utfcpp/doc/utf8cpp.html

978 lines
41 KiB
HTML

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta name="generator" content=
"HTML Tidy for Linux/x86 (vers 1st November 2002), see www.w3.org">
<meta name="description" content=
"A simple, portable and lightweigt C++ library for easy handling of UTF-8 encoded strings">
<meta name="keywords" content="UTF-8 C++ portable utf8 unicode generic templates">
<title>
UTF8-CPP: UTF-8 with C++ in a Portable Way
</title>
<style type="text/css">
<!--
span.return_value {
font-weight: bold;
}
span.cpp_keyword {
color: blue;
}
span.preprocessor {
color: navy;
}
-->
</style>
</head>
<body>
<p>
<a href="https://sourceforge.net/projects/utfcpp">The Sourceforge project page</a>
</p>
<h2>
Table of Contents
</h2>
<ul>
<li>
<a href="#introduction">Introduction</a>
</li>
<li>
<a href="#examples">Examples of Use</a>
</li>
<li>
<a href="#reference">Reference</a>
</li>
<li>
<a href="#points">Points of Interest</a>
</li>
<li>
<a href="#conclusion">Conclusion</a>
</li>
<li>
<a href="#references">References</a>
</li>
</ul>
<h2 id="introduction">
Introduction
</h2>
<p>
Many C++ developers miss an easy and portable way of handling Unicode encoded
strings. C++ Standard is currently Unicode agnostic, and while some work is being
done to introduce Unicode to the next incarnation called C++0x, for the moment
nothing of the sort is available. In the meantime, developers use 3rd party
libraries like ICU, OS specific capabilities, or simply roll out their own
solutions.
</p>
<p>
In order to easily handle UTF-8 encoded Unicode strings, I have come up with a set
of template functions. For anybody used to work with STL algorithms, they should be
easy and natural to use. The code is freely available for any purpose - check out
the license at the beginning of the utf8.h file. Be aware, though, that while I did
some testing, this library has not been used in production yet. If you run into
bugs or performance issues, please let me know and I'll do my best to address them.
</p>
<p>
The purpose of this article is not to offer an introduction to Unicode in general,
and UTF-8 in particular. If you are not familiar with Unicode, be sure to check out
<a href="http://www.unicode.org/">Unicode Home Page</a> or some other source of
information for Unicode. Also, it is not my aim to advocate the use of UTF-8
encoded strings in C++ programs; if you want to handle UTF-8 encoded strings from
C++, I am sure you have good reasons for it.
</p>
<h2 id="examples">
Examples of use
</h2>
<p>
To illustrate the use of this utf8 library, we shall open a file containing UTF-8
encoded text, check whether it starts with a byte order mark, read each line into a
<code>std::string</code>, check it for validity, convert the text to UTF-16, and
back to UTF-8:
</p>
<pre>
<span class="preprocessor">#include &lt;fstream&gt;</span>
<span class="preprocessor">#include &lt;iostream&gt;</span>
<span class="preprocessor">#include &lt;string&gt;</span>
<span class="preprocessor">#include &lt;vector&gt;</span>
<span class="cpp_keyword">using namespace</span> std;
<span class="cpp_keyword">int</span> main()
{
<span class="cpp_keyword">if</span> (argc != 2) {
cout &lt;&lt; "\nUsage: docsample filename\n";
<span class="cpp_keyword">return</span> 0;
}
<span class="cpp_keyword">const char</span>* test_file_path = argv[1];
// Open the test file (must be UTF-8 encoded)
ifstream fs8(test_file_path);
<span class="cpp_keyword">if </span>(!fs8.is_open()) {
cout &lt;&lt; "Could not open " &lt;&lt; test_file_path &lt;&lt; endl;
<span class="cpp_keyword">return</span> 0;
}
// Read the first line of the file
<span class="cpp_keyword">unsigned</span> line_count = 1;
string line;
<span class="cpp_keyword">if </span>(!getline(fs8, line))
<span class="cpp_keyword">return</span> 0;
// Look for utf-8 byte-order mark at the beginning
<span class="cpp_keyword">if </span>(line.size() &gt; 2) {
<span class="cpp_keyword">if </span>(utf8::is_bom(line.c_str()))
cout &lt;&lt; "There is a byte order mark at the beginning of the file\n";
}
// Play with all the lines in the file
<span class="cpp_keyword">do</span> {
// check for invalid utf-8 (for a simple yes/no check, there is also utf8::is_valid function)
string::iterator end_it = utf8::find_invalid(line.begin(), line.end());
<span class="cpp_keyword">if </span>(end_it != line.end()) {
cout &lt;&lt; "Invalid UTF-8 encoding detected at line " &lt;&lt; line_count &lt;&lt; "\n";
cout &lt;&lt; "This part is fine: " &lt;&lt; string(line.begin(), end_it) &lt;&lt; "\n";
}
// Get the line length (at least for the valid part)
<span class="cpp_keyword">int</span> length = utf8::distance(line.begin(), end_it);
cout &lt;&lt; "Length of line " &lt;&lt; line_count &lt;&lt; " is " &lt;&lt; length &lt;&lt; "\n";
// Convert it to utf-16
vector&lt;unsigned short&gt; utf16line;
utf8::utf8to16(line.begin(), end_it, back_inserter(utf16line));
// And back to utf-8;
string utf8line;
utf8::utf16to8(utf16line.begin(), utf16line.end(), back_inserter(utf8line));
// Confirm that the conversion went OK:
<span class="cpp_keyword">if </span>(utf8line != string(line.begin(), end_it))
cout &lt;&lt; "Error in UTF-16 conversion at line: " &lt;&lt; line_count &lt;&lt; "\n";
getline(fs8, line);
line_count++;
} <span class="cpp_keyword">while</span> (!fs8.eof());
<span class="cpp_keyword">return</span> 0;
}
</pre>
<p>
In the previous code sample, we have seen the use of the following functions from
<code>utf8</code> namespace: first we used <code>is_bom</code> function to detect
UTF-8 byte order mark at the beginning of the file; then for each line we performed
a detection of invalid UTF-8 sequences with <code>find_invalid</code>; the number
of characters (more precisely - the number of Unicode code points) in each line was
determined with a use of <code>utf8::distance</code>; finally, we have converted
each line to UTF-16 encoding with <code>utf8to16</code> and back to UTF-8 with
<code>utf16to8</code>.
