Implement binary operators.

This also has the benefical side effect of ridding me of that
stupid VWR_STATIC_CAST_RESULTS macro.
This commit is contained in:
King_DuckZ 2016-11-08 02:24:21 +01:00
parent 6bf3278631
commit 2f4d319675
5 changed files with 87 additions and 58 deletions

View file

@ -29,7 +29,6 @@ You still need to type some code in order to get started using the vector wrappe
## Features ## ## Features ##
### Build time configuration ### ### Build time configuration ###
* VWR_WITH_IMPLICIT_CONVERSIONS (default: not defined) Enable implicit conversions between wrappers of vectors of different type (see Automated conversions). * VWR_WITH_IMPLICIT_CONVERSIONS (default: not defined) Enable implicit conversions between wrappers of vectors of different type (see Automated conversions).
* VWR_STATIC_CAST_RESULTS (default: not defined) static_cast the result of binary operators in order to silence some compiler warnings. For example, when compiling with gcc -Wconvertion, given three short int variables a, b and c, c=a+b will generate a warning as a+b gets promoted into an int. Enabling this macro causes the previous example to become c=static_cast<short int>(a+b).
### Automated conversion ### ### Automated conversion ###
You can assign or construct a `Vec<A>` from a `Vec<B>`, provided they have the same dimensions and the assignemnt operator is able to convert B's scalar type to that of A. You need to define VWR_WITH_IMPLICIT_CONVERSIONS for this to work. You can assign or construct a `Vec<A>` from a `Vec<B>`, provided they have the same dimensions and the assignemnt operator is able to convert B's scalar type to that of A. You need to define VWR_WITH_IMPLICIT_CONVERSIONS for this to work.

View file

@ -296,6 +296,9 @@ namespace vwr {
constexpr bool compare ( const Vec<V1>& parLeft, const Vec<V2>& parRight, Op parComposeOp, Op parOp, bt::number_seq<size_type> ); constexpr bool compare ( const Vec<V1>& parLeft, const Vec<V2>& parRight, Op parComposeOp, Op parOp, bt::number_seq<size_type> );
template <bool LastVal, typename V1, typename V2, typename ComposeOp, typename Op, size_type I1, size_type... I> template <bool LastVal, typename V1, typename V2, typename ComposeOp, typename Op, size_type I1, size_type... I>
bool compare ( const Vec<V1>& parLeft, const Vec<V2>& parRight, ComposeOp parComposeOp, Op parOp, bt::number_seq<size_type, I1, I...> ); bool compare ( const Vec<V1>& parLeft, const Vec<V2>& parRight, ComposeOp parComposeOp, Op parOp, bt::number_seq<size_type, I1, I...> );
template <typename V1, typename V2, typename Op, size_type... I>
Vec<typename std::common_type<V1, V2>::type> binary_op ( const Vec<V1>& parLeft, const Vec<V2>& parRight, Op parOp, const Vec<typename std::common_type<V1, V2>::type>& parLastVal, bt::number_seq<size_type, I...> );
} //namespace implem } //namespace implem
template <typename V, size_type S> template <typename V, size_type S>
@ -429,6 +432,8 @@ namespace vwr {
Vec<typename std::common_type<V1, V2>::type> operator* ( const Vec<V1>& parLeft, const Vec<V2>& parRight ); Vec<typename std::common_type<V1, V2>::type> operator* ( const Vec<V1>& parLeft, const Vec<V2>& parRight );
template <typename V1, typename V2> template <typename V1, typename V2>
Vec<typename std::common_type<V1, V2>::type> operator/ ( const Vec<V1>& parLeft, const Vec<V2>& parRight ); Vec<typename std::common_type<V1, V2>::type> operator/ ( const Vec<V1>& parLeft, const Vec<V2>& parRight );
template <typename V1, typename V2>
Vec<typename std::common_type<V1, V2>::type> operator% ( const Vec<V1>& parLeft, const Vec<V2>& parRight );
} //namespace vwr } //namespace vwr
#include "vectorwrapper/vectorwrapper.inl" #include "vectorwrapper/vectorwrapper.inl"

