU < 2; subTU++)
bestsubTUCBF[compID][subTU] = pcCU->getCbf ((uiAbsPartIdx + (subTU * partIdxesPerSubTU)), compID, subTUDepth);
}
}
}
TComTURecurse tuRecurseChild(rTu, false);
const UInt uiQPartNumSubdiv = tuRecurseChild.GetAbsPartIdxNumParts();
DEBUG_STRING_NEW(sSplitString[MAX_NUM_COMPONENT])
do
{
DEBUG_STRING_NEW(childString)
xEstimateResidualQT( pcResi, dSubdivCost, uiSubdivBits, uiSubdivDist, bCheckFull ? NULL : puiZeroDist, tuRecurseChild DEBUG_STRING_PASS_INTO(childString));
#ifdef DEBUG_STRING
// split the string by component and append to the relevant output (because decoder decodes in channel order, whereas this search searches by TU-order)
std::size_t lastPos=0;
const std::size_t endStrng=childString.find(debug_reorder_data_inter_token[MAX_NUM_COMPONENT], lastPos);
for(UInt ch = 0; ch < numValidComp; ch++)
{
if (lastPos!=std::string::npos && childString.find(debug_reorder_data_inter_token[ch], lastPos)==lastPos) lastPos+=strlen(debug_reorder_data_inter_token[ch]); // skip leading string
std::size_t pos=childString.find(debug_reorder_data_inter_token[ch+1], lastPos);
if (pos!=std::string::npos && pos>endStrng) lastPos=endStrng;
sSplitString[ch]+=childString.substr(lastPos, (pos==std::string::npos)? std::string::npos : (pos-lastPos) );
lastPos=pos;
}
#endif
}
while ( tuRecurseChild.nextSection(rTu) ) ;
UInt uiCbfAny=0;
for(UInt ch = 0; ch < numValidComp; ch++)
{
UInt uiYUVCbf = 0;
for( UInt ui = 0; ui < 4; ++ui )
{
uiYUVCbf |= pcCU->getCbf( uiAbsPartIdx + ui * uiQPartNumSubdiv, ComponentID(ch), uiTrMode + 1 );
}
UChar *pBase=pcCU->getCbf( ComponentID(ch) );
const UInt flags=uiYUVCbf << uiTrMode;
for( UInt ui = 0; ui < 4 * uiQPartNumSubdiv; ++ui )
{
pBase[uiAbsPartIdx + ui] |= flags;
}
uiCbfAny|=uiYUVCbf;
}
m_pcRDGoOnSbacCoder->load( m_pppcRDSbacCoder[ uiDepth ][ CI_QT_TRAFO_ROOT ] );
m_pcEntropyCoder->resetBits();
// when compID isn't a channel, code Cbfs:
xEncodeResidualQT( MAX_NUM_COMPONENT, rTu );
for(UInt ch = 0; ch < numValidComp; ch++)
{
xEncodeResidualQT( ComponentID(ch), rTu );
}
uiSubdivBits = m_pcEntropyCoder->getNumberOfWrittenBits();
dSubdivCost = m_pcRdCost->calcRdCost( uiSubdivBits, uiSubdivDist );
if (!bCheckFull || (uiCbfAny && (dSubdivCost < dSingleCost)))
{
rdCost += dSubdivCost;
ruiBits += uiSubdivBits;
ruiDist += uiSubdivDist;
#ifdef DEBUG_STRING
for(UInt ch = 0; ch < numValidComp; ch++)
{
DEBUG_STRING_APPEND(sDebug, debug_reorder_data_inter_token[ch])
DEBUG_STRING_APPEND(sDebug, sSplitString[ch])
}
#endif
}
else
{
rdCost += dSingleCost;
ruiBits += uiSingleBits;
ruiDist += uiSingleDist;
//restore state to unsplit
pcCU->setTrIdxSubParts( uiTrMode, uiAbsPartIdx, uiDepth );
for(UInt ch = 0; ch < numValidComp; ch++)
{
const ComponentID compID=ComponentID(ch);
DEBUG_STRING_APPEND(sDebug, debug_reorder_data_inter_token[ch])
if (rTu.ProcessComponentSection(compID))
{
DEBUG_STRING_APPEND(sDebug, sSingleStringComp[compID])
const Bool splitIntoSubTUs = rTu.getRect(compID).width != rTu.getRect(compID).height;
const UInt numberOfSections = splitIntoSubTUs ? 2 : 1;