</p>
<h2 id="reference">
Reference
</h2>
<h3>
Functions From utf8 Namespace
</h3>
<h4>
utf8::append
</h4>
<p>
Encodes a 32 bit code point as a UTF-8 sequence of octets and appends the sequence
to a UTF-8 string.
</p>
<code>
<span class="cpp_keyword">template</span> &lt;<span class="cpp_keyword">typename</span> octet_iterator&gt;
octet_iterator append(uint32_t cp, octet_iterator result);
</code>
<p>
<code>cp</code>: A 32 bit integer representing a code point to append to the
sequence.<br>
<code>result</code>: An output iterator to the place in the sequence where to
append the code point.<br>
<span class="return_value">Return value</span>: An iterator pointing to the place after the newly appended
sequence.
</p>
<p>
Example of use:
</p>
<pre>
<span class="cpp_keyword">unsigned char</span> u[5] = {0,0,0,0,0};
<span class="cpp_keyword">unsigned char</span>* end = append(0x0448, u);
assert (u[0] == 0xd1 &amp;&amp; u[1] == 0x88 &amp;&amp; u[2] == 0 &amp;&amp; u[3] == 0 &amp;&amp; u[4] == 0);
</pre>
<p>
Note that <code>append</code> does not allocate any memory - it is the burden of
the caller to make sure there is enough memory allocated for the operation. To make
things more interesting, <code>append</code> can add anywhere between 1 and 4
octets to the sequence. In practice, you would most often want to use
<code>std::back_inserter</code> to ensure that the necessary memory is allocated.
</p>
<p>
In case of an invalid code point, a <code>utf8::invalid_code_point</code> exception
is thrown.
</p>
<h4>
utf8::next
</h4>
<p>
Given the iterator to the beginning of the UTF-8 sequence, it returns the code
point and moves the iterator to the next position.
</p>
<code><span class="cpp_keyword">template</span> &lt;<span class="cpp_keyword">typename</span> octet_iterator&gt; uint32_t next(octet_iterator&amp; it,
octet_iterator end);</code>
<p>
<code>it</code>: a reference to an iterator pointing to the beginning of an UTF-8
encoded code point. After the function returns, it is incremented to point to the
beginning of the next code point.<br>
<code>end</code>: end of the UTF-8 sequence to be processed. If <code>it</code>
gets equal to <code>end</code> during the extraction of a code point, an
<code>utf8::not_enough_room</code> exception is thrown.<br>
<span class="return_value">Return value</span>: the 32 bit representation of the processed UTF-8 code point.
</p>
<p>
Example of use:
</p>
<pre>
<span class="cpp_keyword">char</span>* twochars = "\xe6\x97\xa5\xd1\x88";
<span class="cpp_keyword">char</span>* w = twochars;
<span class="cpp_keyword">int</span> cp = next(w, twochars + 6);
assert (cp == 0x65e5);
assert (w == twochars + 3);
</pre>
<p>
This function is typically used to iterate through a UTF-8 encoded string.
</p>
<p>
In case of an invalid UTF-8 seqence, a <code>utf8::invalid_utf8</code> exception is
thrown.
</p>
<h4>
utf8::previous
</h4>
<p>
Given a reference to an iterator pointing to an octet in a UTF-8 seqence, it
decreases the iterator until it hits the beginning of the previous UTF-8 encoded
code point and returns the 32 bits representation of the code point.
</p>
<code><span class="cpp_keyword">template</span> &lt;<span class="cpp_keyword">typename</span> octet_iterator&gt; uint32_t previous(octet_iterator&amp;
it, octet_iterator pass_start);</code>
<p>
<code>it</code>: a reference pointing to an octet within a UTF-8 encoded string.
