libbpg/jctvc/TAppEncCfg.cpp
2015-01-16 13:48:11 +01:00

2405 lines
144 KiB
C++

/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2014, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file TAppEncCfg.cpp
\brief Handle encoder configuration parameters
*/
#include <stdlib.h>
#include <cassert>
#include <cstring>
#include <string>
#include <limits>
#include "TLibCommon/TComRom.h"
#include "TAppEncCfg.h"
#include "program_options_lite.h"
#include "TLibEncoder/TEncRateCtrl.h"
#ifdef WIN32
#define strdup _strdup
#endif
#define MACRO_TO_STRING_HELPER(val) #val
#define MACRO_TO_STRING(val) MACRO_TO_STRING_HELPER(val)
using namespace std;
namespace po = df::program_options_lite;
enum ExtendedProfileName // this is used for determining profile strings, where multiple profiles map to a single profile idc with various constraint flag combinations
{
NONE = 0,
MAIN = 1,
MAIN10 = 2,
MAINSTILLPICTURE = 3,
MAINREXT = 4,
HIGHTHROUGHPUTREXT = 5, // Placeholder profile for development
// The following are RExt profiles, which would map to the MAINREXT profile idc.
// The enumeration indicates the bit-depth constraint in the bottom 2 digits
// the chroma format in the next digit
// the intra constraint in the top digit
MONOCHROME_8 = 1008,
MONOCHROME_12 = 1012,
MONOCHROME_16 = 1016,
MAIN_12 = 1112,
MAIN_422_10 = 1210,
MAIN_422_12 = 1212,
MAIN_444 = 1308,
MAIN_444_10 = 1310,
MAIN_444_12 = 1312,
MAIN_444_16 = 1316, // non-standard profile definition, used for development purposes
MAIN_INTRA = 2108,
MAIN_10_INTRA = 2110,
MAIN_12_INTRA = 2112,
MAIN_422_10_INTRA = 2210,
MAIN_422_12_INTRA = 2212,
MAIN_444_INTRA = 2308,
MAIN_444_10_INTRA = 2310,
MAIN_444_12_INTRA = 2312,
MAIN_444_16_INTRA = 2316
};
//! \ingroup TAppEncoder
//! \{
// ====================================================================================================================
// Constructor / destructor / initialization / destroy
// ====================================================================================================================
TAppEncCfg::TAppEncCfg()
: m_pchInputFile()
, m_pchBitstreamFile()
, m_pchReconFile()
, m_inputColourSpaceConvert(IPCOLOURSPACE_UNCHANGED)
, m_snrInternalColourSpace(false)
, m_outputInternalColourSpace(false)
, m_pchdQPFile()
, m_scalingListFile()
{
m_aidQP = NULL;
m_startOfCodedInterval = NULL;
m_codedPivotValue = NULL;
m_targetPivotValue = NULL;
}
TAppEncCfg::~TAppEncCfg()
{
if ( m_aidQP )
{
delete[] m_aidQP;
}
if ( m_startOfCodedInterval )
{
delete[] m_startOfCodedInterval;
m_startOfCodedInterval = NULL;
}
if ( m_codedPivotValue )
{
delete[] m_codedPivotValue;
m_codedPivotValue = NULL;
}
if ( m_targetPivotValue )
{
delete[] m_targetPivotValue;
m_targetPivotValue = NULL;
}
free(m_pchInputFile);
free(m_pchBitstreamFile);
free(m_pchReconFile);
free(m_pchdQPFile);
free(m_scalingListFile);
}
Void TAppEncCfg::create()
{
}
Void TAppEncCfg::destroy()
{
}
std::istringstream &operator>>(std::istringstream &in, GOPEntry &entry) //input
{
in>>entry.m_sliceType;
in>>entry.m_POC;
in>>entry.m_QPOffset;
in>>entry.m_QPFactor;
in>>entry.m_tcOffsetDiv2;
in>>entry.m_betaOffsetDiv2;
in>>entry.m_temporalId;
in>>entry.m_numRefPicsActive;
in>>entry.m_numRefPics;
for ( Int i = 0; i < entry.m_numRefPics; i++ )
{
in>>entry.m_referencePics[i];
}
in>>entry.m_interRPSPrediction;
#if AUTO_INTER_RPS
if (entry.m_interRPSPrediction==1)
{
in>>entry.m_deltaRPS;
in>>entry.m_numRefIdc;
for ( Int i = 0; i < entry.m_numRefIdc; i++ )
{
in>>entry.m_refIdc[i];
}
}
else if (entry.m_interRPSPrediction==2)
{
in>>entry.m_deltaRPS;
}
#else
if (entry.m_interRPSPrediction)
{
in>>entry.m_deltaRPS;
in>>entry.m_numRefIdc;
for ( Int i = 0; i < entry.m_numRefIdc; i++ )
{
in>>entry.m_refIdc[i];
}
}
#endif
return in;
}
Bool confirmPara(Bool bflag, const Char* message);
static inline ChromaFormat numberToChromaFormat(const Int val)
{
switch (val)
{
case 400: return CHROMA_400; break;
case 420: return CHROMA_420; break;
case 422: return CHROMA_422; break;
case 444: return CHROMA_444; break;
default: return NUM_CHROMA_FORMAT;
}
}
static const struct MapStrToProfile
{
const Char* str;
Profile::Name value;
}
strToProfile[] =
{
{"none", Profile::NONE },
{"main", Profile::MAIN },
{"main10", Profile::MAIN10 },
{"main-still-picture", Profile::MAINSTILLPICTURE },
{"main-RExt", Profile::MAINREXT },
{"high-throughput-RExt", Profile::HIGHTHROUGHPUTREXT }
};
static const struct MapStrToExtendedProfile
{
const Char* str;
ExtendedProfileName value;
}
strToExtendedProfile[] =
{
{"none", NONE },
{"main", MAIN },
{"main10", MAIN10 },
{"main-still-picture", MAINSTILLPICTURE },
{"main-RExt", MAINREXT },
{"high-throughput-RExt", HIGHTHROUGHPUTREXT },
{"monochrome", MONOCHROME_8 },
{"monochrome12", MONOCHROME_12 },
{"monochrome16", MONOCHROME_16 },
{"main12", MAIN_12 },
{"main_422_10", MAIN_422_10 },
{"main_422_12", MAIN_422_12 },
{"main_444", MAIN_444 },
{"main_444_10", MAIN_444_10 },
{"main_444_12", MAIN_444_12 },
{"main_444_16", MAIN_444_16 },
{"main_intra", MAIN_INTRA },
{"main_10_intra", MAIN_10_INTRA },
{"main_12_intra", MAIN_12_INTRA },
{"main_422_10_intra", MAIN_422_10_INTRA},
{"main_422_12_intra", MAIN_422_12_INTRA},
{"main_444_intra", MAIN_444_INTRA },
{"main_444_10_intra", MAIN_444_10_INTRA},
{"main_444_12_intra", MAIN_444_12_INTRA},
{"main_444_16_intra", MAIN_444_16_INTRA}
};
static const ExtendedProfileName validRExtProfileNames[2/* intraConstraintFlag*/][4/* bit depth constraint 8=0, 10=1, 12=2, 16=3*/][4/*chroma format*/]=
{
{
{ MONOCHROME_8, NONE, NONE, MAIN_444 }, // 8-bit inter for 400, 420, 422 and 444
{ NONE, NONE, MAIN_422_10, MAIN_444_10 }, // 10-bit inter for 400, 420, 422 and 444
{ MONOCHROME_12, MAIN_12, MAIN_422_12, MAIN_444_12 }, // 12-bit inter for 400, 420, 422 and 444
{ MONOCHROME_16, NONE, NONE, MAIN_444_16 } // 16-bit inter for 400, 420, 422 and 444 (the latter is non standard used for development)
},
{
{ NONE, MAIN_INTRA, NONE, MAIN_444_INTRA }, // 8-bit intra for 400, 420, 422 and 444
{ NONE, MAIN_10_INTRA, MAIN_422_10_INTRA, MAIN_444_10_INTRA }, // 10-bit intra for 400, 420, 422 and 444
{ NONE, MAIN_12_INTRA, MAIN_422_12_INTRA, MAIN_444_12_INTRA }, // 12-bit intra for 400, 420, 422 and 444
{ NONE, NONE, NONE, MAIN_444_16_INTRA } // 16-bit intra for 400, 420, 422 and 444
}
};
static const struct MapStrToTier
{
const Char* str;
Level::Tier value;
}
strToTier[] =
{
{"main", Level::MAIN},
{"high", Level::HIGH},
};
static const struct MapStrToLevel
{
const Char* str;
Level::Name value;
}
strToLevel[] =
{
{"none",Level::NONE},
{"1", Level::LEVEL1},
{"2", Level::LEVEL2},
{"2.1", Level::LEVEL2_1},
{"3", Level::LEVEL3},
{"3.1", Level::LEVEL3_1},
{"4", Level::LEVEL4},
{"4.1", Level::LEVEL4_1},
{"5", Level::LEVEL5},
{"5.1", Level::LEVEL5_1},
{"5.2", Level::LEVEL5_2},
{"6", Level::LEVEL6},
{"6.1", Level::LEVEL6_1},
{"6.2", Level::LEVEL6_2},
{"8.5", Level::LEVEL8_5},
};
static const struct MapStrToCostMode
{
const Char* str;
CostMode value;
}
strToCostMode[] =
{
{"lossy", COST_STANDARD_LOSSY},
{"sequence_level_lossless", COST_SEQUENCE_LEVEL_LOSSLESS},
{"lossless", COST_LOSSLESS_CODING},
{"mixed_lossless_lossy", COST_MIXED_LOSSLESS_LOSSY_CODING}
};
static const struct MapStrToScalingListMode
{
const Char* str;
ScalingListMode value;
}
strToScalingListMode[] =
{
{"0", SCALING_LIST_OFF},
{"1", SCALING_LIST_DEFAULT},
{"2", SCALING_LIST_FILE_READ},
{"off", SCALING_LIST_OFF},
{"default", SCALING_LIST_DEFAULT},
{"file", SCALING_LIST_FILE_READ}
};
template<typename T, typename P>
static std::string enumToString(P map[], UInt mapLen, const T val)
{
for (UInt i = 0; i < mapLen; i++)
{
if (val == map[i].value)
{
return map[i].str;
}
}
return std::string();
}
template<typename T, typename P>
static istream& readStrToEnum(P map[], UInt mapLen, istream &in, T &val)
{
string str;
in >> str;
for (UInt i = 0; i < mapLen; i++)
{
if (str == map[i].str)
{
val = map[i].value;
goto found;
}
}
/* not found */
in.setstate(ios::failbit);
found:
return in;
}
//inline to prevent compiler warnings for "unused static function"
static inline istream& operator >> (istream &in, ExtendedProfileName &profile)
{
return readStrToEnum(strToExtendedProfile, sizeof(strToExtendedProfile)/sizeof(*strToExtendedProfile), in, profile);
}
namespace Level
{
static inline istream& operator >> (istream &in, Tier &tier)
{
return readStrToEnum(strToTier, sizeof(strToTier)/sizeof(*strToTier), in, tier);
}
static inline istream& operator >> (istream &in, Name &level)
{
return readStrToEnum(strToLevel, sizeof(strToLevel)/sizeof(*strToLevel), in, level);
}
}
static inline istream& operator >> (istream &in, CostMode &mode)
{
return readStrToEnum(strToCostMode, sizeof(strToCostMode)/sizeof(*strToCostMode), in, mode);
}
static inline istream& operator >> (istream &in, ScalingListMode &mode)
{
return readStrToEnum(strToScalingListMode, sizeof(strToScalingListMode)/sizeof(*strToScalingListMode), in, mode);
}
template <class T>
struct SMultiValueInput
{
const T minValIncl;
const T maxValIncl; // Use 0 for unlimited
const std::size_t minNumValuesIncl;
const std::size_t maxNumValuesIncl; // Use 0 for unlimited
std::vector<T> values;
SMultiValueInput() : minValIncl(0), maxValIncl(0), minNumValuesIncl(0), maxNumValuesIncl(0), values() { }
SMultiValueInput(std::vector<T> &defaults) : minValIncl(0), maxValIncl(0), minNumValuesIncl(0), maxNumValuesIncl(0), values(defaults) { }
SMultiValueInput(const T &minValue, const T &maxValue, std::size_t minNumberValues=0, std::size_t maxNumberValues=0)
: minValIncl(minValue), maxValIncl(maxValue), minNumValuesIncl(minNumberValues), maxNumValuesIncl(maxNumberValues), values() { }
SMultiValueInput(const T &minValue, const T &maxValue, std::size_t minNumberValues, std::size_t maxNumberValues, const T* defValues, const UInt numDefValues)
: minValIncl(minValue), maxValIncl(maxValue), minNumValuesIncl(minNumberValues), maxNumValuesIncl(maxNumberValues), values(defValues, defValues+numDefValues) { }
SMultiValueInput<T> &operator=(const std::vector<T> &userValues) { values=userValues; return *this; }
SMultiValueInput<T> &operator=(const SMultiValueInput<T> &userValues) { values=userValues.values; return *this; }
};
static inline istream& operator >> (istream &in, SMultiValueInput<UInt> &values)
{
values.values.clear();
string str;
in >> str;
if (!str.empty())
{
const Char *pStr=str.c_str();
// soak up any whitespace
for(;isspace(*pStr);pStr++);
while (*pStr != 0)
{
Char *eptr;
UInt val=strtoul(pStr, &eptr, 0);
if (*eptr!=0 && !isspace(*eptr) && *eptr!=',')
{
in.setstate(ios::failbit);
break;
}
if (val<values.minValIncl || val>values.maxValIncl)
{
in.setstate(ios::failbit);
break;
}
if (values.maxNumValuesIncl != 0 && values.values.size() >= values.maxNumValuesIncl)
{
in.setstate(ios::failbit);
break;
}
values.values.push_back(val);
// soak up any whitespace and up to 1 comma.
pStr=eptr;
for(;isspace(*pStr);pStr++);
if (*pStr == ',') pStr++;
for(;isspace(*pStr);pStr++);
}
}
if (values.values.size() < values.minNumValuesIncl)
{
in.setstate(ios::failbit);
}
return in;
}
static inline istream& operator >> (istream &in, SMultiValueInput<Int> &values)
{
values.values.clear();
string str;
in >> str;
if (!str.empty())
{
const Char *pStr=str.c_str();
// soak up any whitespace
for(;isspace(*pStr);pStr++);
while (*pStr != 0)
{
Char *eptr;
Int val=strtol(pStr, &eptr, 0);
if (*eptr!=0 && !isspace(*eptr) && *eptr!=',')
{
in.setstate(ios::failbit);
break;
}
if (val<values.minValIncl || val>values.maxValIncl)
{
in.setstate(ios::failbit);
break;
}
if (values.maxNumValuesIncl != 0 && values.values.size() >= values.maxNumValuesIncl)
{
in.setstate(ios::failbit);
break;
}
values.values.push_back(val);
// soak up any whitespace and up to 1 comma.
pStr=eptr;
for(;isspace(*pStr);pStr++);
if (*pStr == ',') pStr++;
for(;isspace(*pStr);pStr++);
}
}
if (values.values.size() < values.minNumValuesIncl)
{
in.setstate(ios::failbit);
}
return in;
}
static inline istream& operator >> (istream &in, SMultiValueInput<Bool> &values)
{
values.values.clear();
string str;
in >> str;
if (!str.empty())
{
const Char *pStr=str.c_str();
// soak up any whitespace
for(;isspace(*pStr);pStr++);
while (*pStr != 0)
{
Char *eptr;
Int val=strtol(pStr, &eptr, 0);
if (*eptr!=0 && !isspace(*eptr) && *eptr!=',')
{
in.setstate(ios::failbit);
break;
}
if (val<Int(values.minValIncl) || val>Int(values.maxValIncl))
{
in.setstate(ios::failbit);
break;
}
if (values.maxNumValuesIncl != 0 && values.values.size() >= values.maxNumValuesIncl)
{
in.setstate(ios::failbit);
break;
}
values.values.push_back(val!=0);
// soak up any whitespace and up to 1 comma.
pStr=eptr;
for(;isspace(*pStr);pStr++);
if (*pStr == ',') pStr++;
for(;isspace(*pStr);pStr++);
}
}
if (values.values.size() < values.minNumValuesIncl)
{
in.setstate(ios::failbit);
}
return in;
}
static Void
automaticallySelectRExtProfile(const Bool bUsingGeneralRExtTools,
const Bool bUsingChromaQPAdjustment,
const Bool bUsingExtendedPrecision,
const Bool bIntraConstraintFlag,
UInt &bitDepthConstraint,
ChromaFormat &chromaFormatConstraint,
const Int maxBitDepth,
const ChromaFormat chromaFormat)
{
// Try to choose profile, according to table in Q1013.
UInt trialBitDepthConstraint=maxBitDepth;
if (trialBitDepthConstraint<8) trialBitDepthConstraint=8;
else if (trialBitDepthConstraint==9 || trialBitDepthConstraint==11) trialBitDepthConstraint++;
else if (trialBitDepthConstraint>12) trialBitDepthConstraint=16;
// both format and bit depth constraints are unspecified
if (bUsingExtendedPrecision || trialBitDepthConstraint==16)
{
bitDepthConstraint = 16;
chromaFormatConstraint = (!bIntraConstraintFlag && chromaFormat==CHROMA_400) ? CHROMA_400 : CHROMA_444;
}
else if (bUsingGeneralRExtTools)
{
if (chromaFormat == CHROMA_400 && !bIntraConstraintFlag)
{
bitDepthConstraint = 16;
chromaFormatConstraint = CHROMA_400;
}
else
{
bitDepthConstraint = trialBitDepthConstraint;
chromaFormatConstraint = CHROMA_444;
}
}
else if (chromaFormat == CHROMA_400)
{
if (bIntraConstraintFlag)
{
chromaFormatConstraint = CHROMA_420; // there is no intra 4:0:0 profile.
bitDepthConstraint = trialBitDepthConstraint;
}
else
{
chromaFormatConstraint = CHROMA_400;
bitDepthConstraint = trialBitDepthConstraint == 8 ? 8 : 12;
}
}
else
{
bitDepthConstraint = trialBitDepthConstraint;
chromaFormatConstraint = chromaFormat;
if (bUsingChromaQPAdjustment && chromaFormat == CHROMA_420) chromaFormatConstraint = CHROMA_422; // 4:2:0 cannot use the chroma qp tool.
if (chromaFormatConstraint == CHROMA_422 && bitDepthConstraint == 8) bitDepthConstraint = 10; // there is no 8-bit 4:2:2 profile.
if (chromaFormatConstraint == CHROMA_420 && !bIntraConstraintFlag) bitDepthConstraint = 12; // there is no 8 or 10-bit 4:2:0 inter RExt profile.