const UInt partIdxesPerSubTU = rTu.GetAbsPartIdxNumParts(compID) >> (splitIntoSubTUs ? 1 : 0);
for (UInt subTUIndex = 0; subTUIndex < numberOfSections; subTUIndex++)
{
const UInt uisubTUPartIdx = uiAbsPartIdx + (subTUIndex * partIdxesPerSubTU);
if (splitIntoSubTUs)
{
const UChar combinedCBF = (bestsubTUCBF[compID][subTUIndex] << subTUDepth) | (bestCBF[compID] << uiTrMode);
pcCU->setCbfPartRange(combinedCBF, compID, uisubTUPartIdx, partIdxesPerSubTU);
}
else
{
pcCU->setCbfPartRange((bestCBF[compID] << uiTrMode), compID, uisubTUPartIdx, partIdxesPerSubTU);
}
pcCU->setCrossComponentPredictionAlphaPartRange(bestCrossCPredictionAlpha[compID][subTUIndex], compID, uisubTUPartIdx, partIdxesPerSubTU);
pcCU->setTransformSkipPartRange(uiBestTransformMode[compID][subTUIndex], compID, uisubTUPartIdx, partIdxesPerSubTU);
pcCU->setExplicitRdpcmModePartRange(bestExplicitRdpcmModeUnSplit[compID][subTUIndex], compID, uisubTUPartIdx, partIdxesPerSubTU);
}
}
}
m_pcRDGoOnSbacCoder->load( m_pppcRDSbacCoder[ uiDepth ][ CI_QT_TRAFO_TEST ] );
}
}
else
{
rdCost += dSingleCost;
ruiBits += uiSingleBits;
ruiDist += uiSingleDist;
#ifdef DEBUG_STRING
for(UInt ch = 0; ch < numValidComp; ch++)
{
const ComponentID compID=ComponentID(ch);
DEBUG_STRING_APPEND(sDebug, debug_reorder_data_inter_token[compID])
if (rTu.ProcessComponentSection(compID))
{
DEBUG_STRING_APPEND(sDebug, sSingleStringComp[compID])
}
}
#endif
}
DEBUG_STRING_APPEND(sDebug, debug_reorder_data_inter_token[MAX_NUM_COMPONENT])
}
Void TEncSearch::xEncodeResidualQT( const ComponentID compID, TComTU &rTu )
{
TComDataCU* pcCU=rTu.getCU();
const UInt uiAbsPartIdx=rTu.GetAbsPartIdxTU();
const UInt uiCurrTrMode = rTu.GetTransformDepthRel();
assert( pcCU->getDepth( 0 ) == pcCU->getDepth( uiAbsPartIdx ) );
const UInt uiTrMode = pcCU->getTransformIdx( uiAbsPartIdx );
const Bool bSubdiv = uiCurrTrMode != uiTrMode;
const UInt uiLog2TrSize = rTu.GetLog2LumaTrSize();
if (compID==MAX_NUM_COMPONENT) // we are not processing a channel, instead we always recurse and code the CBFs
{
if( uiLog2TrSize <= pcCU->getSlice()->getSPS()->getQuadtreeTULog2MaxSize() && uiLog2TrSize > pcCU->getQuadtreeTULog2MinSizeInCU(uiAbsPartIdx) )
{
m_pcEntropyCoder->encodeTransformSubdivFlag( bSubdiv, 5 - uiLog2TrSize );
}
assert( !pcCU->isIntra(uiAbsPartIdx) );
const Bool bFirstCbfOfCU = uiCurrTrMode == 0;
for (UInt ch=COMPONENT_Cb; ch<pcCU->getPic()->getNumberValidComponents(); ch++)
{
const ComponentID compIdInner=ComponentID(ch);
if( bFirstCbfOfCU || rTu.ProcessingAllQuadrants(compIdInner) )
{
if( bFirstCbfOfCU || pcCU->getCbf( uiAbsPartIdx, compIdInner, uiCurrTrMode - 1 ) )
{
m_pcEntropyCoder->encodeQtCbf( rTu, compIdInner, !bSubdiv );
}
}
else
{
assert( pcCU->getCbf( uiAbsPartIdx, compIdInner, uiCurrTrMode ) == pcCU->getCbf( uiAbsPartIdx, compIdInner, uiCurrTrMode - 1 ) );
}
}
if (!bSubdiv)
{
m_pcEntropyCoder->encodeQtCbf( rTu, COMPONENT_Y, true );
}
}
if( !bSubdiv )
{
if (compID != MAX_NUM_COMPONENT) // we have already coded the CBFs, so now we code coefficients
{
if (rTu.ProcessComponentSection(compID))
{