After the function returns, it is decremented to point to the beginning of the
previous code point.<br>
<code>pass_start</code>: an iterator to the point in the sequence where the search
for the beginning of a code point is aborted if no result was reached. It is a
safety measure to prevent passing the beginning of the string in the search for a
UTF-8 lead octet.<br>
<span class="return_value">Return value</span>: the 32 bit representation of the previous code point.
</p>
<p>
Example of use:
</p>
<pre>
<span class="cpp_keyword">char</span>* twochars = "\xe6\x97\xa5\xd1\x88";
<span class="cpp_keyword">unsigned char</span>* w = twochars + 3;
<span class="cpp_keyword">int</span> cp = previous (w, twochars - 1);
assert (cp == 0x65e5);
assert (w == twochars);
</pre>
<p>
The primary purpose of this function is to iterate backwards through a UTF-8
encoded string. Therefore, <code>it</code> will typically point to the beginning of
a code point, and <code>pass_start</code> will point to the octet just before the
beginning of the string to ensure we don't go backwards too far. <code>it</code> is
decreased until it points to a lead UTF-8 octet, and then the UTF-8 sequence
beginning with that octet is decoded to a 32 bit representation and returned.
</p>
<p>
In case <code>pass_end</code> is reached before a UTF-8 lead octet is hit, or if an
invalid UTF-8 sequence is started by the lead octet, an <code>invalid_utf8</code>
exception is thrown
</p>
<h4>
utf8::advance
</h4>
<p>
Advances an iterator by the specified number of code points within an UTF-8
sequence.
</p>
<code><span class="cpp_keyword">template</span> &lt;<span class="cpp_keyword">typename</span> octet_iterator, typename distance_type&gt; <span class="cpp_keyword">void</span> advance
(octet_iterator&amp; it, distance_type n, octet_iterator end);</code>
<p>
<code>it</code>: a reference to an iterator pointing to the beginning of an UTF-8
encoded code point. After the function returns, it is incremented to point to the
nth following code point.<br>
<code>n</code>: a positive integer that shows how many code points we want to
advance.<br>
<code>end</code>: end of the UTF-8 sequence to be processed. If <code>it</code>
gets equal to <code>end</code> during the extraction of a code point, an
<code>utf8::not_enough_room</code> exception is thrown.<br>
</p>
<p>
Example of use:
</p>
<pre>
<span class="cpp_keyword">char</span>* twochars = "\xe6\x97\xa5\xd1\x88";
<span class="cpp_keyword">unsigned char</span>* w = twochars;
advance (w, 2, twochars + 6);
assert (w == twochars + 5);
</pre>
<p>
This function works only "forward". In case of a negative <code>n</code>, there is
no effect.
</p>
<p>
In case of an invalid code point, a <code>utf8::invalid_code_point</code> exception
is thrown.
</p>
<h4>
utf8::distance
</h4>
<p>
Given the iterators to two UTF-8 encoded code points in a seqence, returns the
number of code points between them.
</p>
<code><span class="cpp_keyword">template</span> &lt;<span class="cpp_keyword">typename</span> octet_iterator&gt; <span class="cpp_keyword">typename</span>
std::iterator_traits&lt;octet_iterator&gt;::difference_type distance (octet_iterator
first, octet_iterator last);</code>
<p>
<code>first</code>: an iterator to a beginning of a UTF-8 encoded code point.<br>
<code>last</code>: an iterator to a "post-end" of the last UTF-8 encoded code point
in the sequence we are trying to determine the length. It can be the beginning of a
new code point, or not.<br>
<span class="return_value">Return value</span> the distance between the iterators, in code points.
</p>
<p>
Example of use:
</p>
<pre>
<span class="cpp_keyword">char</span>* twochars = "\xe6\x97\xa5\xd1\x88";
size_t dist = utf8::distance(twochars, twochars + 5);
assert (dist == 2);
</pre>
<p>
This function is used to find the length (in code points) of a UTF-8 encoded
string. The reason it is called <em>distance</em>, rather than, say,
<em>length</em> is mainly because developers are used that <em>length</em> is an
O(1) function. Computing the length of an UTF-8 string is a linear operation, and
it looked better to model it after <code>std::distance</code> algorithm.
</p>
<p>
In case of an invalid UTF-8 seqence, a <code>utf8::invalid_utf8</code> exception is
thrown. If <code>last</code> does not point to the past-of-end of a UTF-8 seqence,
a <code>utf8::not_enough_room</code> exception is thrown.
</p>
<h4>
utf8::utf16to8
</h4>
<p>
Converts a UTF-16 encoded string to UTF-8.
</p>
<code><span class="cpp_keyword">template</span> &lt;<span class="cpp_keyword">typename</span> u16bit_iterator, <span class="cpp_keyword">typename</span> octet_iterator&gt;
octet_iterator utf16to8 (u16bit_iterator start, u16bit_iterator end, octet_iterator
result);</code>
<p>
<code>start</code>: an iterator pointing to the beginning of the UTF-16 encoded
string to convert.<br>
<code>end</code>: an iterator pointing to pass-the-end of the UTF-16 encoded string
to convert.<br>
<code>result</code>: an output iterator to the place in the UTF-8 string where to
append the result of conversion.<br>
<span class="return_value">Return value</span>: An iterator pointing to the place after the appended UTF-8
string.