}
}
// ====================================================================================================================
// Public member functions
// ====================================================================================================================
/** \param argc number of arguments
\param argv array of arguments
\retval true when success
*/
Bool TAppEncCfg::parseCfg( Int argc, Char* argv[] )
{
Bool do_help = false;
string cfg_InputFile;
string cfg_BitstreamFile;
string cfg_ReconFile;
string cfg_dQPFile;
string cfg_ScalingListFile;
Int tmpChromaFormat;
Int tmpInputChromaFormat;
Int tmpConstraintChromaFormat;
string inputColourSpaceConvert;
ExtendedProfileName extendedProfile;
Int saoOffsetBitShift[MAX_NUM_CHANNEL_TYPE];
// Multi-value input fields: // minval, maxval (incl), min_entries, max_entries (incl) [, default values, number of default values]
SMultiValueInput<UInt> cfg_ColumnWidth (0, std::numeric_limits<UInt>::max(), 0, std::numeric_limits<UInt>::max());
SMultiValueInput<UInt> cfg_RowHeight (0, std::numeric_limits<UInt>::max(), 0, std::numeric_limits<UInt>::max());
SMultiValueInput<Int> cfg_startOfCodedInterval (std::numeric_limits<Int>::min(), std::numeric_limits<Int>::max(), 0, 1<<16);
SMultiValueInput<Int> cfg_codedPivotValue (std::numeric_limits<Int>::min(), std::numeric_limits<Int>::max(), 0, 1<<16);
SMultiValueInput<Int> cfg_targetPivotValue (std::numeric_limits<Int>::min(), std::numeric_limits<Int>::max(), 0, 1<<16);
const UInt defaultInputKneeCodes[3] = { 600, 800, 900 };
const UInt defaultOutputKneeCodes[3] = { 100, 250, 450 };
SMultiValueInput<UInt> cfg_kneeSEIInputKneePointValue (1, 999, 0, 999, defaultInputKneeCodes, sizeof(defaultInputKneeCodes )/sizeof(UInt));
SMultiValueInput<UInt> cfg_kneeSEIOutputKneePointValue (0, 1000, 0, 999, defaultOutputKneeCodes, sizeof(defaultOutputKneeCodes)/sizeof(UInt));
const Int defaultPrimaryCodes[6] = { 0,50000, 0,0, 50000,0 };
const Int defaultWhitePointCode[2] = { 16667, 16667 };
SMultiValueInput<Int> cfg_DisplayPrimariesCode (0, 50000, 3, 3, defaultPrimaryCodes, sizeof(defaultPrimaryCodes )/sizeof(Int));
SMultiValueInput<Int> cfg_DisplayWhitePointCode (0, 50000, 2, 2, defaultWhitePointCode, sizeof(defaultWhitePointCode)/sizeof(Int));
SMultiValueInput<Bool> cfg_timeCodeSeiTimeStampFlag (0, 1, 0, MAX_TIMECODE_SEI_SETS);
SMultiValueInput<Bool> cfg_timeCodeSeiNumUnitFieldBasedFlag(0, 1, 0, MAX_TIMECODE_SEI_SETS);
SMultiValueInput<Int> cfg_timeCodeSeiCountingType (0, 6, 0, MAX_TIMECODE_SEI_SETS);
SMultiValueInput<Bool> cfg_timeCodeSeiFullTimeStampFlag (0, 1, 0, MAX_TIMECODE_SEI_SETS);
SMultiValueInput<Bool> cfg_timeCodeSeiDiscontinuityFlag (0, 1, 0, MAX_TIMECODE_SEI_SETS);
SMultiValueInput<Bool> cfg_timeCodeSeiCntDroppedFlag (0, 1, 0, MAX_TIMECODE_SEI_SETS);
SMultiValueInput<Int> cfg_timeCodeSeiNumberOfFrames (0,511, 0, MAX_TIMECODE_SEI_SETS);
SMultiValueInput<Int> cfg_timeCodeSeiSecondsValue (0, 59, 0, MAX_TIMECODE_SEI_SETS);
SMultiValueInput<Int> cfg_timeCodeSeiMinutesValue (0, 59, 0, MAX_TIMECODE_SEI_SETS);
SMultiValueInput<Int> cfg_timeCodeSeiHoursValue (0, 23, 0, MAX_TIMECODE_SEI_SETS);
SMultiValueInput<Bool> cfg_timeCodeSeiSecondsFlag (0, 1, 0, MAX_TIMECODE_SEI_SETS);
SMultiValueInput<Bool> cfg_timeCodeSeiMinutesFlag (0, 1, 0, MAX_TIMECODE_SEI_SETS);
SMultiValueInput<Bool> cfg_timeCodeSeiHoursFlag (0, 1, 0, MAX_TIMECODE_SEI_SETS);
SMultiValueInput<Int> cfg_timeCodeSeiTimeOffsetLength (0, 31, 0, MAX_TIMECODE_SEI_SETS);
SMultiValueInput<Int> cfg_timeCodeSeiTimeOffsetValue (std::numeric_limits<Int>::min(), std::numeric_limits<Int>::max(), 0, MAX_TIMECODE_SEI_SETS);
po::Options opts;
opts.addOptions()
("help", do_help, false, "this help text")
("c", po::parseConfigFile, "configuration file name")
// File, I/O and source parameters
("InputFile,i", cfg_InputFile, string(""), "Original YUV input file name")
("BitstreamFile,b", cfg_BitstreamFile, string(""), "Bitstream output file name")
("ReconFile,o", cfg_ReconFile, string(""), "Reconstructed YUV output file name")
("SourceWidth,-wdt", m_iSourceWidth, 0, "Source picture width")
("SourceHeight,-hgt", m_iSourceHeight, 0, "Source picture height")
("InputBitDepth", m_inputBitDepth[CHANNEL_TYPE_LUMA], 8, "Bit-depth of input file")
("OutputBitDepth", m_outputBitDepth[CHANNEL_TYPE_LUMA], 0, "Bit-depth of output file (default:InternalBitDepth)")
("MSBExtendedBitDepth", m_MSBExtendedBitDepth[CHANNEL_TYPE_LUMA], 0, "bit depth of luma component after addition of MSBs of value 0 (used for synthesising High Dynamic Range source material). (default:InputBitDepth)")
("InternalBitDepth", m_internalBitDepth[CHANNEL_TYPE_LUMA], 0, "Bit-depth the codec operates at. (default:MSBExtendedBitDepth). If different to MSBExtendedBitDepth, source data will be converted")
("InputBitDepthC", m_inputBitDepth[CHANNEL_TYPE_CHROMA], 0, "As per InputBitDepth but for chroma component. (default:InputBitDepth)")
("OutputBitDepthC", m_outputBitDepth[CHANNEL_TYPE_CHROMA], 0, "As per OutputBitDepth but for chroma component. (default:InternalBitDepthC)")
("MSBExtendedBitDepthC", m_MSBExtendedBitDepth[CHANNEL_TYPE_CHROMA], 0, "As per MSBExtendedBitDepth but for chroma component. (default:MSBExtendedBitDepth)")
("InternalBitDepthC", m_internalBitDepth[CHANNEL_TYPE_CHROMA], 0, "As per InternalBitDepth but for chroma component. (default:InternalBitDepth)")
("ExtendedPrecision", m_useExtendedPrecision, false, "Increased internal accuracies to support high bit depths (not valid in V1 profiles)")
("HighPrecisionPredictionWeighting", m_useHighPrecisionPredictionWeighting, false, "Use high precision option for weighted prediction (not valid in V1 profiles)")
("InputColourSpaceConvert", inputColourSpaceConvert, string(""), "Colour space conversion to apply to input video. Permitted values are (empty string=UNCHANGED) " + getListOfColourSpaceConverts(true))
("SNRInternalColourSpace", m_snrInternalColourSpace, false, "If true, then no colour space conversion is applied prior to SNR, otherwise inverse of input is applied.")
("OutputInternalColourSpace", m_outputInternalColourSpace, false, "If true, then no colour space conversion is applied for reconstructed video, otherwise inverse of input is applied.")
("InputChromaFormat", tmpInputChromaFormat, 420, "InputChromaFormatIDC")
("MSEBasedSequencePSNR", m_printMSEBasedSequencePSNR, false, "0 (default) emit sequence PSNR only as a linear average of the frame PSNRs, 1 = also emit a sequence PSNR based on an average of the frame MSEs")
("PrintFrameMSE", m_printFrameMSE, false, "0 (default) emit only bit count and PSNRs for each frame, 1 = also emit MSE values")
("PrintSequenceMSE", m_printSequenceMSE, false, "0 (default) emit only bit rate and PSNRs for the whole sequence, 1 = also emit MSE values")
("CabacZeroWordPaddingEnabled", m_cabacZeroWordPaddingEnabled, false, "0 (default) do not add conforming cabac-zero-words to bit streams, 1 = add cabac-zero-words")
("ChromaFormatIDC,-cf", tmpChromaFormat, 0, "ChromaFormatIDC (400|420|422|444 or set 0 (default) for same as InputChromaFormat)")
("ConformanceMode", m_conformanceWindowMode, 0, "Deprecated alias of ConformanceWindowMode")
("ConformanceWindowMode", m_conformanceWindowMode, 0, "Window conformance mode (0: no window, 1:automatic padding, 2:padding, 3:conformance")
("HorizontalPadding,-pdx", m_aiPad[0], 0, "Horizontal source padding for conformance window mode 2")
("VerticalPadding,-pdy", m_aiPad[1], 0, "Vertical source padding for conformance window mode 2")
("ConfLeft", m_confWinLeft, 0, "Deprecated alias of ConfWinLeft")
("ConfRight", m_confWinRight, 0, "Deprecated alias of ConfWinRight")
("ConfTop", m_confWinTop, 0, "Deprecated alias of ConfWinTop")
("ConfBottom", m_confWinBottom, 0, "Deprecated alias of ConfWinBottom")
("ConfWinLeft", m_confWinLeft, 0, "Left offset for window conformance mode 3")
("ConfWinRight", m_confWinRight, 0, "Right offset for window conformance mode 3")
("ConfWinTop", m_confWinTop, 0, "Top offset for window conformance mode 3")
("ConfWinBottom", m_confWinBottom, 0, "Bottom offset for window conformance mode 3")
("FrameRate,-fr", m_iFrameRate, 0, "Frame rate")
("FrameSkip,-fs", m_FrameSkip, 0u, "Number of frames to skip at start of input YUV")
("FramesToBeEncoded,f", m_framesToBeEncoded, 0, "Number of frames to be encoded (default=all)")
//Field coding parameters
("FieldCoding", m_isField, false, "Signals if it's a field based coding")
("TopFieldFirst, Tff", m_isTopFieldFirst, false, "In case of field based coding, signals whether if it's a top field first or not")
// Profile and level
("Profile", extendedProfile, NONE, "Profile name to use for encoding. Use main (for main), main10 (for main10), main-still-picture, main-RExt (for Range Extensions profile), any of the RExt specific profile names, or none")
("Level", m_level, Level::NONE, "Level limit to be used, eg 5.1, or none")
("Tier", m_levelTier, Level::MAIN, "Tier to use for interpretation of --Level (main or high only)")
("MaxBitDepthConstraint", m_bitDepthConstraint, 0u, "Bit depth to use for profile-constraint for RExt profiles. 0=automatically choose based upon other parameters")
("MaxChromaFormatConstraint", tmpConstraintChromaFormat, 0, "Chroma-format to use for the profile-constraint for RExt profiles. 0=automatically choose based upon other parameters")
("IntraConstraintFlag", m_intraConstraintFlag, false, "Value of general_intra_constraint_flag to use for RExt profiles (not used if an explicit RExt sub-profile is specified)")
("LowerBitRateConstraintFlag", m_lowerBitRateConstraintFlag, true, "Value of general_lower_bit_rate_constraint_flag to use for RExt profiles")
("ProgressiveSource", m_progressiveSourceFlag, false, "Indicate that source is progressive")
("InterlacedSource", m_interlacedSourceFlag, false, "Indicate that source is interlaced")
("NonPackedSource", m_nonPackedConstraintFlag, false, "Indicate that source does not contain frame packing")
("FrameOnly", m_frameOnlyConstraintFlag, false, "Indicate that the bitstream contains only frames")
// Unit definition parameters
("MaxCUWidth", m_uiMaxCUWidth, 64u)
("MaxCUHeight", m_uiMaxCUHeight, 64u)
// todo: remove defaults from MaxCUSize
("MaxCUSize,s", m_uiMaxCUWidth, 64u, "Maximum CU size")
("MaxCUSize,s", m_uiMaxCUHeight, 64u, "Maximum CU size")
("MaxPartitionDepth,h", m_uiMaxCUDepth, 4u, "CU depth")
("QuadtreeTULog2MaxSize", m_uiQuadtreeTULog2MaxSize, 6u, "Maximum TU size in logarithm base 2")
("QuadtreeTULog2MinSize", m_uiQuadtreeTULog2MinSize, 2u, "Minimum TU size in logarithm base 2")
("QuadtreeTUMaxDepthIntra", m_uiQuadtreeTUMaxDepthIntra, 1u, "Depth of TU tree for intra CUs")
("QuadtreeTUMaxDepthInter", m_uiQuadtreeTUMaxDepthInter, 2u, "Depth of TU tree for inter CUs")
// Coding structure paramters
("IntraPeriod,-ip", m_iIntraPeriod, -1, "Intra period in frames, (-1: only first frame)")
#if ALLOW_RECOVERY_POINT_AS_RAP
("DecodingRefreshType,-dr", m_iDecodingRefreshType, 0, "Intra refresh type (0:none 1:CRA 2:IDR 3:RecPointSEI)")
#else
("DecodingRefreshType,-dr", m_iDecodingRefreshType, 0, "Intra refresh type (0:none 1:CRA 2:IDR)")
#endif
("GOPSize,g", m_iGOPSize, 1, "GOP size of temporal structure")
// motion search options
("FastSearch", m_iFastSearch, 1, "0:Full search 1:Diamond 2:PMVFAST")
("SearchRange,-sr", m_iSearchRange, 96, "Motion search range")
("BipredSearchRange", m_bipredSearchRange, 4, "Motion search range for bipred refinement")
("HadamardME", m_bUseHADME, true, "Hadamard ME for fractional-pel")
("ASR", m_bUseASR, false, "Adaptive motion search range")
// Mode decision parameters
("LambdaModifier0,-LM0", m_adLambdaModifier[ 0 ], ( Double )1.0, "Lambda modifier for temporal layer 0")
("LambdaModifier1,-LM1", m_adLambdaModifier[ 1 ], ( Double )1.0, "Lambda modifier for temporal layer 1")
("LambdaModifier2,-LM2", m_adLambdaModifier[ 2 ], ( Double )1.0, "Lambda modifier for temporal layer 2")
("LambdaModifier3,-LM3", m_adLambdaModifier[ 3 ], ( Double )1.0, "Lambda modifier for temporal layer 3")
("LambdaModifier4,-LM4", m_adLambdaModifier[ 4 ], ( Double )1.0, "Lambda modifier for temporal layer 4")
("LambdaModifier5,-LM5", m_adLambdaModifier[ 5 ], ( Double )1.0, "Lambda modifier for temporal layer 5")
("LambdaModifier6,-LM6", m_adLambdaModifier[ 6 ], ( Double )1.0, "Lambda modifier for temporal layer 6")
/* Quantization parameters */
("QP,q", m_fQP, 30.0, "Qp value, if value is float, QP is switched once during encoding")
("DeltaQpRD,-dqr", m_uiDeltaQpRD, 0u, "max dQp offset for slice")
("MaxDeltaQP,d", m_iMaxDeltaQP, 0, "max dQp offset for block")
("MaxCuDQPDepth,-dqd", m_iMaxCuDQPDepth, 0, "max depth for a minimum CuDQP")
("MaxCUChromaQpAdjustmentDepth", m_maxCUChromaQpAdjustmentDepth, -1, "Maximum depth for CU chroma Qp adjustment - set less than 0 to disable")
("CbQpOffset,-cbqpofs", m_cbQpOffset, 0, "Chroma Cb QP Offset")
("CrQpOffset,-crqpofs", m_crQpOffset, 0, "Chroma Cr QP Offset")
#if ADAPTIVE_QP_SELECTION
("AdaptiveQpSelection,-aqps", m_bUseAdaptQpSelect, false, "AdaptiveQpSelection")
#endif
("AdaptiveQP,-aq", m_bUseAdaptiveQP, false, "QP adaptation based on a psycho-visual model")
("MaxQPAdaptationRange,-aqr", m_iQPAdaptationRange, 6, "QP adaptation range")
("dQPFile,m", cfg_dQPFile, string(""), "dQP file name")
("RDOQ", m_useRDOQ, true)
("RDOQTS", m_useRDOQTS, true)
("RDpenalty", m_rdPenalty, 0, "RD-penalty for 32x32 TU for intra in non-intra slices. 0:disabled 1:RD-penalty 2:maximum RD-penalty")
// Deblocking filter parameters
("LoopFilterDisable", m_bLoopFilterDisable, false)
("LoopFilterOffsetInPPS", m_loopFilterOffsetInPPS, false)
("LoopFilterBetaOffset_div2", m_loopFilterBetaOffsetDiv2, 0)
("LoopFilterTcOffset_div2", m_loopFilterTcOffsetDiv2, 0)
("DeblockingFilterControlPresent", m_DeblockingFilterControlPresent, false)
("DeblockingFilterMetric", m_DeblockingFilterMetric, false)
// Coding tools
("AMP", m_enableAMP, true, "Enable asymmetric motion partitions")
("CrossComponentPrediction", m_useCrossComponentPrediction, false, "Enable the use of cross-component prediction (not valid in V1 profiles)")
("ReconBasedCrossCPredictionEstimate", m_reconBasedCrossCPredictionEstimate, false, "When determining the alpha value for cross-component prediction, use the decoded residual rather than the pre-transform encoder-side residual")
("SaoLumaOffsetBitShift", saoOffsetBitShift[CHANNEL_TYPE_LUMA], 0, "Specify the luma SAO bit-shift. If negative, automatically calculate a suitable value based upon bit depth and initial QP")
("SaoChromaOffsetBitShift", saoOffsetBitShift[CHANNEL_TYPE_CHROMA], 0, "Specify the chroma SAO bit-shift. If negative, automatically calculate a suitable value based upon bit depth and initial QP")
("TransformSkip", m_useTransformSkip, false, "Intra transform skipping")
("TransformSkipFast", m_useTransformSkipFast, false, "Fast intra transform skipping")
("TransformSkipLog2MaxSize", m_transformSkipLog2MaxSize, 2U, "Specify transform-skip maximum size. Minimum 2. (not valid in V1 profiles)")
("ImplicitResidualDPCM", m_useResidualDPCM[RDPCM_SIGNAL_IMPLICIT], false, "Enable implicitly signalled residual DPCM for intra (also known as sample-adaptive intra predict) (not valid in V1 profiles)")
("ExplicitResidualDPCM", m_useResidualDPCM[RDPCM_SIGNAL_EXPLICIT], false, "Enable explicitly signalled residual DPCM for inter (not valid in V1 profiles)")
("ResidualRotation", m_useResidualRotation, false, "Enable rotation of transform-skipped and transquant-bypassed TUs through 180 degrees prior to entropy coding (not valid in V1 profiles)")
("SingleSignificanceMapContext", m_useSingleSignificanceMapContext, false, "Enable, for transform-skipped and transquant-bypassed TUs, the selection of a single significance map context variable for all coefficients (not valid in V1 profiles)")
("GolombRiceParameterAdaptation", m_useGolombRiceParameterAdaptation, false, "Enable the adaptation of the Golomb-Rice parameter over the course of each slice")
("AlignCABACBeforeBypass", m_alignCABACBeforeBypass, false, "Align the CABAC engine to a defined fraction of a bit prior to coding bypass data. Must be 1 in high bit rate profile, 0 otherwise" )
("SAO", m_bUseSAO, true, "Enable Sample Adaptive Offset")
("MaxNumOffsetsPerPic", m_maxNumOffsetsPerPic, 2048, "Max number of SAO offset per picture (Default: 2048)")
("SAOLcuBoundary", m_saoCtuBoundary, false, "0: right/bottom CTU boundary areas skipped from SAO parameter estimation, 1: non-deblocked pixels are used for those areas")
("SliceMode", m_sliceMode, 0, "0: Disable all Recon slice limits, 1: Enforce max # of CTUs, 2: Enforce max # of bytes, 3:specify tiles per dependent slice")
("SliceArgument", m_sliceArgument, 0, "Depending on SliceMode being:"
"\t1: max number of CTUs per slice"
"\t2: max number of bytes per slice"
"\t3: max number of tiles per slice")