if (isChroma(compID) && (pcCU->getCbf(uiAbsPartIdx, COMPONENT_Y, uiTrMode) != 0))
{
m_pcEntropyCoder->encodeCrossComponentPrediction(rTu, compID);
}
if (pcCU->getCbf(uiAbsPartIdx, compID, uiTrMode) != 0)
{
const UInt uiQTTempAccessLayer = pcCU->getSlice()->getSPS()->getQuadtreeTULog2MaxSize() - uiLog2TrSize;
TCoeff *pcCoeffCurr = m_ppcQTTempCoeff[compID][uiQTTempAccessLayer] + rTu.getCoefficientOffset(compID);
m_pcEntropyCoder->encodeCoeffNxN( rTu, pcCoeffCurr, compID );
}
}
}
}
else
{
if( compID==MAX_NUM_COMPONENT || pcCU->getCbf( uiAbsPartIdx, compID, uiCurrTrMode ) )
{
TComTURecurse tuRecurseChild(rTu, false);
do
{
xEncodeResidualQT( compID, tuRecurseChild );
} while (tuRecurseChild.nextSection(rTu));
}
}
}
Void TEncSearch::xSetResidualQTData( TComYuv* pcResi, Bool bSpatial, TComTU &rTu )
{
TComDataCU* pcCU=rTu.getCU();
const UInt uiCurrTrMode=rTu.GetTransformDepthRel();
const UInt uiAbsPartIdx=rTu.GetAbsPartIdxTU();
assert( pcCU->getDepth( 0 ) == pcCU->getDepth( uiAbsPartIdx ) );
const UInt uiTrMode = pcCU->getTransformIdx( uiAbsPartIdx );
TComSPS *sps=pcCU->getSlice()->getSPS();
if( uiCurrTrMode == uiTrMode )
{
const UInt uiLog2TrSize = rTu.GetLog2LumaTrSize();
const UInt uiQTTempAccessLayer = sps->getQuadtreeTULog2MaxSize() - uiLog2TrSize;
if( bSpatial )
{
// Data to be copied is in the spatial domain, i.e., inverse-transformed.
for(UInt i=0; i<pcResi->getNumberValidComponents(); i++)
{
const ComponentID compID=ComponentID(i);
if (rTu.ProcessComponentSection(compID))
{
const TComRectangle &rectCompTU(rTu.getRect(compID));
m_pcQTTempTComYuv[uiQTTempAccessLayer].copyPartToPartComponentMxN ( compID, pcResi, rectCompTU );
}
}
}
else
{
for (UInt ch=0; ch < getNumberValidComponents(sps->getChromaFormatIdc()); ch++)
{
const ComponentID compID = ComponentID(ch);
if (rTu.ProcessComponentSection(compID))
{
const TComRectangle &rectCompTU(rTu.getRect(compID));
const UInt numCoeffInBlock = rectCompTU.width * rectCompTU.height;
const UInt offset = rTu.getCoefficientOffset(compID);
TCoeff* dest = pcCU->getCoeff(compID) + offset;
const TCoeff* src = m_ppcQTTempCoeff[compID][uiQTTempAccessLayer] + offset;
::memcpy( dest, src, sizeof(TCoeff)*numCoeffInBlock );
#if ADAPTIVE_QP_SELECTION
TCoeff* pcArlCoeffSrc = m_ppcQTTempArlCoeff[compID][uiQTTempAccessLayer] + offset;
TCoeff* pcArlCoeffDst = pcCU->getArlCoeff(compID) + offset;
::memcpy( pcArlCoeffDst, pcArlCoeffSrc, sizeof( TCoeff ) * numCoeffInBlock );
#endif
}
}
}
}
else
{
TComTURecurse tuRecurseChild(rTu, false);
do
{
xSetResidualQTData( pcResi, bSpatial, tuRecurseChild );
} while (tuRecurseChild.nextSection(rTu));
}
}
UInt TEncSearch::xModeBitsIntra( TComDataCU* pcCU, UInt uiMode, UInt uiPartOffset, UInt uiDepth, UInt uiInitTrDepth, const ChannelType chType )
{
// Reload only contexts required for coding intra mode information
m_pcRDGoOnSbacCoder->loadIntraDirMode( m_pppcRDSbacCoder[uiDepth][CI_CURR_BEST], chType );
// Temporarily set the intra dir being tested, and only
// for absPartIdx, since encodeIntraDirModeLuma/Chroma only use
// the entry at absPartIdx.