</p>
<p>
Example of use:
</p>
<pre>
<span class="cpp_keyword">unsigned short</span> utf16string[] = {0x41, 0x0448, 0x65e5, 0xd834, 0xdd1e};
vector&lt;<span class="cpp_keyword">unsigned char</span>&gt; utf8result;
utf16to8(utf16string, utf16string + 5, back_inserter(utf8result));
assert (utf8result.size() == 10);
</pre>
<p>
In case of invalid UTF-16 sequence, a <code>utf8::invalid_utf16</code> exception is
thrown.
</p>
<h4>
utf8::utf8to16
</h4>
<p>
Converts an UTF-8 encoded string to UTF-16
</p>
<code><span class="cpp_keyword">template</span> &lt;<span class="cpp_keyword">typename</span> u16bit_iterator, typename octet_iterator&gt;
u16bit_iterator utf8to16 (octet_iterator start, octet_iterator end, u16bit_iterator
result);</code>
<p>
<code>start</code>: an iterator pointing to the beginning of the UTF-8 encoded
string to convert. &lt; br /&gt; <code>end</code>: an iterator pointing to
pass-the-end of the UTF-8 encoded string to convert.<br>
<code>result</code>: an output iterator to the place in the UTF-16 string where to
append the result of conversion.<br>
<span class="return_value">Return value</span>: An iterator pointing to the place after the appended UTF-16
string.
</p>
<p>
Example of use:
</p>
<pre>
<span class="cpp_keyword">char</span> utf8_with_surrogates[] = "\xe6\x97\xa5\xd1\x88\xf0\x9d\x84\x9e";
vector &lt;<span class="cpp_keyword">unsigned short</span>&gt; utf16result;
utf8to16(utf8_with_surrogates, utf8_with_surrogates + 9, back_inserter(utf16result));
assert (utf16result.size() == 4);
assert (utf16result[2] == 0xd834);
assert (utf16result[3] == 0xdd1e);
</pre>
<p>
In case of an invalid UTF-8 seqence, a <code>utf8::invalid_utf8</code> exception is
thrown. If <code>end</code> does not point to the past-of-end of a UTF-8 seqence, a
<code>utf8::not_enough_room</code> exception is thrown.
</p>
<h4>
utf8::utf32to8
</h4>
<p>
Converts a UTF-32 encoded string to UTF-8.
</p>
<code><span class="cpp_keyword">template</span> &lt;<span class="cpp_keyword">typename</span> octet_iterator, typename u32bit_iterator&gt;
octet_iterator utf32to8 (u32bit_iterator start, u32bit_iterator end, octet_iterator
result);</code>
<p>
<code>start</code>: an iterator pointing to the beginning of the UTF-32 encoded
string to convert.<br>
<code>end</code>: an iterator pointing to pass-the-end of the UTF-32 encoded string
to convert.<br>
<code>result</code>: an output iterator to the place in the UTF-8 string where to
append the result of conversion.<br>
<span class="return_value">Return value</span>: An iterator pointing to the place after the appended UTF-8
string.
</p>
<p>
Example of use:
</p>
<pre>
<span class="cpp_keyword">int</span> utf32string[] = {0x448, 0x65E5, 0x10346, 0};
vector&lt;<span class="cpp_keyword">unsigned char</span>&gt; utf8result;
utf32to8(utf32string, utf32string + 3, back_inserter(utf8result));
assert (utf8result.size() == 9);
</pre>
<p>
In case of invalid UTF-32 string, a <code>utf8::invalid_code_point</code> exception
is thrown.
</p>
<h4>
utf8::utf8to32
</h4>
<p>
Converts a UTF-8 encoded string to UTF-32.
</p>
<code><span class="cpp_keyword">template</span> &lt;<span class="cpp_keyword">typename</span> octet_iterator, <span class="cpp_keyword">typename</span> u32bit_iterator&gt;
u32bit_iterator utf8to32 (octet_iterator start, octet_iterator end, u32bit_iterator
result);</code>
<p>
<code>start</code>: an iterator pointing to the beginning of the UTF-8 encoded
string to convert.<br>
<code>end</code>: an iterator pointing to pass-the-end of the UTF-8 encoded string
to convert.<br>
<code>result</code>: an output iterator to the place in the UTF-32 string where to
append the result of conversion.<br>
<span class="return_value">Return value</span>: An iterator pointing to the place after the appended UTF-32
string.
</p>
<p>
Example of use:
</p>
<pre>
<span class="cpp_keyword">char</span>* twochars = "\xe6\x97\xa5\xd1\x88";
vector&lt;<span class="cpp_keyword">int</span>&gt; utf32result;
utf8to32(twochars, twochars + 5, back_inserter(utf32result));
assert (utf32result.size() == 2);
</pre>
<p>
In case of an invalid UTF-8 seqence, a <code>utf8::invalid_utf8</code> exception is
thrown. If <code>end</code> does not point to the past-of-end of a UTF-8 seqence, a
<code>utf8::not_enough_room</code> exception is thrown.
</p>
<h4>
utf8::find_invalid
</h4>
<p>
Detects an invalid sequence within a UTF-8 string.