("SliceSegmentMode", m_sliceSegmentMode, 0, "0: Disable all slice segment limits, 1: Enforce max # of CTUs, 2: Enforce max # of bytes, 3:specify tiles per dependent slice")
("SliceSegmentArgument", m_sliceSegmentArgument, 0, "Depending on SliceSegmentMode being:"
"\t1: max number of CTUs per slice segment"
"\t2: max number of bytes per slice segment"
"\t3: max number of tiles per slice segment")
("LFCrossSliceBoundaryFlag", m_bLFCrossSliceBoundaryFlag, true)
("ConstrainedIntraPred", m_bUseConstrainedIntraPred, false, "Constrained Intra Prediction")
("PCMEnabledFlag", m_usePCM, false)
("PCMLog2MaxSize", m_pcmLog2MaxSize, 5u)
("PCMLog2MinSize", m_uiPCMLog2MinSize, 3u)
("PCMInputBitDepthFlag", m_bPCMInputBitDepthFlag, true)
("PCMFilterDisableFlag", m_bPCMFilterDisableFlag, false)
("IntraReferenceSmoothing", m_enableIntraReferenceSmoothing, true, "0: Disable use of intra reference smoothing. 1: Enable use of intra reference smoothing (not valid in V1 profiles)")
("WeightedPredP,-wpP", m_useWeightedPred, false, "Use weighted prediction in P slices")
("WeightedPredB,-wpB", m_useWeightedBiPred, false, "Use weighted (bidirectional) prediction in B slices")
("Log2ParallelMergeLevel", m_log2ParallelMergeLevel, 2u, "Parallel merge estimation region")
//deprecated copies of renamed tile parameters
("UniformSpacingIdc", m_tileUniformSpacingFlag, false, "deprecated alias of TileUniformSpacing")
("ColumnWidthArray", cfg_ColumnWidth, cfg_ColumnWidth, "deprecated alias of TileColumnWidthArray")
("RowHeightArray", cfg_RowHeight, cfg_RowHeight, "deprecated alias of TileRowHeightArray")
("TileUniformSpacing", m_tileUniformSpacingFlag, false, "Indicates that tile columns and rows are distributed uniformly")
("NumTileColumnsMinus1", m_numTileColumnsMinus1, 0, "Number of tile columns in a picture minus 1")
("NumTileRowsMinus1", m_numTileRowsMinus1, 0, "Number of rows in a picture minus 1")
("TileColumnWidthArray", cfg_ColumnWidth, cfg_ColumnWidth, "Array containing tile column width values in units of CTU")
("TileRowHeightArray", cfg_RowHeight, cfg_RowHeight, "Array containing tile row height values in units of CTU")
("LFCrossTileBoundaryFlag", m_bLFCrossTileBoundaryFlag, true, "1: cross-tile-boundary loop filtering. 0:non-cross-tile-boundary loop filtering")
("WaveFrontSynchro", m_iWaveFrontSynchro, 0, "0: no synchro; 1 synchro with top-right-right")
("ScalingList", m_useScalingListId, SCALING_LIST_OFF, "0/off: no scaling list, 1/default: default scaling lists, 2/file: scaling lists specified in ScalingListFile")
("ScalingListFile", cfg_ScalingListFile, string(""), "Scaling list file name. Use an empty string to produce help.")
("SignHideFlag,-SBH", m_signHideFlag, 1)
("MaxNumMergeCand", m_maxNumMergeCand, 5u, "Maximum number of merge candidates")
/* Misc. */
("SEIDecodedPictureHash", m_decodedPictureHashSEIEnabled, 0, "Control generation of decode picture hash SEI messages\n"
"\t3: checksum\n"
"\t2: CRC\n"
"\t1: use MD5\n"
"\t0: disable")
("SEIpictureDigest", m_decodedPictureHashSEIEnabled, 0, "deprecated alias for SEIDecodedPictureHash")
("TMVPMode", m_TMVPModeId, 1, "TMVP mode 0: TMVP disable for all slices. 1: TMVP enable for all slices (default) 2: TMVP enable for certain slices only")
("FEN", m_bUseFastEnc, false, "fast encoder setting")
("ECU", m_bUseEarlyCU, false, "Early CU setting")
("FDM", m_useFastDecisionForMerge, true, "Fast decision for Merge RD Cost")
("CFM", m_bUseCbfFastMode, false, "Cbf fast mode setting")
("ESD", m_useEarlySkipDetection, false, "Early SKIP detection setting")
( "RateControl", m_RCEnableRateControl, false, "Rate control: enable rate control" )
( "TargetBitrate", m_RCTargetBitrate, 0, "Rate control: target bit-rate" )
( "KeepHierarchicalBit", m_RCKeepHierarchicalBit, 0, "Rate control: 0: equal bit allocation; 1: fixed ratio bit allocation; 2: adaptive ratio bit allocation" )
( "LCULevelRateControl", m_RCLCULevelRC, true, "Rate control: true: CTU level RC; false: picture level RC" )
( "RCLCUSeparateModel", m_RCUseLCUSeparateModel, true, "Rate control: use CTU level separate R-lambda model" )
( "InitialQP", m_RCInitialQP, 0, "Rate control: initial QP" )
( "RCForceIntraQP", m_RCForceIntraQP, false, "Rate control: force intra QP to be equal to initial QP" )
("TransquantBypassEnableFlag", m_TransquantBypassEnableFlag, false, "transquant_bypass_enable_flag indicator in PPS")
("CUTransquantBypassFlagForce", m_CUTransquantBypassFlagForce, false, "Force transquant bypass mode, when transquant_bypass_enable_flag is enabled")
("CostMode", m_costMode, COST_STANDARD_LOSSY, "Use alternative cost functions: choose between 'lossy', 'sequence_level_lossless', 'lossless' (which forces QP to " MACRO_TO_STRING(LOSSLESS_AND_MIXED_LOSSLESS_RD_COST_TEST_QP) ") and 'mixed_lossless_lossy' (which used QP'=" MACRO_TO_STRING(LOSSLESS_AND_MIXED_LOSSLESS_RD_COST_TEST_QP_PRIME) " for pre-estimates of transquant-bypass blocks).")
("RecalculateQPAccordingToLambda", m_recalculateQPAccordingToLambda, false, "Recalculate QP values according to lambda values. Do not suggest to be enabled in all intra case")
("StrongIntraSmoothing,-sis", m_useStrongIntraSmoothing, true, "Enable strong intra smoothing for 32x32 blocks")
("SEIActiveParameterSets", m_activeParameterSetsSEIEnabled, 0, "Enable generation of active parameter sets SEI messages")
("VuiParametersPresent,-vui", m_vuiParametersPresentFlag, false, "Enable generation of vui_parameters()")
("AspectRatioInfoPresent", m_aspectRatioInfoPresentFlag, false, "Signals whether aspect_ratio_idc is present")
("AspectRatioIdc", m_aspectRatioIdc, 0, "aspect_ratio_idc")
("SarWidth", m_sarWidth, 0, "horizontal size of the sample aspect ratio")
("SarHeight", m_sarHeight, 0, "vertical size of the sample aspect ratio")
("OverscanInfoPresent", m_overscanInfoPresentFlag, false, "Indicates whether conformant decoded pictures are suitable for display using overscan\n")
("OverscanAppropriate", m_overscanAppropriateFlag, false, "Indicates whether conformant decoded pictures are suitable for display using overscan\n")
("VideoSignalTypePresent", m_videoSignalTypePresentFlag, false, "Signals whether video_format, video_full_range_flag, and colour_description_present_flag are present")
("VideoFormat", m_videoFormat, 5, "Indicates representation of pictures")
("VideoFullRange", m_videoFullRangeFlag, false, "Indicates the black level and range of luma and chroma signals")
("ColourDescriptionPresent", m_colourDescriptionPresentFlag, false, "Signals whether colour_primaries, transfer_characteristics and matrix_coefficients are present")
("ColourPrimaries", m_colourPrimaries, 2, "Indicates chromaticity coordinates of the source primaries")
("TransferCharacteristics", m_transferCharacteristics, 2, "Indicates the opto-electronic transfer characteristics of the source")
("MatrixCoefficients", m_matrixCoefficients, 2, "Describes the matrix coefficients used in deriving luma and chroma from RGB primaries")
("ChromaLocInfoPresent", m_chromaLocInfoPresentFlag, false, "Signals whether chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field are present")
("ChromaSampleLocTypeTopField", m_chromaSampleLocTypeTopField, 0, "Specifies the location of chroma samples for top field")
("ChromaSampleLocTypeBottomField", m_chromaSampleLocTypeBottomField, 0, "Specifies the location of chroma samples for bottom field")
("NeutralChromaIndication", m_neutralChromaIndicationFlag, false, "Indicates that the value of all decoded chroma samples is equal to 1<<(BitDepthCr-1)")
("DefaultDisplayWindowFlag", m_defaultDisplayWindowFlag, false, "Indicates the presence of the Default Window parameters")
("DefDispWinLeftOffset", m_defDispWinLeftOffset, 0, "Specifies the left offset of the default display window from the conformance window")
("DefDispWinRightOffset", m_defDispWinRightOffset, 0, "Specifies the right offset of the default display window from the conformance window")
("DefDispWinTopOffset", m_defDispWinTopOffset, 0, "Specifies the top offset of the default display window from the conformance window")
("DefDispWinBottomOffset", m_defDispWinBottomOffset, 0, "Specifies the bottom offset of the default display window from the conformance window")
("FrameFieldInfoPresentFlag", m_frameFieldInfoPresentFlag, false, "Indicates that pic_struct and field coding related values are present in picture timing SEI messages")
("PocProportionalToTimingFlag", m_pocProportionalToTimingFlag, false, "Indicates that the POC value is proportional to the output time w.r.t. first picture in CVS")
("NumTicksPocDiffOneMinus1", m_numTicksPocDiffOneMinus1, 0, "Number of ticks minus 1 that for a POC difference of one")
("BitstreamRestriction", m_bitstreamRestrictionFlag, false, "Signals whether bitstream restriction parameters are present")
("TilesFixedStructure", m_tilesFixedStructureFlag, false, "Indicates that each active picture parameter set has the same values of the syntax elements related to tiles")
("MotionVectorsOverPicBoundaries", m_motionVectorsOverPicBoundariesFlag, false, "Indicates that no samples outside the picture boundaries are used for inter prediction")
("MaxBytesPerPicDenom", m_maxBytesPerPicDenom, 2, "Indicates a number of bytes not exceeded by the sum of the sizes of the VCL NAL units associated with any coded picture")
("MaxBitsPerMinCuDenom", m_maxBitsPerMinCuDenom, 1, "Indicates an upper bound for the number of bits of coding_unit() data")
("Log2MaxMvLengthHorizontal", m_log2MaxMvLengthHorizontal, 15, "Indicate the maximum absolute value of a decoded horizontal MV component in quarter-pel luma units")
("Log2MaxMvLengthVertical", m_log2MaxMvLengthVertical, 15, "Indicate the maximum absolute value of a decoded vertical MV component in quarter-pel luma units")
("SEIRecoveryPoint", m_recoveryPointSEIEnabled, 0, "Control generation of recovery point SEI messages")
("SEIBufferingPeriod", m_bufferingPeriodSEIEnabled, 0, "Control generation of buffering period SEI messages")
("SEIPictureTiming", m_pictureTimingSEIEnabled, 0, "Control generation of picture timing SEI messages")
("SEIToneMappingInfo", m_toneMappingInfoSEIEnabled, false, "Control generation of Tone Mapping SEI messages")
("SEIToneMapId", m_toneMapId, 0, "Specifies Id of Tone Mapping SEI message for a given session")
("SEIToneMapCancelFlag", m_toneMapCancelFlag, false, "Indicates that Tone Mapping SEI message cancels the persistence or follows")
("SEIToneMapPersistenceFlag", m_toneMapPersistenceFlag, true, "Specifies the persistence of the Tone Mapping SEI message")
("SEIToneMapCodedDataBitDepth", m_toneMapCodedDataBitDepth, 8, "Specifies Coded Data BitDepth of Tone Mapping SEI messages")
("SEIToneMapTargetBitDepth", m_toneMapTargetBitDepth, 8, "Specifies Output BitDepth of Tone mapping function")
("SEIToneMapModelId", m_toneMapModelId, 0, "Specifies Model utilized for mapping coded data into target_bit_depth range\n"
"\t0: linear mapping with clipping\n"
"\t1: sigmoidal mapping\n"
"\t2: user-defined table mapping\n"
"\t3: piece-wise linear mapping\n"
"\t4: luminance dynamic range information ")
("SEIToneMapMinValue", m_toneMapMinValue, 0, "Specifies the minimum value in mode 0")
("SEIToneMapMaxValue", m_toneMapMaxValue, 1023, "Specifies the maximum value in mode 0")
("SEIToneMapSigmoidMidpoint", m_sigmoidMidpoint, 512, "Specifies the centre point in mode 1")
("SEIToneMapSigmoidWidth", m_sigmoidWidth, 960, "Specifies the distance between 5% and 95% values of the target_bit_depth in mode 1")
("SEIToneMapStartOfCodedInterval", cfg_startOfCodedInterval, cfg_startOfCodedInterval, "Array of user-defined mapping table")
("SEIToneMapNumPivots", m_numPivots, 0, "Specifies the number of pivot points in mode 3")
("SEIToneMapCodedPivotValue", cfg_codedPivotValue, cfg_codedPivotValue, "Array of pivot point")
("SEIToneMapTargetPivotValue", cfg_targetPivotValue, cfg_targetPivotValue, "Array of pivot point")
("SEIToneMapCameraIsoSpeedIdc", m_cameraIsoSpeedIdc, 0, "Indicates the camera ISO speed for daylight illumination")
("SEIToneMapCameraIsoSpeedValue", m_cameraIsoSpeedValue, 400, "Specifies the camera ISO speed for daylight illumination of Extended_ISO")
("SEIToneMapExposureIndexIdc", m_exposureIndexIdc, 0, "Indicates the exposure index setting of the camera")
("SEIToneMapExposureIndexValue", m_exposureIndexValue, 400, "Specifies the exposure index setting of the camera of Extended_ISO")
("SEIToneMapExposureCompensationValueSignFlag", m_exposureCompensationValueSignFlag, 0, "Specifies the sign of ExposureCompensationValue")
("SEIToneMapExposureCompensationValueNumerator", m_exposureCompensationValueNumerator, 0, "Specifies the numerator of ExposureCompensationValue")
("SEIToneMapExposureCompensationValueDenomIdc", m_exposureCompensationValueDenomIdc, 2, "Specifies the denominator of ExposureCompensationValue")
("SEIToneMapRefScreenLuminanceWhite", m_refScreenLuminanceWhite, 350, "Specifies reference screen brightness setting in units of candela per square metre")
("SEIToneMapExtendedRangeWhiteLevel", m_extendedRangeWhiteLevel, 800, "Indicates the luminance dynamic range")
("SEIToneMapNominalBlackLevelLumaCodeValue", m_nominalBlackLevelLumaCodeValue, 16, "Specifies luma sample value of the nominal black level assigned decoded pictures")
("SEIToneMapNominalWhiteLevelLumaCodeValue", m_nominalWhiteLevelLumaCodeValue, 235, "Specifies luma sample value of the nominal white level assigned decoded pictures")
("SEIToneMapExtendedWhiteLevelLumaCodeValue", m_extendedWhiteLevelLumaCodeValue, 300, "Specifies luma sample value of the extended dynamic range assigned decoded pictures")
("SEIChromaSamplingFilterHint", m_chromaSamplingFilterSEIenabled, false, "Control generation of the chroma sampling filter hint SEI message")
("SEIChromaSamplingHorizontalFilterType", m_chromaSamplingHorFilterIdc, 2, "Defines the Index of the chroma sampling horizontal filter\n"
"\t0: unspecified - Chroma filter is unknown or is determined by the application"
"\t1: User-defined - Filter coefficients are specified in the chroma sampling filter hint SEI message"
"\t2: Standards-defined - ITU-T Rec. T.800 | ISO/IEC15444-1, 5/3 filter")
("SEIChromaSamplingVerticalFilterType", m_chromaSamplingVerFilterIdc, 2, "Defines the Index of the chroma sampling vertical filter\n"
"\t0: unspecified - Chroma filter is unknown or is determined by the application"
"\t1: User-defined - Filter coefficients are specified in the chroma sampling filter hint SEI message"
"\t2: Standards-defined - ITU-T Rec. T.800 | ISO/IEC15444-1, 5/3 filter")
("SEIFramePacking", m_framePackingSEIEnabled, 0, "Control generation of frame packing SEI messages")
("SEIFramePackingType", m_framePackingSEIType, 0, "Define frame packing arrangement\n"
"\t3: side by side - frames are displayed horizontally\n"
"\t4: top bottom - frames are displayed vertically\n"
"\t5: frame alternation - one frame is alternated with the other")
("SEIFramePackingId", m_framePackingSEIId, 0, "Id of frame packing SEI message for a given session")
("SEIFramePackingQuincunx", m_framePackingSEIQuincunx, 0, "Indicate the presence of a Quincunx type video frame")
("SEIFramePackingInterpretation", m_framePackingSEIInterpretation, 0, "Indicate the interpretation of the frame pair\n"
"\t0: unspecified\n"
"\t1: stereo pair, frame0 represents left view\n"
"\t2: stereo pair, frame0 represents right view")
("SEISegmentedRectFramePacking", m_segmentedRectFramePackingSEIEnabled, 0, "Controls generation of segmented rectangular frame packing SEI messages")
("SEISegmentedRectFramePackingCancel", m_segmentedRectFramePackingSEICancel, false, "If equal to 1, cancels the persistence of any previous SRFPA SEI message")
("SEISegmentedRectFramePackingType", m_segmentedRectFramePackingSEIType, 0, "Specifies the arrangement of the frames in the reconstructed picture")
("SEISegmentedRectFramePackingPersistence", m_segmentedRectFramePackingSEIPersistence, false, "If equal to 0, the SEI applies to the current frame only")
("SEIDisplayOrientation", m_displayOrientationSEIAngle, 0, "Control generation of display orientation SEI messages\n"
"\tN: 0 < N < (2^16 - 1) enable display orientation SEI message with anticlockwise_rotation = N and display_orientation_repetition_period = 1\n"
"\t0: disable")
("SEITemporalLevel0Index", m_temporalLevel0IndexSEIEnabled, 0, "Control generation of temporal level 0 index SEI messages")
("SEIGradualDecodingRefreshInfo", m_gradualDecodingRefreshInfoEnabled, 0, "Control generation of gradual decoding refresh information SEI message")
("SEINoDisplay", m_noDisplaySEITLayer, 0, "Control generation of no display SEI message\n"
"\tN: 0 < N enable no display SEI message for temporal layer N or higher\n"
"\t0: disable")
("SEIDecodingUnitInfo", m_decodingUnitInfoSEIEnabled, 0, "Control generation of decoding unit information SEI message.")