UChar &rIntraDirVal=pcCU->getIntraDir( chType )[uiPartOffset];
UChar origVal=rIntraDirVal;
rIntraDirVal = uiMode;
//pcCU->setIntraDirSubParts ( chType, uiMode, uiPartOffset, uiDepth + uiInitTrDepth );
m_pcEntropyCoder->resetBits();
if (isLuma(chType))
m_pcEntropyCoder->encodeIntraDirModeLuma ( pcCU, uiPartOffset);
else
m_pcEntropyCoder->encodeIntraDirModeChroma ( pcCU, uiPartOffset);
rIntraDirVal = origVal; // restore
return m_pcEntropyCoder->getNumberOfWrittenBits();
}
UInt TEncSearch::xUpdateCandList( UInt uiMode, Double uiCost, UInt uiFastCandNum, UInt * CandModeList, Double * CandCostList )
{
UInt i;
UInt shift=0;
while ( shift<uiFastCandNum && uiCost<CandCostList[ uiFastCandNum-1-shift ] ) shift++;
if( shift!=0 )
{
for(i=1; i<shift; i++)
{
CandModeList[ uiFastCandNum-i ] = CandModeList[ uiFastCandNum-1-i ];
CandCostList[ uiFastCandNum-i ] = CandCostList[ uiFastCandNum-1-i ];
}
CandModeList[ uiFastCandNum-shift ] = uiMode;
CandCostList[ uiFastCandNum-shift ] = uiCost;
return 1;
}
return 0;
}
/** add inter-prediction syntax elements for a CU block
* \param pcCU
* \param uiQp
* \param uiTrMode
* \param ruiBits
* \returns Void
*/
Void TEncSearch::xAddSymbolBitsInter( TComDataCU* pcCU, UInt uiQp, UInt uiTrMode, UInt& ruiBits )
{
if(pcCU->getMergeFlag( 0 ) && pcCU->getPartitionSize( 0 ) == SIZE_2Nx2N && !pcCU->getQtRootCbf( 0 ))
{
pcCU->setSkipFlagSubParts( true, 0, pcCU->getDepth(0) );
m_pcEntropyCoder->resetBits();
if(pcCU->getSlice()->getPPS()->getTransquantBypassEnableFlag())
{
m_pcEntropyCoder->encodeCUTransquantBypassFlag(pcCU, 0, true);
}
m_pcEntropyCoder->encodeSkipFlag(pcCU, 0, true);
m_pcEntropyCoder->encodeMergeIndex(pcCU, 0, true);
ruiBits += m_pcEntropyCoder->getNumberOfWrittenBits();
}
else
{
m_pcEntropyCoder->resetBits();
if(pcCU->getSlice()->getPPS()->getTransquantBypassEnableFlag())
{
m_pcEntropyCoder->encodeCUTransquantBypassFlag(pcCU, 0, true);
}
m_pcEntropyCoder->encodeSkipFlag ( pcCU, 0, true );
m_pcEntropyCoder->encodePredMode( pcCU, 0, true );
m_pcEntropyCoder->encodePartSize( pcCU, 0, pcCU->getDepth(0), true );
m_pcEntropyCoder->encodePredInfo( pcCU, 0 );
Bool codeDeltaQp = false;
Bool codeChromaQpAdj = false;
m_pcEntropyCoder->encodeCoeff ( pcCU, 0, pcCU->getDepth(0), codeDeltaQp, codeChromaQpAdj );
ruiBits += m_pcEntropyCoder->getNumberOfWrittenBits();
}
}
/**
* \brief Generate half-sample interpolated block
*
* \param pattern Reference picture ROI
* \param biPred Flag indicating whether block is for biprediction
*/
Void TEncSearch::xExtDIFUpSamplingH( TComPattern* pattern, Bool biPred )
{
Int width = pattern->getROIYWidth();
Int height = pattern->getROIYHeight();