</p>
<code><span class="cpp_keyword">template</span> &lt;<span class="cpp_keyword">typename</span> octet_iterator&gt; octet_iterator
find_invalid(octet_iterator start, octet_iterator end);</code>
<p>
<code>start</code>: an iterator pointing to the beginning of the UTF-8 string to
test for validity.<br>
<code>end</code>: an iterator pointing to pass-the-end of the UTF-8 string to test
for validity.<br>
<span class="return_value">Return value</span>: an iterator pointing to the first invalid octet in the UTF-8
string. In case none were found, equals <code>end</code>.
</p>
<p>
Example of use:
</p>
<pre>
<span class="cpp_keyword">char</span> utf_invalid[] = "\xe6\x97\xa5\xd1\x88\xfa";
<span class="cpp_keyword">char</span>* invalid = find_invalid(utf_invalid, utf_invalid + 6);
assert (invalid == utf_invalid + 5);
</pre>
<p>
This function is typically used to make sure a UTF-8 string is valid before
processing it with other functions. It is especially important to call it if before
doing any of the <em>unchecked</em> operations on it.
</p>
<h4>
utf8::is_valid
</h4>
<p>
Checks whether a sequence of octets is a valid UTF-8 string.
</p>
<code><span class="cpp_keyword">template</span> &lt;<span class="cpp_keyword">typename</span> octet_iterator&gt; <span class="cpp_keyword">bool</span> is_valid(octet_iterator start,
octet_iterator end);</code>
<p>
<code>start</code>: an iterator pointing to the beginning of the UTF-8 string to
test for validity.<br>
<code>end</code>: an iterator pointing to pass-the-end of the UTF-8 string to test
for validity.<br>
<span class="return_value">Return value</span>: <code>true</code> if the sequence is a valid UTF-8 string;
<code>false</code> if not.
</p>
Example of use:
<pre>
<span class="cpp_keyword">char</span> utf_invalid[] = "\xe6\x97\xa5\xd1\x88\xfa";
<span class="cpp_keyword">bool</span> bvalid = is_valid(utf_invalid, utf_invalid + 6);
assert (bvalid == false);
</pre>
<p>
<code>is_valid</code> is a shorthand for <code>find_invalid(start, end) ==
end;</code>. You may want to use it to make sure that a byte seqence is a valid
UTF-8 string without the need to know where it fails if it is not valid.
</p>
<h4>
utf8::replace_invalid
</h4>
<p>
Replaces all invalid UTF-8 sequences within a string with a replacement marker.
</p>
<p>
<code><span class="cpp_keyword">template</span> &lt;<span class="cpp_keyword">typename</span> octet_iterator, <span class="cpp_keyword">typename</span> output_iterator&gt;
output_iterator replace_invalid(octet_iterator start, octet_iterator end,
output_iterator out, uint32_t replacement);</code>
</p>
<p>
<code><span class="cpp_keyword">template</span> &lt;<span class="cpp_keyword">typename</span> octet_iterator, <span class="cpp_keyword">typename</span> output_iterator&gt;
output_iterator replace_invalid(octet_iterator start, octet_iterator end,
output_iterator out);</code>
</p>
<p>
<code>start</code>: an iterator pointing to the beginning of the UTF-8 string to
look for invalid UTF-8 sequences.<br>
<code>end</code>: an iterator pointing to pass-the-end of the UTF-8 string to look
for invalid UTF-8 sequences.<br>
<code>out</code>: An output iterator to the range where the result of replacement
is stored.<br>
<code>replacement</code>: A Unicode code point for the replacement marker. The
version without this parameter assumes the value <code>0xfffd</code><br>
<span class="return_value">Return value</span>: An iterator pointing to the place after the UTF-8 string with
replaced invalid sequences.
</p>
<p>
Example of use:
</p>
<pre>
<span class="cpp_keyword">char</span> invalid_sequence[] = "a\x80\xe0\xa0\xc0\xaf\xed\xa0\x80z";
vector&lt;<span class="cpp_keyword">char</span>&gt; replace_invalid_result;
replace_invalid (invalid_sequence, invalid_sequence + sizeof(invalid_sequence), back_inserter(replace_invalid_result), '?');
bvalid = is_valid(replace_invalid_result.begin(), replace_invalid_result.end());
assert (bvalid);
<span class="cpp_keyword">char</span>* fixed_invalid_sequence = "a????z";
assert (std::equal(replace_invalid_result.begin(), replace_invalid_result.end(), fixed_invalid_sequence));
</pre>
<p>
<code>replace_invalid</code> does not perform in-place replacement of invalid
sequences. Rather, it produces a copy of the original string with the invalid
sequences replaced with a replacement marker. Therefore, <code>out</code> must not
be in the <code>[start, end]</code> range.
</p>
<p>
If <code>end</code> does not point to the past-of-end of a UTF-8 sequence, a
<code>utf8::not_enough_room</code> exception is thrown.