View file

@ -291,6 +291,13 @@ namespace vwr {
static_assert(I1 < VectorWrapperInfo<V1>::dimensions, "Index out of range"); static_assert(I1 < VectorWrapperInfo<V1>::dimensions, "Index out of range");
return parComposeOp(parOp(parLeft[I1], parRight[I1]), compare<LastVal>(parLeft, parRight, parComposeOp, parOp, bt::number_seq<size_type, I...>())); return parComposeOp(parOp(parLeft[I1], parRight[I1]), compare<LastVal>(parLeft, parRight, parComposeOp, parOp, bt::number_seq<size_type, I...>()));
} }
template <typename V1, typename V2, typename Op, size_type... I>
inline
Vec<typename std::common_type<V1, V2>::type> binary_op (const Vec<V1>& parLeft, const Vec<V2>& parRight, Op parOp, bt::number_seq<size_type, I...>) {
typedef Vec<typename std::common_type<V1, V2>::type> return_type;
return return_type(parOp(parLeft[I], parRight[I])...);
}
} //namespace implem } //namespace implem
template <typename V> const Vec<V, 1> Vec<V, 1>::unit_x(scalar_type(1)); template <typename V> const Vec<V, 1> Vec<V, 1>::unit_x(scalar_type(1));
@ -414,70 +421,52 @@ namespace vwr {
template <typename V1, typename V2> template <typename V1, typename V2>
inline Vec<typename std::common_type<V1, V2>::type> operator+ (const Vec<V1>& parLeft, const Vec<V2>& parRight) { inline Vec<typename std::common_type<V1, V2>::type> operator+ (const Vec<V1>& parLeft, const Vec<V2>& parRight) {
#if defined(VWR_STATIC_CAST_RESULTS)
typedef typename VectorWrapperInfo<typename std::common_type<V1, V2>::type>::scalar_type scalar_type;
#endif
static_assert(static_cast<int>(VectorWrapperInfo<V1>::dimensions) == static_cast<int>(VectorWrapperInfo<V2>::dimensions), "Dimensions mismatch"); static_assert(static_cast<int>(VectorWrapperInfo<V1>::dimensions) == static_cast<int>(VectorWrapperInfo<V2>::dimensions), "Dimensions mismatch");
Vec<typename std::common_type<V1, V2>::type> retval; return implem::binary_op(
for (size_type z = 0; z < VectorWrapperInfo<V1>::dimensions; ++z) { parLeft,
#if defined(VWR_STATIC_CAST_RESULTS) parRight,
retval[z] = static_cast<scalar_type>(parLeft[z] + parRight[z]); std::plus<typename std::common_type<typename VectorWrapperInfo<V1>::scalar_type, typename VectorWrapperInfo<V2>::scalar_type>::type>(),
#else bt::number_range<size_type, 0, VectorWrapperInfo<V1>::dimensions>()
retval[z] = parLeft[z] + parRight[z]; );
#endif
}
return retval;
} }
template <typename V1, typename V2> template <typename V1, typename V2>
inline Vec<typename std::common_type<V1, V2>::type> operator- (const Vec<V1>& parLeft, const Vec<V2>& parRight) { inline Vec<typename std::common_type<V1, V2>::type> operator- (const Vec<V1>& parLeft, const Vec<V2>& parRight) {
#if defined(VWR_STATIC_CAST_RESULTS)
typedef typename VectorWrapperInfo<typename std::common_type<V1, V2>::type>::scalar_type scalar_type;
#endif
static_assert(static_cast<int>(VectorWrapperInfo<V1>::dimensions) == static_cast<int>(VectorWrapperInfo<V2>::dimensions), "Dimensions mismatch"); static_assert(static_cast<int>(VectorWrapperInfo<V1>::dimensions) == static_cast<int>(VectorWrapperInfo<V2>::dimensions), "Dimensions mismatch");
Vec<typename std::common_type<V1, V2>::type> retval; return implem::binary_op(
for (size_type z = 0; z < VectorWrapperInfo<V1>::dimensions; ++z) { parLeft,
#if defined(VWR_STATIC_CAST_RESULTS) parRight,
retval[z] = static_cast<scalar_type>(parLeft[z] - parRight[z]); std::minus<typename std::common_type<typename VectorWrapperInfo<V1>::scalar_type, typename VectorWrapperInfo<V2>::scalar_type>::type>(),
#else bt::number_range<size_type, 0, VectorWrapperInfo<V1>::dimensions>()
retval[z] = parLeft[z] - parRight[z]; );
#endif
}
return retval;
} }
template <typename V1, typename V2> template <typename V1, typename V2>
inline Vec<typename std::common_type<V1, V2>::type> operator* (const Vec<V1>& parLeft, const Vec<V2>& parRight) { inline Vec<typename std::common_type<V1, V2>::type> operator* (const Vec<V1>& parLeft, const Vec<V2>& parRight) {
#if defined(VWR_STATIC_CAST_RESULTS)
typedef typename VectorWrapperInfo<typename std::common_type<V1, V2>::type>::scalar_type scalar_type;
#endif
static_assert(static_cast<int>(VectorWrapperInfo<V1>::dimensions) == static_cast<int>(VectorWrapperInfo<V2>::dimensions), "Dimensions mismatch"); static_assert(static_cast<int>(VectorWrapperInfo<V1>::dimensions) == static_cast<int>(VectorWrapperInfo<V2>::dimensions), "Dimensions mismatch");
Vec<typename std::common_type<V1, V2>::type> retval; return implem::binary_op(
for (size_type z = 0; z < VectorWrapperInfo<V1>::dimensions; ++z) { parLeft,
#if defined(VWR_STATIC_CAST_RESULTS) parRight,
retval[z] = static_cast<scalar_type>(parLeft[z] * parRight[z]); std::multiplies<typename std::common_type<typename VectorWrapperInfo<V1>::scalar_type, typename VectorWrapperInfo<V2>::scalar_type>::type>(),
#else bt::number_range<size_type, 0, VectorWrapperInfo<V1>::dimensions>()
retval[z] = parLeft[z] * parRight[z]; );
#endif
}
return retval;
} }
template <typename V1, typename V2> template <typename V1, typename V2>
inline Vec<typename std::common_type<V1, V2>::type> operator/ (const Vec<V1>& parLeft, const Vec<V2>& parRight) { inline Vec<typename std::common_type<V1, V2>::type> operator/ (const Vec<V1>& parLeft, const Vec<V2>& parRight) {
#if defined(VWR_STATIC_CAST_RESULTS)
typedef typename VectorWrapperInfo<typename std::common_type<V1, V2>::type>::scalar_type scalar_type;
#endif
static_assert(static_cast<int>(VectorWrapperInfo<V1>::dimensions) == static_cast<int>(VectorWrapperInfo<V2>::dimensions), "Dimensions mismatch"); static_assert(static_cast<int>(VectorWrapperInfo<V1>::dimensions) == static_cast<int>(VectorWrapperInfo<V2>::dimensions), "Dimensions mismatch");
Vec<typename std::common_type<V1, V2>::type> retval; return implem::binary_op(
for (size_type z = 0; z < VectorWrapperInfo<V1>::dimensions; ++z) { parLeft,
#if defined(VWR_STATIC_CAST_RESULTS) parRight,
retval[z] = static_cast<scalar_type>(parLeft[z] / parRight[z]); std::divides<typename std::common_type<typename VectorWrapperInfo<V1>::scalar_type, typename VectorWrapperInfo<V2>::scalar_type>::type>(),
#else bt::number_range<size_type, 0, VectorWrapperInfo<V1>::dimensions>()
retval[z] = parLeft[z] / parRight[z]; );
#endif }
} template <typename V1, typename V2>
return retval; inline Vec<typename std::common_type<V1, V2>::type> operator% (const Vec<V1>& parLeft, const Vec<V2>& parRight) {
static_assert(static_cast<int>(VectorWrapperInfo<V1>::dimensions) == static_cast<int>(VectorWrapperInfo<V2>::dimensions), "Dimensions mismatch");
return implem::binary_op(
parLeft,
parRight,
std::modulus<typename std::common_type<typename VectorWrapperInfo<V1>::scalar_type, typename VectorWrapperInfo<V2>::scalar_type>::type>(),
bt::number_range<size_type, 0, VectorWrapperInfo<V1>::dimensions>()
);
} }
} //namespace vwr } //namespace vwr