Int srcStride = pattern->getPatternLStride();
Int intStride = m_filteredBlockTmp[0].getStride(COMPONENT_Y);
Int dstStride = m_filteredBlock[0][0].getStride(COMPONENT_Y);
Pel *intPtr;
Pel *dstPtr;
Int filterSize = NTAPS_LUMA;
Int halfFilterSize = (filterSize>>1);
Pel *srcPtr = pattern->getROIY() - halfFilterSize*srcStride - 1;
const ChromaFormat chFmt = m_filteredBlock[0][0].getChromaFormat();
m_if.filterHor(COMPONENT_Y, srcPtr, srcStride, m_filteredBlockTmp[0].getAddr(COMPONENT_Y), intStride, width+1, height+filterSize, 0, false, chFmt);
m_if.filterHor(COMPONENT_Y, srcPtr, srcStride, m_filteredBlockTmp[2].getAddr(COMPONENT_Y), intStride, width+1, height+filterSize, 2, false, chFmt);
intPtr = m_filteredBlockTmp[0].getAddr(COMPONENT_Y) + halfFilterSize * intStride + 1;
dstPtr = m_filteredBlock[0][0].getAddr(COMPONENT_Y);
m_if.filterVer(COMPONENT_Y, intPtr, intStride, dstPtr, dstStride, width+0, height+0, 0, false, true, chFmt);
intPtr = m_filteredBlockTmp[0].getAddr(COMPONENT_Y) + (halfFilterSize-1) * intStride + 1;
dstPtr = m_filteredBlock[2][0].getAddr(COMPONENT_Y);
m_if.filterVer(COMPONENT_Y, intPtr, intStride, dstPtr, dstStride, width+0, height+1, 2, false, true, chFmt);
intPtr = m_filteredBlockTmp[2].getAddr(COMPONENT_Y) + halfFilterSize * intStride;
dstPtr = m_filteredBlock[0][2].getAddr(COMPONENT_Y);
m_if.filterVer(COMPONENT_Y, intPtr, intStride, dstPtr, dstStride, width+1, height+0, 0, false, true, chFmt);
intPtr = m_filteredBlockTmp[2].getAddr(COMPONENT_Y) + (halfFilterSize-1) * intStride;
dstPtr = m_filteredBlock[2][2].getAddr(COMPONENT_Y);
m_if.filterVer(COMPONENT_Y, intPtr, intStride, dstPtr, dstStride, width+1, height+1, 2, false, true, chFmt);
}
/**
* \brief Generate quarter-sample interpolated blocks
*
* \param pattern Reference picture ROI
* \param halfPelRef Half-pel mv
* \param biPred Flag indicating whether block is for biprediction
*/
Void TEncSearch::xExtDIFUpSamplingQ( TComPattern* pattern, TComMv halfPelRef, Bool biPred )
{
Int width = pattern->getROIYWidth();
Int height = pattern->getROIYHeight();
Int srcStride = pattern->getPatternLStride();
Pel *srcPtr;
Int intStride = m_filteredBlockTmp[0].getStride(COMPONENT_Y);
Int dstStride = m_filteredBlock[0][0].getStride(COMPONENT_Y);
Pel *intPtr;
Pel *dstPtr;
Int filterSize = NTAPS_LUMA;
Int halfFilterSize = (filterSize>>1);
Int extHeight = (halfPelRef.getVer() == 0) ? height + filterSize : height + filterSize-1;
const ChromaFormat chFmt = m_filteredBlock[0][0].getChromaFormat();
// Horizontal filter 1/4
srcPtr = pattern->getROIY() - halfFilterSize * srcStride - 1;
intPtr = m_filteredBlockTmp[1].getAddr(COMPONENT_Y);