</p>
<h4>
utf8::is_bom
</h4>
<p>
Checks whether a sequence of three octets is a UTF-8 byte order mark (BOM)
</p>
<code><span class="cpp_keyword">template</span> &lt;<span class="cpp_keyword">typename</span> octet_iterator&gt; <span class="cpp_keyword">bool</span> is_bom (octet_iterator
it);</code>
<p>
<code>it</code>: beginning of the 3-octet sequence to check<br>
<span class="return_value">Return value</span>: <code>true</code> if the sequence is UTF-8 byte order mark;
<code>false</code> if not.
</p>
<p>
Example of use:
</p>
<pre>
<span class="cpp_keyword">unsigned char</span> byte_order_mark[] = {0xef, 0xbb, 0xbf};
<span class="cpp_keyword">bool</span> bbom = is_bom(byte_order_mark);
assert (bbom == true);
</pre>
<p>
The typical use of this function is to check the first three bytes of a file. If
they form the UTF-8 BOM, we want to skip them before processing the actual UTF-8
encoded text.
</p>
<h3>
Functions From utf8::unchecked Namespace
</h3>
<h4>
utf8::unchecked::append
</h4>
<p>
Encodes a 32 bit code point as a UTF-8 sequence of octets and appends the sequence
to a UTF-8 string.
</p>
<code><span class="cpp_keyword">template</span> &lt;<span class="cpp_keyword">typename</span> octet_iterator&gt; octet_iterator append(uint32_t cp,
octet_iterator result);</code>
<p>
<code>cp</code>: A 32 bit integer representing a code point to append to the
sequence.<br>
<code>result</code>: An output iterator to the place in the sequence where to
append the code point.<br>
<span class="return_value">Return value</span>: An iterator pointing to the place after the newly appended
sequence.
</p>
<p>
Example of use:
</p>
<pre>
<span class="cpp_keyword">unsigned char</span> u[5] = {0,0,0,0,0};
<span class="cpp_keyword">unsigned char</span>* end = unchecked::append(0x0448, u);
assert (u[0] == 0xd1 &amp;&amp; u[1] == 0x88 &amp;&amp; u[2] == 0 &amp;&amp; u[3] == 0 &amp;&amp; u[4] == 0);
</pre>
<p>
This is a quicker but less safe version of <code>utf8::append</code>. It does not
check for validity of the supplied code point, and may produce an invalid UTF-8
sequence.
</p>
<h4>
utf8::unchecked::next
</h4>
<p>
Given the iterator to the beginning of a UTF-8 sequence, it returns the code point
and moves the iterator to the next position.
</p>
<code><span class="cpp_keyword">template</span> &lt;<span class="cpp_keyword">typename</span> octet_iterator&gt; uint32_t next(octet_iterator&amp;
it);</code>
<p>
<code>it</code>: a reference to an iterator pointing to the beginning of an UTF-8
encoded code point. After the function returns, it is incremented to point to the
beginning of the next code point.<br>
<span class="return_value">Return value</span>: the 32 bit representation of the processed UTF-8 code point.
</p>
<p>
Example of use:
</p>
<pre>
<span class="cpp_keyword">char</span>* twochars = "\xe6\x97\xa5\xd1\x88";
<span class="cpp_keyword">char</span>* w = twochars;
<span class="cpp_keyword">int</span> cp = unchecked::next(w);
assert (cp == 0x65e5);
assert (w == twochars + 3);
</pre>
<p>
This is a quicker but less safe version of <code>utf8::next</code>. It does not
check for validity of the supplied UTF-8 sequence.
</p>
<h4>
utf8::unchecked::previous
</h4>
<p>
Given a reference to an iterator pointing to an octet in a UTF-8 seqence, it
decreases the iterator until it hits the beginning of the previous UTF-8 encoded
code point and returns the 32 bits representation of the code point.
</p>
<code><span class="cpp_keyword">template</span> &lt;<span class="cpp_keyword">typename</span> octet_iterator&gt; uint32_t previous(octet_iterator&amp;
it);</code>
<p>
<code>it</code>: a reference pointing to an octet within a UTF-8 encoded string.
After the function returns, it is decremented to point to the beginning of the
previous code point.<br>
<span class="return_value">Return value</span>: the 32 bit representation of the previous code point.
</p>
<p>
Example of use:
</p>
<pre>
<span class="cpp_keyword">char</span>* twochars = "\xe6\x97\xa5\xd1\x88";
<span class="cpp_keyword">char</span>* w = twochars + 3;
<span class="cpp_keyword">int</span> cp = unchecked::previous (w);
assert (cp == 0x65e5);
assert (w == twochars);
</pre>
<p>
This is a quicker but less safe version of <code>utf8::previous</code>. It does not
check for validity of the supplied UTF-8 sequence and offers no boundary checking.
</p>
<h4>
utf8::unchecked::advance
</h4>
<p>
Advances an iterator by the specified number of code points within an UTF-8
sequence.