("SEISOPDescription", m_SOPDescriptionSEIEnabled, 0, "Control generation of SOP description SEI messages")
("SEIScalableNesting", m_scalableNestingSEIEnabled, 0, "Control generation of scalable nesting SEI messages")
("SEITempMotionConstrainedTileSets", m_tmctsSEIEnabled, false, "Control generation of temporal motion constrained tile sets SEI message")
("SEITimeCodeEnabled", m_timeCodeSEIEnabled, false, "Control generation of time code information SEI message")
("SEITimeCodeNumClockTs", m_timeCodeSEINumTs, 0, "Number of clock time sets [0..3]")
("SEITimeCodeTimeStampFlag", cfg_timeCodeSeiTimeStampFlag, cfg_timeCodeSeiTimeStampFlag, "Time stamp flag associated to each time set")
("SEITimeCodeFieldBasedFlag", cfg_timeCodeSeiNumUnitFieldBasedFlag, cfg_timeCodeSeiNumUnitFieldBasedFlag, "Field based flag associated to each time set")
("SEITimeCodeCountingType", cfg_timeCodeSeiCountingType, cfg_timeCodeSeiCountingType, "Counting type associated to each time set")
("SEITimeCodeFullTsFlag", cfg_timeCodeSeiFullTimeStampFlag, cfg_timeCodeSeiFullTimeStampFlag, "Full time stamp flag associated to each time set")
("SEITimeCodeDiscontinuityFlag", cfg_timeCodeSeiDiscontinuityFlag, cfg_timeCodeSeiDiscontinuityFlag, "Discontinuity flag associated to each time set")
("SEITimeCodeCntDroppedFlag", cfg_timeCodeSeiCntDroppedFlag, cfg_timeCodeSeiCntDroppedFlag, "Counter dropped flag associated to each time set")
("SEITimeCodeNumFrames", cfg_timeCodeSeiNumberOfFrames, cfg_timeCodeSeiNumberOfFrames, "Number of frames associated to each time set")
("SEITimeCodeSecondsValue", cfg_timeCodeSeiSecondsValue, cfg_timeCodeSeiSecondsValue, "Seconds value for each time set")
("SEITimeCodeMinutesValue", cfg_timeCodeSeiMinutesValue, cfg_timeCodeSeiMinutesValue, "Minutes value for each time set")
("SEITimeCodeHoursValue", cfg_timeCodeSeiHoursValue, cfg_timeCodeSeiHoursValue, "Hours value for each time set")
("SEITimeCodeSecondsFlag", cfg_timeCodeSeiSecondsFlag, cfg_timeCodeSeiSecondsFlag, "Flag to signal seconds value presence in each time set")
("SEITimeCodeMinutesFlag", cfg_timeCodeSeiMinutesFlag, cfg_timeCodeSeiMinutesFlag, "Flag to signal minutes value presence in each time set")
("SEITimeCodeHoursFlag", cfg_timeCodeSeiHoursFlag, cfg_timeCodeSeiHoursFlag, "Flag to signal hours value presence in each time set")
("SEITimeCodeOffsetLength", cfg_timeCodeSeiTimeOffsetLength, cfg_timeCodeSeiTimeOffsetLength, "Time offset length associated to each time set")
("SEITimeCodeTimeOffset", cfg_timeCodeSeiTimeOffsetValue, cfg_timeCodeSeiTimeOffsetValue, "Time offset associated to each time set")
("SEIKneeFunctionInfo", m_kneeSEIEnabled, false, "Control generation of Knee function SEI messages")
("SEIKneeFunctionId", m_kneeSEIId, 0, "Specifies Id of Knee function SEI message for a given session")
("SEIKneeFunctionCancelFlag", m_kneeSEICancelFlag, false, "Indicates that Knee function SEI message cancels the persistence or follows")
("SEIKneeFunctionPersistenceFlag", m_kneeSEIPersistenceFlag, true, "Specifies the persistence of the Knee function SEI message")
("SEIKneeFunctionInputDrange", m_kneeSEIInputDrange, 1000, "Specifies the peak luminance level for the input picture of Knee function SEI messages")
("SEIKneeFunctionInputDispLuminance", m_kneeSEIInputDispLuminance, 100, "Specifies the expected display brightness for the input picture of Knee function SEI messages")
("SEIKneeFunctionOutputDrange", m_kneeSEIOutputDrange, 4000, "Specifies the peak luminance level for the output picture of Knee function SEI messages")
("SEIKneeFunctionOutputDispLuminance", m_kneeSEIOutputDispLuminance, 800, "Specifies the expected display brightness for the output picture of Knee function SEI messages")
("SEIKneeFunctionNumKneePointsMinus1", m_kneeSEINumKneePointsMinus1, 2, "Specifies the number of knee points - 1")
("SEIKneeFunctionInputKneePointValue", cfg_kneeSEIInputKneePointValue, cfg_kneeSEIInputKneePointValue, "Array of input knee point")
("SEIKneeFunctionOutputKneePointValue", cfg_kneeSEIOutputKneePointValue, cfg_kneeSEIOutputKneePointValue, "Array of output knee point")
("SEIMasteringDisplayColourVolume", m_masteringDisplay.colourVolumeSEIEnabled, false, "Control generation of mastering display colour volume SEI messages")
("SEIMasteringDisplayMaxLuminance", m_masteringDisplay.maxLuminance, 10000u, "Specifies the mastering display maximum luminance value in units of 1/10000 candela per square metre (32-bit code value)")
("SEIMasteringDisplayMinLuminance", m_masteringDisplay.minLuminance, 0u, "Specifies the mastering display minimum luminance value in units of 1/10000 candela per square metre (32-bit code value)")
("SEIMasteringDisplayPrimaries", cfg_DisplayPrimariesCode, cfg_DisplayPrimariesCode, "Mastering display primaries for all three colour planes in CIE xy coordinates in increments of 1/50000 (results in the ranges 0 to 50000 inclusive)")
("SEIMasteringDisplayWhitePoint", cfg_DisplayWhitePointCode, cfg_DisplayWhitePointCode, "Mastering display white point CIE xy coordinates in normalised increments of 1/50000 (e.g. 0.333 = 16667)")
("Verbose", m_verboseLevel, 1, "verbose level")
;
for(Int i=1; i<MAX_GOP+1; i++) {
std::ostringstream cOSS;
cOSS<<"Frame"<<i;
opts.addOptions()(cOSS.str(), m_GOPList[i-1], GOPEntry());
}
po::setDefaults(opts);
const list<const Char*>& argv_unhandled = po::scanArgv(opts, argc, (const Char**) argv);
for (list<const Char*>::const_iterator it = argv_unhandled.begin(); it != argv_unhandled.end(); it++)
{
fprintf(stderr, "Unhandled argument ignored: `%s'\n", *it);
}
if (argc == 1 || do_help)
{
/* argc == 1: no options have been specified */
po::doHelp(cout, opts);
return false;
}
/*
* Set any derived parameters
*/
/* convert std::string to c string for compatability */
m_pchInputFile = cfg_InputFile.empty() ? NULL : strdup(cfg_InputFile.c_str());
m_pchBitstreamFile = cfg_BitstreamFile.empty() ? NULL : strdup(cfg_BitstreamFile.c_str());
m_pchReconFile = cfg_ReconFile.empty() ? NULL : strdup(cfg_ReconFile.c_str());
m_pchdQPFile = cfg_dQPFile.empty() ? NULL : strdup(cfg_dQPFile.c_str());
if(m_isField)
{
//Frame height
m_iSourceHeightOrg = m_iSourceHeight;
//Field height
m_iSourceHeight = m_iSourceHeight >> 1;
//number of fields to encode
m_framesToBeEncoded *= 2;
}
if( !m_tileUniformSpacingFlag && m_numTileColumnsMinus1 > 0 )
{
if (cfg_ColumnWidth.values.size() > m_numTileColumnsMinus1)
{
printf( "The number of columns whose width are defined is larger than the allowed number of columns.\n" );
exit( EXIT_FAILURE );
}
else if (cfg_ColumnWidth.values.size() < m_numTileColumnsMinus1)
{
printf( "The width of some columns is not defined.\n" );
exit( EXIT_FAILURE );
}
else
{
m_tileColumnWidth.resize(m_numTileColumnsMinus1);
for(UInt i=0; i<cfg_ColumnWidth.values.size(); i++)
m_tileColumnWidth[i]=cfg_ColumnWidth.values[i];
}
}
else
{
m_tileColumnWidth.clear();
}
if( !m_tileUniformSpacingFlag && m_numTileRowsMinus1 > 0 )
{
if (cfg_RowHeight.values.size() > m_numTileRowsMinus1)
{
printf( "The number of rows whose height are defined is larger than the allowed number of rows.\n" );
exit( EXIT_FAILURE );
}
else if (cfg_RowHeight.values.size() < m_numTileRowsMinus1)
{
printf( "The height of some rows is not defined.\n" );
exit( EXIT_FAILURE );
}
else
{
m_tileRowHeight.resize(m_numTileRowsMinus1);
for(UInt i=0; i<cfg_RowHeight.values.size(); i++)
m_tileRowHeight[i]=cfg_RowHeight.values[i];
}
}
else
{
m_tileRowHeight.clear();
}
m_scalingListFile = cfg_ScalingListFile.empty() ? NULL : strdup(cfg_ScalingListFile.c_str());
/* rules for input, output and internal bitdepths as per help text */
if (m_MSBExtendedBitDepth[CHANNEL_TYPE_LUMA ] == 0) { m_MSBExtendedBitDepth[CHANNEL_TYPE_LUMA ] = m_inputBitDepth [CHANNEL_TYPE_LUMA ]; }
if (m_MSBExtendedBitDepth[CHANNEL_TYPE_CHROMA] == 0) { m_MSBExtendedBitDepth[CHANNEL_TYPE_CHROMA] = m_MSBExtendedBitDepth[CHANNEL_TYPE_LUMA ]; }
if (m_internalBitDepth [CHANNEL_TYPE_LUMA ] == 0) { m_internalBitDepth [CHANNEL_TYPE_LUMA ] = m_MSBExtendedBitDepth[CHANNEL_TYPE_LUMA ]; }
if (m_internalBitDepth [CHANNEL_TYPE_CHROMA] == 0) { m_internalBitDepth [CHANNEL_TYPE_CHROMA] = m_internalBitDepth [CHANNEL_TYPE_LUMA ]; }
if (m_inputBitDepth [CHANNEL_TYPE_CHROMA] == 0) { m_inputBitDepth [CHANNEL_TYPE_CHROMA] = m_inputBitDepth [CHANNEL_TYPE_LUMA ]; }
if (m_outputBitDepth [CHANNEL_TYPE_LUMA ] == 0) { m_outputBitDepth [CHANNEL_TYPE_LUMA ] = m_internalBitDepth [CHANNEL_TYPE_LUMA ]; }
if (m_outputBitDepth [CHANNEL_TYPE_CHROMA] == 0) { m_outputBitDepth [CHANNEL_TYPE_CHROMA] = m_internalBitDepth [CHANNEL_TYPE_CHROMA]; }
m_InputChromaFormatIDC = numberToChromaFormat(tmpInputChromaFormat);
m_chromaFormatIDC = ((tmpChromaFormat == 0) ? (m_InputChromaFormatIDC) : (numberToChromaFormat(tmpChromaFormat)));
if (extendedProfile >= 1000 && extendedProfile <= 2316)
{
m_profile = Profile::MAINREXT;
if (m_bitDepthConstraint != 0 || tmpConstraintChromaFormat != 0)
{
fprintf(stderr, "Error: The bit depth and chroma format constraints are not used when an explicit RExt profile is specified\n");
exit(EXIT_FAILURE);
}
m_bitDepthConstraint = (extendedProfile%100);
m_intraConstraintFlag = (extendedProfile>=2000);
switch ((extendedProfile/100)%10)
{
case 0: tmpConstraintChromaFormat=400; break;
case 1: tmpConstraintChromaFormat=420; break;
case 2: tmpConstraintChromaFormat=422; break;
default: tmpConstraintChromaFormat=444; break;
}
}
else
{
m_profile = Profile::Name(extendedProfile);
}
if (m_profile == Profile::HIGHTHROUGHPUTREXT )
{
if (m_bitDepthConstraint == 0) m_bitDepthConstraint = 16;
m_chromaFormatConstraint = (tmpConstraintChromaFormat == 0) ? CHROMA_444 : numberToChromaFormat(tmpConstraintChromaFormat);
}
else if (m_profile == Profile::MAINREXT)
{
if (m_bitDepthConstraint == 0 && tmpConstraintChromaFormat == 0)
{
// produce a valid combination, if possible.