if (halfPelRef.getVer() > 0)
{
srcPtr += srcStride;
}
if (halfPelRef.getHor() >= 0)
{
srcPtr += 1;
}
m_if.filterHor(COMPONENT_Y, srcPtr, srcStride, intPtr, intStride, width, extHeight, 1, false, chFmt);
// Horizontal filter 3/4
srcPtr = pattern->getROIY() - halfFilterSize*srcStride - 1;
intPtr = m_filteredBlockTmp[3].getAddr(COMPONENT_Y);
if (halfPelRef.getVer() > 0)
{
srcPtr += srcStride;
}
if (halfPelRef.getHor() > 0)
{
srcPtr += 1;
}
m_if.filterHor(COMPONENT_Y, srcPtr, srcStride, intPtr, intStride, width, extHeight, 3, false, chFmt);
// Generate @ 1,1
intPtr = m_filteredBlockTmp[1].getAddr(COMPONENT_Y) + (halfFilterSize-1) * intStride;
dstPtr = m_filteredBlock[1][1].getAddr(COMPONENT_Y);
if (halfPelRef.getVer() == 0)
{
intPtr += intStride;
}
m_if.filterVer(COMPONENT_Y, intPtr, intStride, dstPtr, dstStride, width, height, 1, false, true, chFmt);
// Generate @ 3,1
intPtr = m_filteredBlockTmp[1].getAddr(COMPONENT_Y) + (halfFilterSize-1) * intStride;
dstPtr = m_filteredBlock[3][1].getAddr(COMPONENT_Y);
m_if.filterVer(COMPONENT_Y, intPtr, intStride, dstPtr, dstStride, width, height, 3, false, true, chFmt);
if (halfPelRef.getVer() != 0)
{
// Generate @ 2,1
intPtr = m_filteredBlockTmp[1].getAddr(COMPONENT_Y) + (halfFilterSize-1) * intStride;
dstPtr = m_filteredBlock[2][1].getAddr(COMPONENT_Y);
if (halfPelRef.getVer() == 0)
{
intPtr += intStride;
}
m_if.filterVer(COMPONENT_Y, intPtr, intStride, dstPtr, dstStride, width, height, 2, false, true, chFmt);
// Generate @ 2,3
intPtr = m_filteredBlockTmp[3].getAddr(COMPONENT_Y) + (halfFilterSize-1) * intStride;
dstPtr = m_filteredBlock[2][3].getAddr(COMPONENT_Y);
if (halfPelRef.getVer() == 0)
{
intPtr += intStride;
}
m_if.filterVer(COMPONENT_Y, intPtr, intStride, dstPtr, dstStride, width, height, 2, false, true, chFmt);
}
else
{
// Generate @ 0,1
intPtr = m_filteredBlockTmp[1].getAddr(COMPONENT_Y) + halfFilterSize * intStride;
dstPtr = m_filteredBlock[0][1].getAddr(COMPONENT_Y);
m_if.filterVer(COMPONENT_Y, intPtr, intStride, dstPtr, dstStride, width, height, 0, false, true, chFmt);
// Generate @ 0,3
intPtr = m_filteredBlockTmp[3].getAddr(COMPONENT_Y) + halfFilterSize * intStride;
dstPtr = m_filteredBlock[0][3].getAddr(COMPONENT_Y);
m_if.filterVer(COMPONENT_Y, intPtr, intStride, dstPtr, dstStride, width, height, 0, false, true, chFmt);
}
if (halfPelRef.getHor() != 0)
{
// Generate @ 1,2
intPtr = m_filteredBlockTmp[2].getAddr(COMPONENT_Y) + (halfFilterSize-1) * intStride;
dstPtr = m_filteredBlock[1][2].getAddr(COMPONENT_Y);
if (halfPelRef.getHor() > 0)
{
intPtr += 1;
}
if (halfPelRef.getVer() >= 0)
{
intPtr += intStride;
}