</p>
<code><span class="cpp_keyword">template</span> &lt;<span class="cpp_keyword">typename</span> octet_iterator, typename distance_type&gt; <span class="cpp_keyword">void</span> advance
(octet_iterator&amp; it, distance_type n);</code>
<p>
<code>it</code>: a reference to an iterator pointing to the beginning of an UTF-8
encoded code point. After the function returns, it is incremented to point to the
nth following code point.<br>
<code>n</code>: a positive integer that shows how many code points we want to
advance.<br>
</p>
<p>
Example of use:
</p>
<pre>
<span class="cpp_keyword">char</span>* twochars = "\xe6\x97\xa5\xd1\x88";
<span class="cpp_keyword">char</span>* w = twochars;
unchecked::advance (w, 2);
assert (w == twochars + 5);
</pre>
<p>
This function works only "forward". In case of a negative <code>n</code>, there is
no effect.
</p>
<p>
This is a quicker but less safe version of <code>utf8::advance</code>. It does not
check for validity of the supplied UTF-8 sequence and offers no boundary checking.
</p>
<h4>
utf8::unchecked::distance
</h4>
<p>
Given the iterators to two UTF-8 encoded code points in a seqence, returns the
number of code points between them.
</p>
<code><span class="cpp_keyword">template</span> &lt;<span class="cpp_keyword">typename</span> octet_iterator&gt; <span class="cpp_keyword">typename</span>
std::iterator_traits&lt;octet_iterator&gt;::difference_type distance (octet_iterator
first, octet_iterator last);</code>
<p>
<code>first</code>: an iterator to a beginning of a UTF-8 encoded code point.<br>
<code>last</code>: an iterator to a "post-end" of the last UTF-8 encoded code point
in the sequence we are trying to determine the length. It can be the beginning of a
new code point, or not.<br>
<span class="return_value">Return value</span> the distance between the iterators, in code points.
</p>
<p>
Example of use:
</p>
<pre>
<span class="cpp_keyword">char</span>* twochars = "\xe6\x97\xa5\xd1\x88";
size_t dist = utf8::unchecked::distance(twochars, twochars + 5);
assert (dist == 2);
</pre>
<p>
This is a quicker but less safe version of <code>utf8::distance</code>. It does not
check for validity of the supplied UTF-8 sequence.
</p>
<h4>
utf8::unchecked::utf16to8
</h4>
<p>
Converts a UTF-16 encoded string to UTF-8.
</p>
<code><span class="cpp_keyword">template</span> &lt;<span class="cpp_keyword">typename</span> u16bit_iterator, <span class="cpp_keyword">typename</span> octet_iterator&gt;
octet_iterator utf16to8 (u16bit_iterator start, u16bit_iterator end, octet_iterator
result);</code>
<p>
<code>start</code>: an iterator pointing to the beginning of the UTF-16 encoded
string to convert.<br>
<code>end</code>: an iterator pointing to pass-the-end of the UTF-16 encoded string
to convert.<br>
<code>result</code>: an output iterator to the place in the UTF-8 string where to
append the result of conversion. <span class="return_value">Return value</span>: An iterator pointing to the
place after the appended UTF-8 string.
</p>
<p>
Example of use:
</p>
<pre>
<span class="cpp_keyword">unsigned short</span> utf16string[] = {0x41, 0x0448, 0x65e5, 0xd834, 0xdd1e};
vector&lt;<span class="cpp_keyword">unsigned char</span>&gt; utf8result;
unchecked::utf16to8(utf16string, utf16string + 5, back_inserter(utf8result));
assert (utf8result.size() == 10);
</pre>
<p>
This is a quicker but less safe version of <code>utf8::utf16to8</code>. It does not
check for validity of the supplied UTF-16 sequence.
</p>
<h4>
utf8::unchecked::utf8to16
</h4>
<p>
Converts an UTF-8 encoded string to UTF-16
</p>
<code><span class="cpp_keyword">template</span> &lt;<span class="cpp_keyword">typename</span> u16bit_iterator, typename octet_iterator&gt;
u16bit_iterator utf8to16 (octet_iterator start, octet_iterator end, u16bit_iterator
result);</code>
<p>
<code>start</code>: an iterator pointing to the beginning of the UTF-8 encoded
string to convert. &lt; br /&gt; <code>end</code>: an iterator pointing to
pass-the-end of the UTF-8 encoded string to convert.<br>
<code>result</code>: an output iterator to the place in the UTF-16 string where to
append the result of conversion.<br>
<span class="return_value">Return value</span>: An iterator pointing to the place after the appended UTF-16
string.
</p>
<p>
Example of use:
</p>
<pre>
<span class="cpp_keyword">char</span> utf8_with_surrogates[] = "\xe6\x97\xa5\xd1\x88\xf0\x9d\x84\x9e";
vector &lt;<span class="cpp_keyword">unsigned short</span>&gt; utf16result;
unchecked::utf8to16(utf8_with_surrogates, utf8_with_surrogates + 9, back_inserter(utf16result));
assert (utf16result.size() == 4);
assert (utf16result[2] == 0xd834);
assert (utf16result[3] == 0xdd1e);
</pre>
<p>
This is a quicker but less safe version of <code>utf8::utf8to16</code>. It does not
check for validity of the supplied UTF-8 sequence.
</p>
<h4>
utf8::unchecked::utf32to8
</h4>
<p>
Converts a UTF-32 encoded string to UTF-8.