const Bool bUsingGeneralRExtTools = m_useResidualRotation ||
m_useSingleSignificanceMapContext ||
m_useResidualDPCM[RDPCM_SIGNAL_IMPLICIT] ||
m_useResidualDPCM[RDPCM_SIGNAL_EXPLICIT] ||
!m_enableIntraReferenceSmoothing ||
m_useGolombRiceParameterAdaptation ||
m_transformSkipLog2MaxSize!=2;
const Bool bUsingChromaQPAdjustment= m_maxCUChromaQpAdjustmentDepth >= 0;
const Bool bUsingExtendedPrecision = m_useExtendedPrecision;
m_chromaFormatConstraint = NUM_CHROMA_FORMAT;
automaticallySelectRExtProfile(bUsingGeneralRExtTools,
bUsingChromaQPAdjustment,
bUsingExtendedPrecision,
m_intraConstraintFlag,
m_bitDepthConstraint,
m_chromaFormatConstraint,
m_chromaFormatIDC==CHROMA_400 ? m_internalBitDepth[CHANNEL_TYPE_LUMA] : std::max(m_internalBitDepth[CHANNEL_TYPE_LUMA], m_internalBitDepth[CHANNEL_TYPE_CHROMA]),
m_chromaFormatIDC);
}
else if (m_bitDepthConstraint == 0 || tmpConstraintChromaFormat == 0)
{
fprintf(stderr, "Error: The bit depth and chroma format constraints must either both be specified or both be configured automatically\n");
exit(EXIT_FAILURE);
}
else
{
m_chromaFormatConstraint = numberToChromaFormat(tmpConstraintChromaFormat);
}
}
else
{
m_chromaFormatConstraint = (tmpConstraintChromaFormat == 0) ? m_chromaFormatIDC : numberToChromaFormat(tmpConstraintChromaFormat);
m_bitDepthConstraint = (m_profile == Profile::MAIN10?10:8);
}
m_inputColourSpaceConvert = stringToInputColourSpaceConvert(inputColourSpaceConvert, true);
switch (m_conformanceWindowMode)
{
case 0:
{
// no conformance or padding
m_confWinLeft = m_confWinRight = m_confWinTop = m_confWinBottom = 0;
m_aiPad[1] = m_aiPad[0] = 0;
break;
}
case 1:
{
// automatic padding to minimum CU size
Int minCuSize = m_uiMaxCUHeight >> (m_uiMaxCUDepth - 1);
if (m_iSourceWidth % minCuSize)
{
m_aiPad[0] = m_confWinRight = ((m_iSourceWidth / minCuSize) + 1) * minCuSize - m_iSourceWidth;
m_iSourceWidth += m_confWinRight;
}
if (m_iSourceHeight % minCuSize)
{
m_aiPad[1] = m_confWinBottom = ((m_iSourceHeight / minCuSize) + 1) * minCuSize - m_iSourceHeight;
m_iSourceHeight += m_confWinBottom;
if ( m_isField )
{
m_iSourceHeightOrg += m_confWinBottom << 1;
m_aiPad[1] = m_confWinBottom << 1;
}
}
if (m_aiPad[0] % TComSPS::getWinUnitX(m_chromaFormatIDC) != 0)
{
fprintf(stderr, "Error: picture width is not an integer multiple of the specified chroma subsampling\n");
exit(EXIT_FAILURE);
}
if (m_aiPad[1] % TComSPS::getWinUnitY(m_chromaFormatIDC) != 0)
{
fprintf(stderr, "Error: picture height is not an integer multiple of the specified chroma subsampling\n");
exit(EXIT_FAILURE);
}
break;
}
case 2:
{
//padding
m_iSourceWidth += m_aiPad[0];
m_iSourceHeight += m_aiPad[1];
m_confWinRight = m_aiPad[0];
m_confWinBottom = m_aiPad[1];
break;
}
case 3:
{
// conformance
if ((m_confWinLeft == 0) && (m_confWinRight == 0) && (m_confWinTop == 0) && (m_confWinBottom == 0))
{
fprintf(stderr, "Warning: Conformance window enabled, but all conformance window parameters set to zero\n");
}
if ((m_aiPad[1] != 0) || (m_aiPad[0]!=0))
{
fprintf(stderr, "Warning: Conformance window enabled, padding parameters will be ignored\n");
}
m_aiPad[1] = m_aiPad[0] = 0;
break;
}
}
// allocate slice-based dQP values
m_aidQP = new Int[ m_framesToBeEncoded + m_iGOPSize + 1 ];
::memset( m_aidQP, 0, sizeof(Int)*( m_framesToBeEncoded + m_iGOPSize + 1 ) );
// handling of floating-point QP values
// if QP is not integer, sequence is split into two sections having QP and QP+1
m_iQP = (Int)( m_fQP );
if ( m_iQP < m_fQP )
{
Int iSwitchPOC = (Int)( m_framesToBeEncoded - (m_fQP - m_iQP)*m_framesToBeEncoded + 0.5 );
iSwitchPOC = (Int)( (Double)iSwitchPOC / m_iGOPSize + 0.5 )*m_iGOPSize;
for ( Int i=iSwitchPOC; i<m_framesToBeEncoded + m_iGOPSize + 1; i++ )
{
m_aidQP[i] = 1;
}
}
for(UInt ch=0; ch<MAX_NUM_CHANNEL_TYPE; ch++)
{
if (saoOffsetBitShift[ch]<0)
{
if (m_internalBitDepth[ch]>10)
{
m_saoOffsetBitShift[ch]=UInt(Clip3<Int>(0, m_internalBitDepth[ch]-10, Int(m_internalBitDepth[ch]-10 + 0.165*m_iQP - 3.22 + 0.5) ) );
}
else
{
m_saoOffsetBitShift[ch]=0;
}
}
else
{
m_saoOffsetBitShift[ch]=UInt(saoOffsetBitShift[ch]);
}
}
// reading external dQP description from file
if ( m_pchdQPFile )
{
FILE* fpt=fopen( m_pchdQPFile, "r" );
if ( fpt )
{
Int iValue;
Int iPOC = 0;
while ( iPOC < m_framesToBeEncoded )
{
if ( fscanf(fpt, "%d", &iValue ) == EOF ) break;
m_aidQP[ iPOC ] = iValue;
iPOC++;
}
fclose(fpt);
}
}
m_iWaveFrontSubstreams = m_iWaveFrontSynchro ? (m_iSourceHeight + m_uiMaxCUHeight - 1) / m_uiMaxCUHeight : 1;
if( m_masteringDisplay.colourVolumeSEIEnabled )
{
for(UInt idx=0; idx<6; idx++)
{
m_masteringDisplay.primaries[idx/2][idx%2] = UShort((cfg_DisplayPrimariesCode.values.size() > idx) ? cfg_DisplayPrimariesCode.values[idx] : 0);
}
for(UInt idx=0; idx<2; idx++)
{
m_masteringDisplay.whitePoint[idx] = UShort((cfg_DisplayWhitePointCode.values.size() > idx) ? cfg_DisplayWhitePointCode.values[idx] : 0);
}
}
if( m_toneMappingInfoSEIEnabled && !m_toneMapCancelFlag )
{
if( m_toneMapModelId == 2 && !cfg_startOfCodedInterval.values.empty() )
{
const UInt num = 1u<< m_toneMapTargetBitDepth;
m_startOfCodedInterval = new Int[num];
for(UInt i=0; i<num; i++)
{
m_startOfCodedInterval[i] = cfg_startOfCodedInterval.values.size() > i ? cfg_startOfCodedInterval.values[i] : 0;
}
}
else
{
m_startOfCodedInterval = NULL;
}
if( ( m_toneMapModelId == 3 ) && ( m_numPivots > 0 ) )
{
if( !cfg_codedPivotValue.values.empty() && !cfg_targetPivotValue.values.empty() )
{
m_codedPivotValue = new Int[m_numPivots];
m_targetPivotValue = new Int[m_numPivots];
for(UInt i=0; i<m_numPivots; i++)
{
m_codedPivotValue[i] = cfg_codedPivotValue.values.size() > i ? cfg_codedPivotValue.values [i] : 0;
m_targetPivotValue[i] = cfg_targetPivotValue.values.size() > i ? cfg_targetPivotValue.values[i] : 0;
}
}
}
else
{
m_codedPivotValue = NULL;
m_targetPivotValue = NULL;
}
}
if( m_kneeSEIEnabled && !m_kneeSEICancelFlag )
{
assert ( m_kneeSEINumKneePointsMinus1 >= 0 && m_kneeSEINumKneePointsMinus1 < 999 );
m_kneeSEIInputKneePoint = new Int[m_kneeSEINumKneePointsMinus1+1];
m_kneeSEIOutputKneePoint = new Int[m_kneeSEINumKneePointsMinus1+1];
for(Int i=0; i<(m_kneeSEINumKneePointsMinus1+1); i++)
{
m_kneeSEIInputKneePoint[i] = cfg_kneeSEIInputKneePointValue.values.size() > i ? cfg_kneeSEIInputKneePointValue.values[i] : 1;
m_kneeSEIOutputKneePoint[i] = cfg_kneeSEIOutputKneePointValue.values.size() > i ? cfg_kneeSEIOutputKneePointValue.values[i] : 0;
}
}
if(m_timeCodeSEIEnabled)
{
for(Int i = 0; i < m_timeCodeSEINumTs && i < MAX_TIMECODE_SEI_SETS; i++)
{
m_timeSetArray[i].clockTimeStampFlag = cfg_timeCodeSeiTimeStampFlag .values.size()>i ? cfg_timeCodeSeiTimeStampFlag .values [i] : false;
m_timeSetArray[i].numUnitFieldBasedFlag = cfg_timeCodeSeiNumUnitFieldBasedFlag.values.size()>i ? cfg_timeCodeSeiNumUnitFieldBasedFlag.values [i] : 0;
m_timeSetArray[i].countingType = cfg_timeCodeSeiCountingType .values.size()>i ? cfg_timeCodeSeiCountingType .values [i] : 0;
m_timeSetArray[i].fullTimeStampFlag = cfg_timeCodeSeiFullTimeStampFlag .values.size()>i ? cfg_timeCodeSeiFullTimeStampFlag .values [i] : 0;
m_timeSetArray[i].discontinuityFlag = cfg_timeCodeSeiDiscontinuityFlag .values.size()>i ? cfg_timeCodeSeiDiscontinuityFlag .values [i] : 0;
m_timeSetArray[i].cntDroppedFlag = cfg_timeCodeSeiCntDroppedFlag .values.size()>i ? cfg_timeCodeSeiCntDroppedFlag .values [i] : 0;
m_timeSetArray[i].numberOfFrames = cfg_timeCodeSeiNumberOfFrames .values.size()>i ? cfg_timeCodeSeiNumberOfFrames .values [i] : 0;
m_timeSetArray[i].secondsValue = cfg_timeCodeSeiSecondsValue .values.size()>i ? cfg_timeCodeSeiSecondsValue .values [i] : 0;
m_timeSetArray[i].minutesValue = cfg_timeCodeSeiMinutesValue .values.size()>i ? cfg_timeCodeSeiMinutesValue .values [i] : 0;
m_timeSetArray[i].hoursValue = cfg_timeCodeSeiHoursValue .values.size()>i ? cfg_timeCodeSeiHoursValue .values [i] : 0;
m_timeSetArray[i].secondsFlag = cfg_timeCodeSeiSecondsFlag .values.size()>i ? cfg_timeCodeSeiSecondsFlag .values [i] : 0;
m_timeSetArray[i].minutesFlag = cfg_timeCodeSeiMinutesFlag .values.size()>i ? cfg_timeCodeSeiMinutesFlag .values [i] : 0;
m_timeSetArray[i].hoursFlag = cfg_timeCodeSeiHoursFlag .values.size()>i ? cfg_timeCodeSeiHoursFlag .values [i] : 0;
m_timeSetArray[i].timeOffsetLength = cfg_timeCodeSeiTimeOffsetLength .values.size()>i ? cfg_timeCodeSeiTimeOffsetLength .values [i] : 0;
m_timeSetArray[i].timeOffsetValue = cfg_timeCodeSeiTimeOffsetValue .values.size()>i ? cfg_timeCodeSeiTimeOffsetValue .values [i] : 0;
}
}
// check validity of input parameters
xCheckParameter();
// set global varibles
xSetGlobal();
// print-out parameters
if (m_verboseLevel) {
xPrintParameter();
}
return true;
}
// ====================================================================================================================
// Private member functions
// ====================================================================================================================
Void TAppEncCfg::xCheckParameter()
{
if (!m_decodedPictureHashSEIEnabled && 0)
{
fprintf(stderr, "******************************************************************\n");
fprintf(stderr, "** WARNING: --SEIDecodedPictureHash is now disabled by default. **\n");
fprintf(stderr, "** Automatic verification of decoded pictures by a **\n");
fprintf(stderr, "** decoder requires this option to be enabled. **\n");
fprintf(stderr, "******************************************************************\n");
}
if( m_profile==Profile::NONE && 0)
{
fprintf(stderr, "***************************************************************************\n");
fprintf(stderr, "** WARNING: For conforming bitstreams a valid Profile value must be set! **\n");
fprintf(stderr, "***************************************************************************\n");
}
if( m_level==Level::NONE && 0)
{
fprintf(stderr, "***************************************************************************\n");
fprintf(stderr, "** WARNING: For conforming bitstreams a valid Level value must be set! **\n");
fprintf(stderr, "***************************************************************************\n");
}
Bool check_failed = false; /* abort if there is a fatal configuration problem */
#define xConfirmPara(a,b) check_failed |= confirmPara(a,b)
const UInt maxBitDepth=(m_chromaFormatIDC==CHROMA_400) ? m_internalBitDepth[CHANNEL_TYPE_LUMA] : std::max(m_internalBitDepth[CHANNEL_TYPE_LUMA], m_internalBitDepth[CHANNEL_TYPE_CHROMA]);
xConfirmPara(m_bitDepthConstraint<maxBitDepth, "The internalBitDepth must not be greater than the bitDepthConstraint value");
xConfirmPara(m_chromaFormatConstraint<m_chromaFormatIDC, "The chroma format used must not be greater than the chromaFormatConstraint value");
if (m_profile==Profile::MAINREXT || m_profile==Profile::HIGHTHROUGHPUTREXT)
{
xConfirmPara(m_lowerBitRateConstraintFlag==false && m_intraConstraintFlag==false, "The lowerBitRateConstraint flag cannot be false when intraConstraintFlag is false");
xConfirmPara(m_alignCABACBeforeBypass && m_profile!=Profile::HIGHTHROUGHPUTREXT, "AlignCABACBeforeBypass must not be enabled unless the high throughput profile is being used.");
if (m_profile == Profile::MAINREXT)
{
const UInt intraIdx = m_intraConstraintFlag ? 1:0;
const UInt bitDepthIdx = (m_bitDepthConstraint == 8 ? 0 : (m_bitDepthConstraint ==10 ? 1 : (m_bitDepthConstraint == 12 ? 2 : (m_bitDepthConstraint == 16 ? 3 : 4 ))));
const UInt chromaFormatIdx = UInt(m_chromaFormatConstraint);
const Bool bValidProfile = (bitDepthIdx > 3 || chromaFormatIdx>3) ? false : (validRExtProfileNames[intraIdx][bitDepthIdx][chromaFormatIdx] != NONE);
xConfirmPara(!bValidProfile, "Invalid intra constraint flag, bit depth constraint flag and chroma format constraint flag combination for a RExt profile");
const Bool bUsingGeneralRExtTools = m_useResidualRotation ||
m_useSingleSignificanceMapContext ||
m_useResidualDPCM[RDPCM_SIGNAL_IMPLICIT] ||
m_useResidualDPCM[RDPCM_SIGNAL_EXPLICIT] ||
!m_enableIntraReferenceSmoothing ||
m_useGolombRiceParameterAdaptation ||
m_transformSkipLog2MaxSize!=2;
const Bool bUsingChromaQPTool = m_maxCUChromaQpAdjustmentDepth >= 0;
const Bool bUsingExtendedPrecision = m_useExtendedPrecision;
xConfirmPara((m_chromaFormatConstraint==CHROMA_420 || m_chromaFormatConstraint==CHROMA_400) && bUsingChromaQPTool, "CU Chroma QP adjustment cannot be used for 4:0:0 or 4:2:0 RExt profiles");
xConfirmPara(m_bitDepthConstraint != 16 && bUsingExtendedPrecision, "Extended precision can only be used in 16-bit RExt profiles");
if (!(m_chromaFormatConstraint == CHROMA_400 && m_bitDepthConstraint == 16) && m_chromaFormatConstraint!=CHROMA_444)
{
xConfirmPara(bUsingGeneralRExtTools, "Combination of tools and profiles are not possible in the specified RExt profile.");
}
if (!m_intraConstraintFlag && m_bitDepthConstraint==16 && m_chromaFormatConstraint==CHROMA_444 && 0)
{
fprintf(stderr, "********************************************************************************************************\n");
fprintf(stderr, "** WARNING: The RExt constraint flags describe a non standard combination (used for development only) **\n");
fprintf(stderr, "********************************************************************************************************\n");
}
}
else
{
xConfirmPara( m_chromaFormatConstraint != CHROMA_444, "chroma format constraint must be 4:4:4 in the High Throughput 4:4:4 16-bit Intra profile.");
xConfirmPara( m_bitDepthConstraint != 16, "bit depth constraint must be 4:4:4 in the High Throughput 4:4:4 16-bit Intra profile.");
xConfirmPara( m_intraConstraintFlag != 1, "intra constraint flag must be 1 in the High Throughput 4:4:4 16-bit Intra profile.");
}
}
else
{
xConfirmPara(m_bitDepthConstraint!=((m_profile==Profile::MAIN10)?10:8), "BitDepthConstraint must be 8 for MAIN profile and 10 for MAIN10 profile.");
xConfirmPara(m_chromaFormatConstraint!=CHROMA_420, "ChromaFormatConstraint must be 420 for non main-RExt profiles.");
xConfirmPara(m_intraConstraintFlag==true, "IntraConstraintFlag must be false for non main_RExt profiles.");
xConfirmPara(m_lowerBitRateConstraintFlag==false, "LowerBitrateConstraintFlag must be true for non main-RExt profiles.");
xConfirmPara(m_useCrossComponentPrediction==true, "CrossComponentPrediction must not be used for non main-RExt profiles.");
xConfirmPara(m_transformSkipLog2MaxSize!=2, "Transform Skip Log2 Max Size must be 2 for V1 profiles.");
xConfirmPara(m_useResidualRotation==true, "UseResidualRotation must not be enabled for non main-RExt profiles.");
xConfirmPara(m_useSingleSignificanceMapContext==true, "UseSingleSignificanceMapContext must not be enabled for non main-RExt profiles.");
xConfirmPara(m_useResidualDPCM[RDPCM_SIGNAL_IMPLICIT]==true, "ImplicitResidualDPCM must not be enabled for non main-RExt profiles.");
xConfirmPara(m_useResidualDPCM[RDPCM_SIGNAL_EXPLICIT]==true, "ExplicitResidualDPCM must not be enabled for non main-RExt profiles.");
xConfirmPara(m_useGolombRiceParameterAdaptation==true, "GolombRiceParameterAdaption must not be enabled for non main-RExt profiles.");
xConfirmPara(m_useExtendedPrecision==true, "UseExtendedPrecision must not be enabled for non main-RExt profiles.");
xConfirmPara(m_useHighPrecisionPredictionWeighting==true, "UseHighPrecisionPredictionWeighting must not be enabled for non main-RExt profiles.");
xConfirmPara(m_enableIntraReferenceSmoothing==false, "EnableIntraReferenceSmoothing must be enabled for non main-RExt profiles.");
xConfirmPara(m_alignCABACBeforeBypass, "AlignCABACBeforeBypass cannot be enabled for non main-RExt profiles.");
}
// check range of parameters
xConfirmPara( m_inputBitDepth[CHANNEL_TYPE_LUMA ] < 8, "InputBitDepth must be at least 8" );
xConfirmPara( m_inputBitDepth[CHANNEL_TYPE_CHROMA] < 8, "InputBitDepthC must be at least 8" );
#if !RExt__HIGH_BIT_DEPTH_SUPPORT
if (m_useExtendedPrecision)
{
for (UInt channelType = 0; channelType < MAX_NUM_CHANNEL_TYPE; channelType++)
{