m_if.filterVer(COMPONENT_Y, intPtr, intStride, dstPtr, dstStride, width, height, 1, false, true, chFmt);
// Generate @ 3,2
intPtr = m_filteredBlockTmp[2].getAddr(COMPONENT_Y) + (halfFilterSize-1) * intStride;
dstPtr = m_filteredBlock[3][2].getAddr(COMPONENT_Y);
if (halfPelRef.getHor() > 0)
{
intPtr += 1;
}
if (halfPelRef.getVer() > 0)
{
intPtr += intStride;
}
m_if.filterVer(COMPONENT_Y, intPtr, intStride, dstPtr, dstStride, width, height, 3, false, true, chFmt);
}
else
{
// Generate @ 1,0
intPtr = m_filteredBlockTmp[0].getAddr(COMPONENT_Y) + (halfFilterSize-1) * intStride + 1;
dstPtr = m_filteredBlock[1][0].getAddr(COMPONENT_Y);
if (halfPelRef.getVer() >= 0)
{
intPtr += intStride;
}
m_if.filterVer(COMPONENT_Y, intPtr, intStride, dstPtr, dstStride, width, height, 1, false, true, chFmt);
// Generate @ 3,0
intPtr = m_filteredBlockTmp[0].getAddr(COMPONENT_Y) + (halfFilterSize-1) * intStride + 1;
dstPtr = m_filteredBlock[3][0].getAddr(COMPONENT_Y);
if (halfPelRef.getVer() > 0)
{
intPtr += intStride;
}
m_if.filterVer(COMPONENT_Y, intPtr, intStride, dstPtr, dstStride, width, height, 3, false, true, chFmt);
}
// Generate @ 1,3
intPtr = m_filteredBlockTmp[3].getAddr(COMPONENT_Y) + (halfFilterSize-1) * intStride;
dstPtr = m_filteredBlock[1][3].getAddr(COMPONENT_Y);
if (halfPelRef.getVer() == 0)
{
intPtr += intStride;
}
m_if.filterVer(COMPONENT_Y, intPtr, intStride, dstPtr, dstStride, width, height, 1, false, true, chFmt);
// Generate @ 3,3
intPtr = m_filteredBlockTmp[3].getAddr(COMPONENT_Y) + (halfFilterSize-1) * intStride;
dstPtr = m_filteredBlock[3][3].getAddr(COMPONENT_Y);
m_if.filterVer(COMPONENT_Y, intPtr, intStride, dstPtr, dstStride, width, height, 3, false, true, chFmt);
}
/** set wp tables
* \param TComDataCU* pcCU
* \param iRefIdx
* \param eRefPicListCur
* \returns Void
*/
Void TEncSearch::setWpScalingDistParam( TComDataCU* pcCU, Int iRefIdx, RefPicList eRefPicListCur )
{
if ( iRefIdx<0 )
{
m_cDistParam.bApplyWeight = false;
return;
}
TComSlice *pcSlice = pcCU->getSlice();
TComPPS *pps = pcCU->getSlice()->getPPS();
WPScalingParam *wp0 , *wp1;
m_cDistParam.bApplyWeight = ( pcSlice->getSliceType()==P_SLICE && pps->getUseWP() ) || ( pcSlice->getSliceType()==B_SLICE && pps->getWPBiPred() ) ;
if ( !m_cDistParam.bApplyWeight ) return;
Int iRefIdx0 = ( eRefPicListCur == REF_PIC_LIST_0 ) ? iRefIdx : (-1);
Int iRefIdx1 = ( eRefPicListCur == REF_PIC_LIST_1 ) ? iRefIdx : (-1);
getWpScaling( pcCU, iRefIdx0, iRefIdx1, wp0 , wp1 );
if ( iRefIdx0 < 0 ) wp0 = NULL;
if ( iRefIdx1 < 0 ) wp1 = NULL;
m_cDistParam.wpCur = NULL;
if ( eRefPicListCur == REF_PIC_LIST_0 )
{
m_cDistParam.wpCur = wp0;
}
else
{
m_cDistParam.wpCur = wp1;
}
}
//! \}