</p>
<code><span class="cpp_keyword">template</span> &lt;<span class="cpp_keyword">typename</span> octet_iterator, <span class="cpp_keyword">typename</span> u32bit_iterator&gt;
octet_iterator utf32to8 (u32bit_iterator start, u32bit_iterator end, octet_iterator
result);</code>
<p>
<code>start</code>: an iterator pointing to the beginning of the UTF-32 encoded
string to convert.<br>
<code>end</code>: an iterator pointing to pass-the-end of the UTF-32 encoded string
to convert.<br>
<code>result</code>: an output iterator to the place in the UTF-8 string where to
append the result of conversion.<br>
<span class="return_value">Return value</span>: An iterator pointing to the place after the appended UTF-8
string.
</p>
<p>
Example of use:
</p>
<pre>
<span class="cpp_keyword">int</span> utf32string[] = {0x448, 0x65E5, 0x10346, 0};
vector&lt;<span class="cpp_keyword">unsigned char</span>&gt; utf8result;
utf32to8(utf32string, utf32string + 3, back_inserter(utf8result));
assert (utf8result.size() == 9);
</pre>
<p>
This is a quicker but less safe version of <code>utf8::utf32to8</code>. It does not
check for validity of the supplied UTF-32 sequence.
</p>
<h4>
utf8::unchecked::utf8to32
</h4>
<p>
Converts a UTF-8 encoded string to UTF-32.
</p>
<code><span class="cpp_keyword">template</span> &lt;<span class="cpp_keyword">typename</span> octet_iterator, typename u32bit_iterator&gt;
u32bit_iterator utf8to32 (octet_iterator start, octet_iterator end, u32bit_iterator
result);</code>
<p>
<code>start</code>: an iterator pointing to the beginning of the UTF-8 encoded
string to convert.<br>
<code>end</code>: an iterator pointing to pass-the-end of the UTF-8 encoded string
to convert.<br>
<code>result</code>: an output iterator to the place in the UTF-32 string where to
append the result of conversion.<br>
<span class="return_value">Return value</span>: An iterator pointing to the place after the appended UTF-32
string.
</p>
<p>
Example of use:
</p>
<pre>
<span class="cpp_keyword">char</span>* twochars = "\xe6\x97\xa5\xd1\x88";
vector&lt;<span class="cpp_keyword">int</span>&gt; utf32result;
unchecked::utf8to32(twochars, twochars + 5, back_inserter(utf32result));
assert (utf32result.size() == 2);
</pre>
<p>
This is a quicker but less safe version of <code>utf8::utf8to32</code>. It does not
check for validity of the supplied UTF-8 sequence.
</p>
<h2 id="points">
Points of interest
</h2>
<h4>
Design goals and decisions
</h4>
<p>
The library was designed to be:
</p>
<ol>
<li>
Generic: for better or worse, there are many C++ string classes out there, and
the library should work with as many of them as possible.
</li>
<li>
Portable: the library should be portable both accross different platforms and
compilers. The only non-portable code is a small section that declares unsigned
integers of different sizes: three typedefs. They can be changed by the users of
the library if they don't match their platform. The default setting should work
for Windows (both 32 and 64 bit), and most 32 bit and 64 bit Unix derivatives.
</li>
<li>
Lightweight: follow the "pay only for what you use" guidline.
</li>
<li>
Unintrusive: avoid forcing any particular design or even programming style on the
user. This is a library, not a framework.
</li>
</ol>
<h4>
Alternatives
</h4>
<p>
In case you want to look into other means of working with UTF-8 strings from C++,
here is the list of solutions I am aware of:
</p>
<ol>
<li>
<a href="http://icu.sourceforge.net/">ICU Library</a>. It is very powerful,
complete, feature-rich, mature, and widely used. Also big, intrusive,
non-generic, and doesn't play well with the Standard Library. I definitelly
recommend looking at ICU even if you don't plan to use it.
</li>
<li>
<a href=
"http://www.gtkmm.org/gtkmm2/docs/tutorial/html/ch03s04.html">Glib::ustring</a>.
A class specifically made to work with UTF-8 strings, and also feel like
<code>std::string</code>. If you prefer to have yet another string class in your
code, it may be worth a look. Be aware of the licensing issues, though.
</li>
<li>
Platform dependent solutions: Windows and POSIX have functions to convert strings
from one encoding to another. That is only a subset of what my library offers,
but if that is all you need it may be good enough, especially given the fact that
these functions are mature and tested in production.
</li>
</ol>
<h2 id="conclusion">
Conclusion
</h2>
<p>
Until Unicode becomes officially recognized by the C++ Standard Library, we need to
use other means to work with UTF-8 strings. Template functions I describe in this
article may be a good step in this direction.
</p>
<h2 id="references">
References
</h2>
<ol>
<li>
<a href="http://www.unicode.org/">The Unicode Consortium</a>.
</li>
<li>
<a href="http://icu.sourceforge.net/">ICU Library</a>.
</li>
<li>
<a href="http://en.wikipedia.org/wiki/UTF-8">UTF-8 at Wikipedia</a>
</li>
<li>
<a href="http://www.cl.cam.ac.uk/~mgk25/unicode.html">UTF-8 and Unicode FAQ for
Unix/Linux</a>
</li>
</ol>
</body>
</html>