xConfirmPara((m_internalBitDepth[channelType] > 8) , "Model is not configured to support high enough internal accuracies - enable RExt__HIGH_BIT_DEPTH_SUPPORT to use increased precision internal data types etc...");
}
}
else
{
for (UInt channelType = 0; channelType < MAX_NUM_CHANNEL_TYPE; channelType++)
{
xConfirmPara((m_internalBitDepth[channelType] > 12) , "Model is not configured to support high enough internal accuracies - enable RExt__HIGH_BIT_DEPTH_SUPPORT to use increased precision internal data types etc...");
}
}
#endif
xConfirmPara( (m_MSBExtendedBitDepth[CHANNEL_TYPE_LUMA ] < m_inputBitDepth[CHANNEL_TYPE_LUMA ]), "MSB-extended bit depth for luma channel (--MSBExtendedBitDepth) must be greater than or equal to input bit depth for luma channel (--InputBitDepth)" );
xConfirmPara( (m_MSBExtendedBitDepth[CHANNEL_TYPE_CHROMA] < m_inputBitDepth[CHANNEL_TYPE_CHROMA]), "MSB-extended bit depth for chroma channel (--MSBExtendedBitDepthC) must be greater than or equal to input bit depth for chroma channel (--InputBitDepthC)" );
xConfirmPara( m_saoOffsetBitShift[CHANNEL_TYPE_LUMA] > (m_internalBitDepth[CHANNEL_TYPE_LUMA ]<10?0:(m_internalBitDepth[CHANNEL_TYPE_LUMA ]-10)), "SaoLumaOffsetBitShift must be in the range of 0 to InternalBitDepth-10, inclusive");
xConfirmPara( m_saoOffsetBitShift[CHANNEL_TYPE_CHROMA] > (m_internalBitDepth[CHANNEL_TYPE_CHROMA]<10?0:(m_internalBitDepth[CHANNEL_TYPE_CHROMA]-10)), "SaoChromaOffsetBitShift must be in the range of 0 to InternalBitDepthC-10, inclusive");
xConfirmPara( m_chromaFormatIDC >= NUM_CHROMA_FORMAT, "ChromaFormatIDC must be either 400, 420, 422 or 444" );
std::string sTempIPCSC="InputColourSpaceConvert must be empty, "+getListOfColourSpaceConverts(true);
xConfirmPara( m_inputColourSpaceConvert >= NUMBER_INPUT_COLOUR_SPACE_CONVERSIONS, sTempIPCSC.c_str() );
xConfirmPara( m_InputChromaFormatIDC >= NUM_CHROMA_FORMAT, "InputChromaFormatIDC must be either 400, 420, 422 or 444" );
xConfirmPara( m_iFrameRate <= 0, "Frame rate must be more than 1" );
xConfirmPara( m_framesToBeEncoded <= 0, "Total Number Of Frames encoded must be more than 0" );
xConfirmPara( m_iGOPSize < 1 , "GOP Size must be greater or equal to 1" );
xConfirmPara( m_iGOPSize > 1 && m_iGOPSize % 2, "GOP Size must be a multiple of 2, if GOP Size is greater than 1" );
xConfirmPara( (m_iIntraPeriod > 0 && m_iIntraPeriod < m_iGOPSize) || m_iIntraPeriod == 0, "Intra period must be more than GOP size, or -1 , not 0" );
#if ALLOW_RECOVERY_POINT_AS_RAP
xConfirmPara( m_iDecodingRefreshType < 0 || m_iDecodingRefreshType > 3, "Decoding Refresh Type must be comprised between 0 and 3 included" );
if(m_iDecodingRefreshType == 3)
{
xConfirmPara( !m_recoveryPointSEIEnabled, "When using RecoveryPointSEI messages as RA points, recoveryPointSEI must be enabled" );
}
#else
xConfirmPara( m_iDecodingRefreshType < 0 || m_iDecodingRefreshType > 2, "Decoding Refresh Type must be equal to 0, 1 or 2" );
#endif
if (m_isField)
{
if (!m_pictureTimingSEIEnabled)
{
fprintf(stderr, "****************************************************************************\n");
fprintf(stderr, "** WARNING: Picture Timing SEI should be enabled for field coding! **\n");
fprintf(stderr, "****************************************************************************\n");
}
}
if ( m_bufferingPeriodSEIEnabled && !m_activeParameterSetsSEIEnabled)
{
fprintf(stderr, "****************************************************************************\n");
fprintf(stderr, "** WARNING: using buffering period SEI requires SPS activation with **\n");
fprintf(stderr, "** active parameter sets SEI. Enabling active parameter sets SEI **\n");
fprintf(stderr, "****************************************************************************\n");
m_activeParameterSetsSEIEnabled = 1;
}
if ( m_pictureTimingSEIEnabled && !m_activeParameterSetsSEIEnabled)
{
fprintf(stderr, "****************************************************************************\n");
fprintf(stderr, "** WARNING: using picture timing SEI requires SPS activation with active **\n");
fprintf(stderr, "** parameter sets SEI. Enabling active parameter sets SEI. **\n");
fprintf(stderr, "****************************************************************************\n");
m_activeParameterSetsSEIEnabled = 1;
}
if(m_useCrossComponentPrediction && (m_chromaFormatIDC != CHROMA_444))
{
fprintf(stderr, "****************************************************************************\n");
fprintf(stderr, "** WARNING: Cross-component prediction is specified for 4:4:4 format only **\n");
fprintf(stderr, "****************************************************************************\n");
m_useCrossComponentPrediction = false;
}
if ( m_CUTransquantBypassFlagForce && m_bUseHADME)
{
fprintf(stderr, "****************************************************************************\n");
fprintf(stderr, "** WARNING: --HadamardME has been disabled due to the enabling of **\n");
fprintf(stderr, "** --CUTransquantBypassFlagForce **\n");
fprintf(stderr, "****************************************************************************\n");
m_bUseHADME = false; // this has been disabled so that the lambda is calculated slightly differently for lossless modes (as a result of JCTVC-R0104).
}
xConfirmPara (m_transformSkipLog2MaxSize < 2, "Transform Skip Log2 Max Size must be at least 2 (4x4)");
if (m_transformSkipLog2MaxSize!=2 && m_useTransformSkipFast)
{
fprintf(stderr, "***************************************************************************\n");
fprintf(stderr, "** WARNING: Transform skip fast is enabled (which only tests NxN splits),**\n");
fprintf(stderr, "** but transform skip log2 max size is not 2 (4x4) **\n");
fprintf(stderr, "** It may be better to disable transform skip fast mode **\n");
fprintf(stderr, "***************************************************************************\n");
}
xConfirmPara( m_iQP < -6 * (m_internalBitDepth[CHANNEL_TYPE_LUMA] - 8) || m_iQP > 51, "QP exceeds supported range (-QpBDOffsety to 51)" );
xConfirmPara( m_loopFilterBetaOffsetDiv2 < -6 || m_loopFilterBetaOffsetDiv2 > 6, "Loop Filter Beta Offset div. 2 exceeds supported range (-6 to 6)");
xConfirmPara( m_loopFilterTcOffsetDiv2 < -6 || m_loopFilterTcOffsetDiv2 > 6, "Loop Filter Tc Offset div. 2 exceeds supported range (-6 to 6)");
xConfirmPara( m_iFastSearch < 0 || m_iFastSearch > 2, "Fast Search Mode is not supported value (0:Full search 1:Diamond 2:PMVFAST)" );
xConfirmPara( m_iSearchRange < 0 , "Search Range must be more than 0" );
xConfirmPara( m_bipredSearchRange < 0 , "Search Range must be more than 0" );
xConfirmPara( m_iMaxDeltaQP > 7, "Absolute Delta QP exceeds supported range (0 to 7)" );
xConfirmPara( m_iMaxCuDQPDepth > m_uiMaxCUDepth - 1, "Absolute depth for a minimum CuDQP exceeds maximum coding unit depth" );
xConfirmPara( m_cbQpOffset < -12, "Min. Chroma Cb QP Offset is -12" );
xConfirmPara( m_cbQpOffset > 12, "Max. Chroma Cb QP Offset is 12" );
xConfirmPara( m_crQpOffset < -12, "Min. Chroma Cr QP Offset is -12" );
xConfirmPara( m_crQpOffset > 12, "Max. Chroma Cr QP Offset is 12" );
xConfirmPara( m_iQPAdaptationRange <= 0, "QP Adaptation Range must be more than 0" );
if (m_iDecodingRefreshType == 2)
{
xConfirmPara( m_iIntraPeriod > 0 && m_iIntraPeriod <= m_iGOPSize , "Intra period must be larger than GOP size for periodic IDR pictures");
}
xConfirmPara( (m_uiMaxCUWidth >> m_uiMaxCUDepth) < 4, "Minimum partition width size should be larger than or equal to 8");
xConfirmPara( (m_uiMaxCUHeight >> m_uiMaxCUDepth) < 4, "Minimum partition height size should be larger than or equal to 8");
xConfirmPara( m_uiMaxCUWidth < 16, "Maximum partition width size should be larger than or equal to 16");
xConfirmPara( m_uiMaxCUHeight < 16, "Maximum partition height size should be larger than or equal to 16");
xConfirmPara( (m_iSourceWidth % (m_uiMaxCUWidth >> (m_uiMaxCUDepth-1)))!=0, "Resulting coded frame width must be a multiple of the minimum CU size");
xConfirmPara( (m_iSourceHeight % (m_uiMaxCUHeight >> (m_uiMaxCUDepth-1)))!=0, "Resulting coded frame height must be a multiple of the minimum CU size");
xConfirmPara( m_uiQuadtreeTULog2MinSize < 2, "QuadtreeTULog2MinSize must be 2 or greater.");
xConfirmPara( m_uiQuadtreeTULog2MaxSize > 5, "QuadtreeTULog2MaxSize must be 5 or smaller.");
xConfirmPara( m_uiQuadtreeTULog2MaxSize < m_uiQuadtreeTULog2MinSize, "QuadtreeTULog2MaxSize must be greater than or equal to m_uiQuadtreeTULog2MinSize.");
xConfirmPara( (1<<m_uiQuadtreeTULog2MaxSize) > m_uiMaxCUWidth, "QuadtreeTULog2MaxSize must be log2(maxCUSize) or smaller.");
xConfirmPara( ( 1 << m_uiQuadtreeTULog2MinSize ) >= ( m_uiMaxCUWidth >> (m_uiMaxCUDepth-1)), "QuadtreeTULog2MinSize must not be greater than or equal to minimum CU size" );
xConfirmPara( ( 1 << m_uiQuadtreeTULog2MinSize ) >= ( m_uiMaxCUHeight >> (m_uiMaxCUDepth-1)), "QuadtreeTULog2MinSize must not be greater than or equal to minimum CU size" );
xConfirmPara( m_uiQuadtreeTUMaxDepthInter < 1, "QuadtreeTUMaxDepthInter must be greater than or equal to 1" );
xConfirmPara( m_uiMaxCUWidth < ( 1 << (m_uiQuadtreeTULog2MinSize + m_uiQuadtreeTUMaxDepthInter - 1) ), "QuadtreeTUMaxDepthInter must be less than or equal to the difference between log2(maxCUSize) and QuadtreeTULog2MinSize plus 1" );
xConfirmPara( m_uiQuadtreeTUMaxDepthIntra < 1, "QuadtreeTUMaxDepthIntra must be greater than or equal to 1" );
xConfirmPara( m_uiMaxCUWidth < ( 1 << (m_uiQuadtreeTULog2MinSize + m_uiQuadtreeTUMaxDepthIntra - 1) ), "QuadtreeTUMaxDepthInter must be less than or equal to the difference between log2(maxCUSize) and QuadtreeTULog2MinSize plus 1" );
xConfirmPara( m_maxNumMergeCand < 1, "MaxNumMergeCand must be 1 or greater.");
xConfirmPara( m_maxNumMergeCand > 5, "MaxNumMergeCand must be 5 or smaller.");
#if ADAPTIVE_QP_SELECTION
xConfirmPara( m_bUseAdaptQpSelect == true && m_iQP < 0, "AdaptiveQpSelection must be disabled when QP < 0.");
xConfirmPara( m_bUseAdaptQpSelect == true && (m_cbQpOffset !=0 || m_crQpOffset != 0 ), "AdaptiveQpSelection must be disabled when ChromaQpOffset is not equal to 0.");
#endif
if( m_usePCM)
{
for (UInt channelType = 0; channelType < MAX_NUM_CHANNEL_TYPE; channelType++)
{
xConfirmPara(((m_MSBExtendedBitDepth[channelType] > m_internalBitDepth[channelType]) && m_bPCMInputBitDepthFlag), "PCM bit depth cannot be greater than internal bit depth (PCMInputBitDepthFlag cannot be used when InputBitDepth or MSBExtendedBitDepth > InternalBitDepth)");
}
xConfirmPara( m_uiPCMLog2MinSize < 3, "PCMLog2MinSize must be 3 or greater.");
xConfirmPara( m_uiPCMLog2MinSize > 5, "PCMLog2MinSize must be 5 or smaller.");
xConfirmPara( m_pcmLog2MaxSize > 5, "PCMLog2MaxSize must be 5 or smaller.");
xConfirmPara( m_pcmLog2MaxSize < m_uiPCMLog2MinSize, "PCMLog2MaxSize must be equal to or greater than m_uiPCMLog2MinSize.");
}
xConfirmPara( m_sliceMode < 0 || m_sliceMode > 3, "SliceMode exceeds supported range (0 to 3)" );
if (m_sliceMode!=0)
{
xConfirmPara( m_sliceArgument < 1 , "SliceArgument should be larger than or equal to 1" );
}
xConfirmPara( m_sliceSegmentMode < 0 || m_sliceSegmentMode > 3, "SliceSegmentMode exceeds supported range (0 to 3)" );
if (m_sliceSegmentMode!=0)
{
xConfirmPara( m_sliceSegmentArgument < 1 , "SliceSegmentArgument should be larger than or equal to 1" );
}
Bool tileFlag = (m_numTileColumnsMinus1 > 0 || m_numTileRowsMinus1 > 0 );
if (m_profile!=Profile::HIGHTHROUGHPUTREXT)
{
xConfirmPara( tileFlag && m_iWaveFrontSynchro, "Tile and Wavefront can not be applied together, except in the High Throughput Intra 4:4:4 16 profile");
}
xConfirmPara( m_iSourceWidth % TComSPS::getWinUnitX(m_chromaFormatIDC) != 0, "Picture width must be an integer multiple of the specified chroma subsampling");
xConfirmPara( m_iSourceHeight % TComSPS::getWinUnitY(m_chromaFormatIDC) != 0, "Picture height must be an integer multiple of the specified chroma subsampling");
xConfirmPara( m_aiPad[0] % TComSPS::getWinUnitX(m_chromaFormatIDC) != 0, "Horizontal padding must be an integer multiple of the specified chroma subsampling");
xConfirmPara( m_aiPad[1] % TComSPS::getWinUnitY(m_chromaFormatIDC) != 0, "Vertical padding must be an integer multiple of the specified chroma subsampling");
xConfirmPara( m_confWinLeft % TComSPS::getWinUnitX(m_chromaFormatIDC) != 0, "Left conformance window offset must be an integer multiple of the specified chroma subsampling");
xConfirmPara( m_confWinRight % TComSPS::getWinUnitX(m_chromaFormatIDC) != 0, "Right conformance window offset must be an integer multiple of the specified chroma subsampling");
xConfirmPara( m_confWinTop % TComSPS::getWinUnitY(m_chromaFormatIDC) != 0, "Top conformance window offset must be an integer multiple of the specified chroma subsampling");
xConfirmPara( m_confWinBottom % TComSPS::getWinUnitY(m_chromaFormatIDC) != 0, "Bottom conformance window offset must be an integer multiple of the specified chroma subsampling");
xConfirmPara( m_defaultDisplayWindowFlag && !m_vuiParametersPresentFlag, "VUI needs to be enabled for default display window");
if (m_defaultDisplayWindowFlag)
{
xConfirmPara( m_defDispWinLeftOffset % TComSPS::getWinUnitX(m_chromaFormatIDC) != 0, "Left default display window offset must be an integer multiple of the specified chroma subsampling");
xConfirmPara( m_defDispWinRightOffset % TComSPS::getWinUnitX(m_chromaFormatIDC) != 0, "Right default display window offset must be an integer multiple of the specified chroma subsampling");
xConfirmPara( m_defDispWinTopOffset % TComSPS::getWinUnitY(m_chromaFormatIDC) != 0, "Top default display window offset must be an integer multiple of the specified chroma subsampling");
xConfirmPara( m_defDispWinBottomOffset % TComSPS::getWinUnitY(m_chromaFormatIDC) != 0, "Bottom default display window offset must be an integer multiple of the specified chroma subsampling");
}
// max CU width and height should be power of 2
UInt ui = m_uiMaxCUWidth;
while(ui)
{
ui >>= 1;
if( (ui & 1) == 1)
xConfirmPara( ui != 1 , "Width should be 2^n");
}
ui = m_uiMaxCUHeight;
while(ui)
{
ui >>= 1;
if( (ui & 1) == 1)
xConfirmPara( ui != 1 , "Height should be 2^n");
}
/* if this is an intra-only sequence, ie IntraPeriod=1, don't verify the GOP structure
* This permits the ability to omit a GOP structure specification */
if (m_iIntraPeriod == 1 && m_GOPList[0].m_POC == -1)
{
m_GOPList[0] = GOPEntry();
m_GOPList[0].m_QPFactor = 1;
m_GOPList[0].m_betaOffsetDiv2 = 0;
m_GOPList[0].m_tcOffsetDiv2 = 0;
m_GOPList[0].m_POC = 1;
m_GOPList[0].m_numRefPicsActive = 4;
}
else
{
xConfirmPara( m_intraConstraintFlag, "IntraConstraintFlag cannot be 1 for inter sequences");
}
Bool verifiedGOP=false;
Bool errorGOP=false;
Int checkGOP=1;
Int numRefs = m_isField ? 2 : 1;
Int refList[MAX_NUM_REF_PICS+1];
refList[0]=0;
if(m_isField)
{
refList[1] = 1;
}
Bool isOK[MAX_GOP];
for(Int i=0; i<MAX_GOP; i++)
{
isOK[i]=false;
}
Int numOK=0;
xConfirmPara( m_iIntraPeriod >=0&&(m_iIntraPeriod%m_iGOPSize!=0), "Intra period must be a multiple of GOPSize, or -1" );
for(Int i=0; i<m_iGOPSize; i++)
{
if(m_GOPList[i].m_POC==m_iGOPSize)
{
xConfirmPara( m_GOPList[i].m_temporalId!=0 , "The last frame in each GOP must have temporal ID = 0 " );
}
}
if ( (m_iIntraPeriod != 1) && !m_loopFilterOffsetInPPS && m_DeblockingFilterControlPresent && (!m_bLoopFilterDisable) )
{
for(Int i=0; i<m_iGOPSize; i++)
{
xConfirmPara( (m_GOPList[i].m_betaOffsetDiv2 + m_loopFilterBetaOffsetDiv2) < -6 || (m_GOPList[i].m_betaOffsetDiv2 + m_loopFilterBetaOffsetDiv2) > 6, "Loop Filter Beta Offset div. 2 for one of the GOP entries exceeds supported range (-6 to 6)" );
xConfirmPara( (m_GOPList[i].m_tcOffsetDiv2 + m_loopFilterTcOffsetDiv2) < -6 || (m_GOPList[i].m_tcOffsetDiv2 + m_loopFilterTcOffsetDiv2) > 6, "Loop Filter Tc Offset div. 2 for one of the GOP entries exceeds supported range (-6 to 6)" );
}
}
m_extraRPSs=0;
//start looping through frames in coding order until we can verify that the GOP structure is correct.
while(!verifiedGOP&&!errorGOP)
{
Int curGOP = (checkGOP-1)%m_iGOPSize;
Int curPOC = ((checkGOP-1)/m_iGOPSize)*m_iGOPSize + m_GOPList[curGOP].m_POC;
if(m_GOPList[curGOP].m_POC<0)
{
printf("\nError: found fewer Reference Picture Sets than GOPSize\n");
errorGOP=true;
}
else
{
//check that all reference pictures are available, or have a POC < 0 meaning they might be available in the next GOP.
Bool beforeI = false;
for(Int i = 0; i< m_GOPList[curGOP].m_numRefPics; i++)
{
Int absPOC = curPOC+m_GOPList[curGOP].m_referencePics[i];
if(absPOC < 0)
{
beforeI=true;
}
else
{
Bool found=false;
for(Int j=0; j<numRefs; j++)
{
if(refList[j]==absPOC)
{
found=true;
for(Int k=0; k<m_iGOPSize; k++)
{
if(absPOC%m_iGOPSize == m_GOPList[k].m_POC%m_iGOPSize)
{
if(m_GOPList[k].m_temporalId==m_GOPList[curGOP].m_temporalId)
{
m_GOPList[k].m_refPic = true;
}
m_GOPList[curGOP].m_usedByCurrPic[i]=m_GOPList[k].m_temporalId<=m_GOPList[curGOP].m_temporalId;
}
}
}
}
if(!found)
{
printf("\nError: ref pic %d is not available for GOP frame %d\n",m_GOPList[curGOP].m_referencePics[i],curGOP+1);
errorGOP=true;
}
}
}
if(!beforeI&&!errorGOP)
{
//all ref frames were present
if(!isOK[curGOP])
{
numOK++;
isOK[curGOP]=true;
if(numOK==m_iGOPSize)
{
verifiedGOP=true;
}
}
}
else
{
//create a new GOPEntry for this frame containing all the reference pictures that were available (POC > 0)
m_GOPList[m_iGOPSize+m_extraRPSs]=m_GOPList[curGOP];
Int newRefs=0;
for(Int i = 0; i< m_GOPList[curGOP].m_numRefPics; i++)
{
Int absPOC = curPOC+m_GOPList[curGOP].m_referencePics[i];
if(absPOC>=0)
{
m_GOPList[m_iGOPSize+m_extraRPSs].m_referencePics[newRefs]=m_GOPList[curGOP].m_referencePics[i];
m_GOPList[m_iGOPSize+m_extraRPSs].m_usedByCurrPic[newRefs]=m_GOPList[curGOP].m_usedByCurrPic[i];
newRefs++;
}
}
Int numPrefRefs = m_GOPList[curGOP].m_numRefPicsActive;
for(Int offset = -1; offset>-checkGOP; offset--)
{
//step backwards in coding order and include any extra available pictures we might find useful to replace the ones with POC < 0.
Int offGOP = (checkGOP-1+offset)%m_iGOPSize;
Int offPOC = ((checkGOP-1+offset)/m_iGOPSize)*m_iGOPSize + m_GOPList[offGOP].m_POC;
if(offPOC>=0&&m_GOPList[offGOP].m_temporalId<=m_GOPList[curGOP].m_temporalId)
{
Bool newRef=false;
for(Int i=0; i<numRefs; i++)
{
if(refList[i]==offPOC)
{
newRef=true;
}
}
for(Int i=0; i<newRefs; i++)
{
if(m_GOPList[m_iGOPSize+m_extraRPSs].m_referencePics[i]==offPOC-curPOC)
{
newRef=false;
}
}
if(newRef)
{
Int insertPoint=newRefs;
//this picture can be added, find appropriate place in list and insert it.
if(m_GOPList[offGOP].m_temporalId==m_GOPList[curGOP].m_temporalId)
{
m_GOPList[offGOP].m_refPic = true;
}
for(Int j=0; j<newRefs; j++)
{
if(m_GOPList[m_iGOPSize+m_extraRPSs].m_referencePics[j]<offPOC-curPOC||m_GOPList[m_iGOPSize+m_extraRPSs].m_referencePics[j]>0)
{
insertPoint = j;
break;
}
}
Int prev = offPOC-curPOC;
Int prevUsed = m_GOPList[offGOP].m_temporalId<=m_GOPList[curGOP].m_temporalId;
for(Int j=insertPoint; j<newRefs+1; j++)
{
Int newPrev = m_GOPList[m_iGOPSize+m_extraRPSs].m_referencePics[j];
Int newUsed = m_GOPList[m_iGOPSize+m_extraRPSs].m_usedByCurrPic[j];
m_GOPList[m_iGOPSize+m_extraRPSs].m_referencePics[j]=prev;
m_GOPList[m_iGOPSize+m_extraRPSs].m_usedByCurrPic[j]=prevUsed;
prevUsed=newUsed;
prev=newPrev;
}
newRefs++;
}
}
if(newRefs>=numPrefRefs)
{
break;
}
}
m_GOPList[m_iGOPSize+m_extraRPSs].m_numRefPics=newRefs;
m_GOPList[m_iGOPSize+m_extraRPSs].m_POC = curPOC;
if (m_extraRPSs == 0)
{
m_GOPList[m_iGOPSize+m_extraRPSs].m_interRPSPrediction = 0;
m_GOPList[m_iGOPSize+m_extraRPSs].m_numRefIdc = 0;
}
else
{
Int rIdx = m_iGOPSize + m_extraRPSs - 1;
Int refPOC = m_GOPList[rIdx].m_POC;
Int refPics = m_GOPList[rIdx].m_numRefPics;
Int newIdc=0;
for(Int i = 0; i<= refPics; i++)
{
Int deltaPOC = ((i != refPics)? m_GOPList[rIdx].m_referencePics[i] : 0); // check if the reference abs POC is >= 0
Int absPOCref = refPOC+deltaPOC;
Int refIdc = 0;
for (Int j = 0; j < m_GOPList[m_iGOPSize+m_extraRPSs].m_numRefPics; j++)
{
if ( (absPOCref - curPOC) == m_GOPList[m_iGOPSize+m_extraRPSs].m_referencePics[j])
{
if (m_GOPList[m_iGOPSize+m_extraRPSs].m_usedByCurrPic[j])
{
refIdc = 1;
}
else
{
refIdc = 2;
}
}
}
m_GOPList[m_iGOPSize+m_extraRPSs].m_refIdc[newIdc]=refIdc;
newIdc++;
}
m_GOPList[m_iGOPSize+m_extraRPSs].m_interRPSPrediction = 1;
m_GOPList[m_iGOPSize+m_extraRPSs].m_numRefIdc = newIdc;
m_GOPList[m_iGOPSize+m_extraRPSs].m_deltaRPS = refPOC - m_GOPList[m_iGOPSize+m_extraRPSs].m_POC;
}
curGOP=m_iGOPSize+m_extraRPSs;
m_extraRPSs++;
}
numRefs=0;
for(Int i = 0; i< m_GOPList[curGOP].m_numRefPics; i++)
{
Int absPOC = curPOC+m_GOPList[curGOP].m_referencePics[i];
if(absPOC >= 0)
{
refList[numRefs]=absPOC;
numRefs++;
}
}
refList[numRefs]=curPOC;
numRefs++;
}
checkGOP++;
}
xConfirmPara(errorGOP,"Invalid GOP structure given");
m_maxTempLayer = 1;
for(Int i=0; i<m_iGOPSize; i++)
{
if(m_GOPList[i].m_temporalId >= m_maxTempLayer)
{
m_maxTempLayer = m_GOPList[i].m_temporalId+1;
}
xConfirmPara(m_GOPList[i].m_sliceType!='B' && m_GOPList[i].m_sliceType!='P' && m_GOPList[i].m_sliceType!='I', "Slice type must be equal to B or P or I");
}
for(Int i=0; i<MAX_TLAYER; i++)
{
m_numReorderPics[i] = 0;
m_maxDecPicBuffering[i] = 1;
}
for(Int i=0; i<m_iGOPSize; i++)
{
if(m_GOPList[i].m_numRefPics+1 > m_maxDecPicBuffering[m_GOPList[i].m_temporalId])
{
m_maxDecPicBuffering[m_GOPList[i].m_temporalId] = m_GOPList[i].m_numRefPics + 1;
}
Int highestDecodingNumberWithLowerPOC = 0;
for(Int j=0; j<m_iGOPSize; j++)
{
if(m_GOPList[j].m_POC <= m_GOPList[i].m_POC)
{
highestDecodingNumberWithLowerPOC = j;
}
}
Int numReorder = 0;
for(Int j=0; j<highestDecodingNumberWithLowerPOC; j++)
{
if(m_GOPList[j].m_temporalId <= m_GOPList[i].m_temporalId &&
m_GOPList[j].m_POC > m_GOPList[i].m_POC)
{
numReorder++;
}
}
if(numReorder > m_numReorderPics[m_GOPList[i].m_temporalId])
{
m_numReorderPics[m_GOPList[i].m_temporalId] = numReorder;
}
}
for(Int i=0; i<MAX_TLAYER-1; i++)
{
// a lower layer can not have higher value of m_numReorderPics than a higher layer
if(m_numReorderPics[i+1] < m_numReorderPics[i])
{
m_numReorderPics[i+1] = m_numReorderPics[i];
}
// the value of num_reorder_pics[ i ] shall be in the range of 0 to max_dec_pic_buffering[ i ] - 1, inclusive
if(m_numReorderPics[i] > m_maxDecPicBuffering[i] - 1)
{
m_maxDecPicBuffering[i] = m_numReorderPics[i] + 1;
}
// a lower layer can not have higher value of m_uiMaxDecPicBuffering than a higher layer
if(m_maxDecPicBuffering[i+1] < m_maxDecPicBuffering[i])
{
m_maxDecPicBuffering[i+1] = m_maxDecPicBuffering[i];
}
}
// the value of num_reorder_pics[ i ] shall be in the range of 0 to max_dec_pic_buffering[ i ] - 1, inclusive
if(m_numReorderPics[MAX_TLAYER-1] > m_maxDecPicBuffering[MAX_TLAYER-1] - 1)
{
m_maxDecPicBuffering[MAX_TLAYER-1] = m_numReorderPics[MAX_TLAYER-1] + 1;
}
if(m_vuiParametersPresentFlag && m_bitstreamRestrictionFlag)
{
Int PicSizeInSamplesY = m_iSourceWidth * m_iSourceHeight;
if(tileFlag)
{
Int maxTileWidth = 0;
Int maxTileHeight = 0;
Int widthInCU = (m_iSourceWidth % m_uiMaxCUWidth) ? m_iSourceWidth/m_uiMaxCUWidth + 1: m_iSourceWidth/m_uiMaxCUWidth;
Int heightInCU = (m_iSourceHeight % m_uiMaxCUHeight) ? m_iSourceHeight/m_uiMaxCUHeight + 1: m_iSourceHeight/m_uiMaxCUHeight;
if(m_tileUniformSpacingFlag)
{
maxTileWidth = m_uiMaxCUWidth*((widthInCU+m_numTileColumnsMinus1)/(m_numTileColumnsMinus1+1));
maxTileHeight = m_uiMaxCUHeight*((heightInCU+m_numTileRowsMinus1)/(m_numTileRowsMinus1+1));
// if only the last tile-row is one treeblock higher than the others
// the maxTileHeight becomes smaller if the last row of treeblocks has lower height than the others
if(!((heightInCU-1)%(m_numTileRowsMinus1+1)))
{
maxTileHeight = maxTileHeight - m_uiMaxCUHeight + (m_iSourceHeight % m_uiMaxCUHeight);
}
// if only the last tile-column is one treeblock wider than the others
// the maxTileWidth becomes smaller if the last column of treeblocks has lower width than the others
if(!((widthInCU-1)%(m_numTileColumnsMinus1+1)))
{
maxTileWidth = maxTileWidth - m_uiMaxCUWidth + (m_iSourceWidth % m_uiMaxCUWidth);
}
}
else // not uniform spacing
{
if(m_numTileColumnsMinus1<1)
{
maxTileWidth = m_iSourceWidth;
}
else
{
Int accColumnWidth = 0;
for(Int col=0; col<(m_numTileColumnsMinus1); col++)
{
maxTileWidth = m_tileColumnWidth[col]>maxTileWidth ? m_tileColumnWidth[col]:maxTileWidth;
accColumnWidth += m_tileColumnWidth[col];
}
maxTileWidth = (widthInCU-accColumnWidth)>maxTileWidth ? m_uiMaxCUWidth*(widthInCU-accColumnWidth):m_uiMaxCUWidth*maxTileWidth;
}
if(m_numTileRowsMinus1<1)
{
maxTileHeight = m_iSourceHeight;
}
else
{
Int accRowHeight = 0;
for(Int row=0; row<(m_numTileRowsMinus1); row++)
{
maxTileHeight = m_tileRowHeight[row]>maxTileHeight ? m_tileRowHeight[row]:maxTileHeight;
accRowHeight += m_tileRowHeight[row];
}
maxTileHeight = (heightInCU-accRowHeight)>maxTileHeight ? m_uiMaxCUHeight*(heightInCU-accRowHeight):m_uiMaxCUHeight*maxTileHeight;
}
}
Int maxSizeInSamplesY = maxTileWidth*maxTileHeight;
m_minSpatialSegmentationIdc = 4*PicSizeInSamplesY/maxSizeInSamplesY-4;
}
else if(m_iWaveFrontSynchro)
{
m_minSpatialSegmentationIdc = 4*PicSizeInSamplesY/((2*m_iSourceHeight+m_iSourceWidth)*m_uiMaxCUHeight)-4;
}
else if(m_sliceMode == FIXED_NUMBER_OF_CTU)
{
m_minSpatialSegmentationIdc = 4*PicSizeInSamplesY/(m_sliceArgument*m_uiMaxCUWidth*m_uiMaxCUHeight)-4;
}
else
{
m_minSpatialSegmentationIdc = 0;
}
}
xConfirmPara( m_iWaveFrontSynchro < 0, "WaveFrontSynchro cannot be negative" );
xConfirmPara( m_iWaveFrontSubstreams <= 0, "WaveFrontSubstreams must be positive" );
xConfirmPara( m_iWaveFrontSubstreams > 1 && !m_iWaveFrontSynchro, "Must have WaveFrontSynchro > 0 in order to have WaveFrontSubstreams > 1" );
xConfirmPara( m_decodedPictureHashSEIEnabled<0 || m_decodedPictureHashSEIEnabled>3, "this hash type is not correct!\n");
if (m_toneMappingInfoSEIEnabled)
{
xConfirmPara( m_toneMapCodedDataBitDepth < 8 || m_toneMapCodedDataBitDepth > 14 , "SEIToneMapCodedDataBitDepth must be in rage 8 to 14");
xConfirmPara( m_toneMapTargetBitDepth < 1 || (m_toneMapTargetBitDepth > 16 && m_toneMapTargetBitDepth < 255) , "SEIToneMapTargetBitDepth must be in rage 1 to 16 or equal to 255");
xConfirmPara( m_toneMapModelId < 0 || m_toneMapModelId > 4 , "SEIToneMapModelId must be in rage 0 to 4");
xConfirmPara( m_cameraIsoSpeedValue == 0, "SEIToneMapCameraIsoSpeedValue shall not be equal to 0");
xConfirmPara( m_exposureIndexValue == 0, "SEIToneMapExposureIndexValue shall not be equal to 0");
xConfirmPara( m_extendedRangeWhiteLevel < 100, "SEIToneMapExtendedRangeWhiteLevel should be greater than or equal to 100");
xConfirmPara( m_nominalBlackLevelLumaCodeValue >= m_nominalWhiteLevelLumaCodeValue, "SEIToneMapNominalWhiteLevelLumaCodeValue shall be greater than SEIToneMapNominalBlackLevelLumaCodeValue");
xConfirmPara( m_extendedWhiteLevelLumaCodeValue < m_nominalWhiteLevelLumaCodeValue, "SEIToneMapExtendedWhiteLevelLumaCodeValue shall be greater than or equal to SEIToneMapNominalWhiteLevelLumaCodeValue");
}
if (m_kneeSEIEnabled && !m_kneeSEICancelFlag)
{
xConfirmPara( m_kneeSEINumKneePointsMinus1 < 0 || m_kneeSEINumKneePointsMinus1 > 998, "SEIKneeFunctionNumKneePointsMinus1 must be in the range of 0 to 998");
for ( UInt i=0; i<=m_kneeSEINumKneePointsMinus1; i++ ){
xConfirmPara( m_kneeSEIInputKneePoint[i] < 1 || m_kneeSEIInputKneePoint[i] > 999, "SEIKneeFunctionInputKneePointValue must be in the range of 1 to 999");
xConfirmPara( m_kneeSEIOutputKneePoint[i] < 0 || m_kneeSEIOutputKneePoint[i] > 1000, "SEIKneeFunctionInputKneePointValue must be in the range of 0 to 1000");
if ( i > 0 )
{
xConfirmPara( m_kneeSEIInputKneePoint[i-1] >= m_kneeSEIInputKneePoint[i], "The i-th SEIKneeFunctionInputKneePointValue must be greater than the (i-1)-th value");
xConfirmPara( m_kneeSEIOutputKneePoint[i-1] > m_kneeSEIOutputKneePoint[i], "The i-th SEIKneeFunctionOutputKneePointValue must be greater than or equal to the (i-1)-th value");
}
}
}
if ( m_RCEnableRateControl )
{
if ( m_RCForceIntraQP )
{
if ( m_RCInitialQP == 0 )
{
printf( "\nInitial QP for rate control is not specified. Reset not to use force intra QP!" );
m_RCForceIntraQP = false;
}
}
xConfirmPara( m_uiDeltaQpRD > 0, "Rate control cannot be used together with slice level multiple-QP optimization!\n" );
}
xConfirmPara(!m_TransquantBypassEnableFlag && m_CUTransquantBypassFlagForce, "CUTransquantBypassFlagForce cannot be 1 when TransquantBypassEnableFlag is 0");
xConfirmPara(m_log2ParallelMergeLevel < 2, "Log2ParallelMergeLevel should be larger than or equal to 2");
if (m_framePackingSEIEnabled)
{
xConfirmPara(m_framePackingSEIType < 3 || m_framePackingSEIType > 5 , "SEIFramePackingType must be in rage 3 to 5");
}
if (m_segmentedRectFramePackingSEIEnabled)
{
xConfirmPara(m_framePackingSEIEnabled > 0 , "SEISegmentedRectFramePacking must be 0 when SEIFramePacking is 1");
}
if((m_numTileColumnsMinus1 <= 0) && (m_numTileRowsMinus1 <= 0) && m_tmctsSEIEnabled)
{
printf("SEITempMotionConstrainedTileSets is set to false to disable 'temporal_motion_constrained_tile_sets' SEI because there are no tiles enabled\n");
m_tmctsSEIEnabled = false;
}
if(m_timeCodeSEIEnabled)
{
xConfirmPara(m_timeCodeSEINumTs > MAX_TIMECODE_SEI_SETS, "Number of time sets cannot exceed 3");
}
#undef xConfirmPara
if (check_failed)
{
exit(EXIT_FAILURE);
}
}
/** \todo use of global variables should be removed later
*/
Void TAppEncCfg::xSetGlobal()
{
// set max CU width & height
g_uiMaxCUWidth = m_uiMaxCUWidth;
g_uiMaxCUHeight = m_uiMaxCUHeight;
// compute actual CU depth with respect to config depth and max transform size
g_uiAddCUDepth = 0;
while( (m_uiMaxCUWidth>>m_uiMaxCUDepth) > ( 1 << ( m_uiQuadtreeTULog2MinSize + g_uiAddCUDepth ) ) ) g_uiAddCUDepth++;
g_uiAddCUDepth+=getMaxCUDepthOffset(m_chromaFormatIDC, m_uiQuadtreeTULog2MinSize); // if minimum TU larger than 4x4, allow for additional part indices for 4:2:2 SubTUs.
m_uiMaxCUDepth += g_uiAddCUDepth;
g_uiAddCUDepth++;
g_uiMaxCUDepth = m_uiMaxCUDepth;
// set internal bit-depth and constants
for (UInt channelType = 0; channelType < MAX_NUM_CHANNEL_TYPE; channelType++)
{
#if O0043_BEST_EFFORT_DECODING
g_bitDepthInStream[channelType] = g_bitDepth[channelType] = m_internalBitDepth[channelType];
#else
g_bitDepth [channelType] = m_internalBitDepth[channelType];
#endif
g_PCMBitDepth[channelType] = m_bPCMInputBitDepthFlag ? m_MSBExtendedBitDepth[channelType] : m_internalBitDepth[channelType];
if (m_useExtendedPrecision) g_maxTrDynamicRange[channelType] = std::max<Int>(15, (g_bitDepth[channelType] + 6));
else g_maxTrDynamicRange[channelType] = 15;
}
}
const Char *profileToString(const Profile::Name profile)
{
static const UInt numberOfProfiles = sizeof(strToProfile)/sizeof(*strToProfile);
for (UInt profileIndex = 0; profileIndex < numberOfProfiles; profileIndex++)
{
if (strToProfile[profileIndex].value == profile) return strToProfile[profileIndex].str;
}
//if we get here, we didn't find this profile in the list - so there is an error
std::cerr << "ERROR: Unknown profile \"" << profile << "\" in profileToString" << std::endl;
assert(false);
exit(1);
return "";
}
Void TAppEncCfg::xPrintParameter()
{
printf("\n");
printf("Input File : %s\n", m_pchInputFile );
printf("Bitstream File : %s\n", m_pchBitstreamFile );
printf("Reconstruction File : %s\n", m_pchReconFile );
printf("Real Format : %dx%d %dHz\n", m_iSourceWidth - m_confWinLeft - m_confWinRight, m_iSourceHeight - m_confWinTop - m_confWinBottom, m_iFrameRate );
printf("Internal Format : %dx%d %dHz\n", m_iSourceWidth, m_iSourceHeight, m_iFrameRate );
printf("Sequence PSNR output : %s\n", (m_printMSEBasedSequencePSNR ? "Linear average, MSE-based" : "Linear average only") );
printf("Sequence MSE output : %s\n", (m_printSequenceMSE ? "Enabled" : "Disabled") );
printf("Frame MSE output : %s\n", (m_printFrameMSE ? "Enabled" : "Disabled") );
printf("Cabac-zero-word-padding : %s\n", (m_cabacZeroWordPaddingEnabled? "Enabled" : "Disabled") );
if (m_isField)
{
printf("Frame/Field : Field based coding\n");
printf("Field index : %u - %d (%d fields)\n", m_FrameSkip, m_FrameSkip+m_framesToBeEncoded-1, m_framesToBeEncoded );
printf("Field Order : %s field first\n", m_isTopFieldFirst?"Top":"Bottom");
}
else
{
printf("Frame/Field : Frame based coding\n");
printf("Frame index : %u - %d (%d frames)\n", m_FrameSkip, m_FrameSkip+m_framesToBeEncoded-1, m_framesToBeEncoded );
}
if (m_profile == Profile::MAINREXT)
{
const UInt intraIdx = m_intraConstraintFlag ? 1:0;
const UInt bitDepthIdx = (m_bitDepthConstraint == 8 ? 0 : (m_bitDepthConstraint ==10 ? 1 : (m_bitDepthConstraint == 12 ? 2 : (m_bitDepthConstraint == 16 ? 3 : 4 ))));
const UInt chromaFormatIdx = UInt(m_chromaFormatConstraint);
const ExtendedProfileName validProfileName = (bitDepthIdx > 3 || chromaFormatIdx>3) ? NONE : validRExtProfileNames[intraIdx][bitDepthIdx][chromaFormatIdx];
std::string rextSubProfile;
if (validProfileName!=NONE) rextSubProfile=enumToString(strToExtendedProfile, sizeof(strToExtendedProfile)/sizeof(*strToExtendedProfile), validProfileName);
if (rextSubProfile == "main_444_16") rextSubProfile="main_444_16 [NON STANDARD]";
printf("Profile : %s (%s)\n", profileToString(m_profile), (rextSubProfile.empty())?"INVALID REXT PROFILE":rextSubProfile.c_str() );
}
else
{
printf("Profile : %s\n", profileToString(m_profile) );
}
printf("CU size / depth : %d / %d\n", m_uiMaxCUWidth, m_uiMaxCUDepth );
printf("RQT trans. size (min / max) : %d / %d\n", 1 << m_uiQuadtreeTULog2MinSize, 1 << m_uiQuadtreeTULog2MaxSize );
printf("Max RQT depth inter : %d\n", m_uiQuadtreeTUMaxDepthInter);
printf("Max RQT depth intra : %d\n", m_uiQuadtreeTUMaxDepthIntra);
printf("Min PCM size : %d\n", 1 << m_uiPCMLog2MinSize);
printf("Motion search range : %d\n", m_iSearchRange );
printf("Intra period : %d\n", m_iIntraPeriod );
printf("Decoding refresh type : %d\n", m_iDecodingRefreshType );
printf("QP : %5.2f\n", m_fQP );
printf("Max dQP signaling depth : %d\n", m_iMaxCuDQPDepth);
printf("Cb QP Offset : %d\n", m_cbQpOffset );
printf("Cr QP Offset : %d\n", m_crQpOffset);
printf("Max CU chroma QP adjustment depth : %d\n", m_maxCUChromaQpAdjustmentDepth);
printf("QP adaptation : %d (range=%d)\n", m_bUseAdaptiveQP, (m_bUseAdaptiveQP ? m_iQPAdaptationRange : 0) );
printf("GOP size : %d\n", m_iGOPSize );
printf("Input bit depth : (Y:%d, C:%d)\n", m_inputBitDepth[CHANNEL_TYPE_LUMA], m_inputBitDepth[CHANNEL_TYPE_CHROMA] );
printf("MSB-extended bit depth : (Y:%d, C:%d)\n", m_MSBExtendedBitDepth[CHANNEL_TYPE_LUMA], m_MSBExtendedBitDepth[CHANNEL_TYPE_CHROMA] );
printf("Internal bit depth : (Y:%d, C:%d)\n", m_internalBitDepth[CHANNEL_TYPE_LUMA], m_internalBitDepth[CHANNEL_TYPE_CHROMA] );
printf("PCM sample bit depth : (Y:%d, C:%d)\n", g_PCMBitDepth[CHANNEL_TYPE_LUMA], g_PCMBitDepth[CHANNEL_TYPE_CHROMA] );
printf("Extended precision processing : %s\n", (m_useExtendedPrecision ? "Enabled" : "Disabled") );
printf("Intra reference smoothing : %s\n", (m_enableIntraReferenceSmoothing ? "Enabled" : "Disabled") );
printf("Implicit residual DPCM : %s\n", (m_useResidualDPCM[RDPCM_SIGNAL_IMPLICIT] ? "Enabled" : "Disabled") );
printf("Explicit residual DPCM : %s\n", (m_useResidualDPCM[RDPCM_SIGNAL_EXPLICIT] ? "Enabled" : "Disabled") );
printf("Residual rotation : %s\n", (m_useResidualRotation ? "Enabled" : "Disabled") );
printf("Single significance map context : %s\n", (m_useSingleSignificanceMapContext ? "Enabled" : "Disabled") );
printf("Cross-component prediction : %s\n", (m_useCrossComponentPrediction ? (m_reconBasedCrossCPredictionEstimate ? "Enabled (reconstructed-residual-based estimate)" : "Enabled (encoder-side-residual-based estimate)") : "Disabled") );
printf("High-precision prediction weight : %s\n", (m_useHighPrecisionPredictionWeighting ? "Enabled" : "Disabled") );
printf("Golomb-Rice parameter adaptation : %s\n", (m_useGolombRiceParameterAdaptation ? "Enabled" : "Disabled") );
printf("CABAC bypass bit alignment : %s\n", (m_alignCABACBeforeBypass ? "Enabled" : "Disabled") );
if (m_bUseSAO)
{
printf("Sao Luma Offset bit shifts : %d\n", m_saoOffsetBitShift[CHANNEL_TYPE_LUMA]);
printf("Sao Chroma Offset bit shifts : %d\n", m_saoOffsetBitShift[CHANNEL_TYPE_CHROMA]);
}
switch (m_costMode)
{
case COST_STANDARD_LOSSY: printf("Cost function: : Lossy coding (default)\n"); break;
case COST_SEQUENCE_LEVEL_LOSSLESS: printf("Cost function: : Sequence_level_lossless coding\n"); break;
case COST_LOSSLESS_CODING: printf("Cost function: : Lossless coding with fixed QP of %d\n", LOSSLESS_AND_MIXED_LOSSLESS_RD_COST_TEST_QP); break;
case COST_MIXED_LOSSLESS_LOSSY_CODING: printf("Cost function: : Mixed_lossless_lossy coding with QP'=%d for lossless evaluation\n", LOSSLESS_AND_MIXED_LOSSLESS_RD_COST_TEST_QP_PRIME); break;
default: printf("Cost function: : Unknown\n"); break;
}
printf("RateControl : %d\n", m_RCEnableRateControl );
if(m_RCEnableRateControl)
{
printf("TargetBitrate : %d\n", m_RCTargetBitrate );
printf("KeepHierarchicalBit : %d\n", m_RCKeepHierarchicalBit );
printf("LCULevelRC : %d\n", m_RCLCULevelRC );
printf("UseLCUSeparateModel : %d\n", m_RCUseLCUSeparateModel );
printf("InitialQP : %d\n", m_RCInitialQP );
printf("ForceIntraQP : %d\n", m_RCForceIntraQP );
}
printf("Max Num Merge Candidates : %d\n", m_maxNumMergeCand);
printf("\n");
printf("TOOL CFG: ");
printf("IBD:%d ", ((g_bitDepth[CHANNEL_TYPE_LUMA] > m_MSBExtendedBitDepth[CHANNEL_TYPE_LUMA]) || (g_bitDepth[CHANNEL_TYPE_CHROMA] > m_MSBExtendedBitDepth[CHANNEL_TYPE_CHROMA])));
printf("HAD:%d ", m_bUseHADME );
printf("RDQ:%d ", m_useRDOQ );
printf("RDQTS:%d ", m_useRDOQTS );
printf("RDpenalty:%d ", m_rdPenalty );
printf("SQP:%d ", m_uiDeltaQpRD );
printf("ASR:%d ", m_bUseASR );
printf("FEN:%d ", m_bUseFastEnc );
printf("ECU:%d ", m_bUseEarlyCU );
printf("FDM:%d ", m_useFastDecisionForMerge );
printf("CFM:%d ", m_bUseCbfFastMode );
printf("ESD:%d ", m_useEarlySkipDetection );
printf("RQT:%d ", 1 );
printf("TransformSkip:%d ", m_useTransformSkip );
printf("TransformSkipFast:%d ", m_useTransformSkipFast );
printf("TransformSkipLog2MaxSize:%d ", m_transformSkipLog2MaxSize);
printf("Slice: M=%d ", m_sliceMode);
if (m_sliceMode!=NO_SLICES)
{
printf("A=%d ", m_sliceArgument);
}
printf("SliceSegment: M=%d ",m_sliceSegmentMode);
if (m_sliceSegmentMode!=NO_SLICES)
{
printf("A=%d ", m_sliceSegmentArgument);
}
printf("CIP:%d ", m_bUseConstrainedIntraPred);
printf("SAO:%d ", (m_bUseSAO)?(1):(0));
printf("PCM:%d ", (m_usePCM && (1<<m_uiPCMLog2MinSize) <= m_uiMaxCUWidth)? 1 : 0);
if (m_TransquantBypassEnableFlag && m_CUTransquantBypassFlagForce)
{
printf("TransQuantBypassEnabled: =1");
}
else
{
printf("TransQuantBypassEnabled:%d ", (m_TransquantBypassEnableFlag)? 1:0 );
}
printf("WPP:%d ", (Int)m_useWeightedPred);
printf("WPB:%d ", (Int)m_useWeightedBiPred);
printf("PME:%d ", m_log2ParallelMergeLevel);
printf(" WaveFrontSynchro:%d WaveFrontSubstreams:%d",
m_iWaveFrontSynchro, m_iWaveFrontSubstreams);
printf(" ScalingList:%d ", m_useScalingListId );
printf("TMVPMode:%d ", m_TMVPModeId );
#if ADAPTIVE_QP_SELECTION
printf("AQpS:%d", m_bUseAdaptQpSelect );
#endif
printf(" SignBitHidingFlag:%d ", m_signHideFlag);
printf("RecalQP:%d", m_recalculateQPAccordingToLambda ? 1 : 0 );
printf("\n\n");
fflush(stdout);
}
Bool confirmPara(Bool bflag, const Char* message)
{
if (!bflag)
return false;
printf("Error: %s\n",message);
return true;
}
//! \}