View file

@ -1,7 +1,7 @@
#include "sample_vectors.hpp" #include "sample_vectors.hpp"
#include <gtest/gtest.h> #include <gtest/gtest.h>
TEST(vwr, operators) { TEST(vwr, cmp_operators) {
using namespace vwr; using namespace vwr;
{ {
@ -42,3 +42,43 @@ TEST(vwr, operators) {
EXPECT_GE(b, a); EXPECT_GE(b, a);
} }
} }
TEST(vwr, bin_operators) {
using namespace vwr;
{
ivec3 a(0xFF, 0xAB, 0x10CE);
ivec3 b(0x45, 0xEE, 0x8);
ivec3 res(0xFF + 0x45, 0xAB + 0xEE, 0x10CE + 0x8);
EXPECT_EQ(res, a + b);
}
{
ivec3 a(0xFF, 0xAB, 0x10CE);
ivec3 b(0xC0, 0x0, 0xA);
ivec3 res(0xFF - 0xC0, 0xAB - 0x0, 0x10CE - 0xA);
EXPECT_EQ(res, a - b);
}
{
ivec3 a(0xFF, 0xAB, 0x10CE);
ivec3 b(0x3, 0x2, 0x1);
ivec3 res(0xFF * 0x3, 0xAB * 0x2, 0x10CE * 0x1);
EXPECT_EQ(res, a * b);
}
{
ivec3 a(0xFF, 0xAB, 0x10CE);
ivec3 b(0x3, 0x2, 0x1);
ivec3 res(0xFF / 0x3, 0xAB / 0x2, 0x10CE / 0x1);
EXPECT_EQ(res, a / b);
}
{
ivec3 a(0xE9, 0x104A, 0x28FF);
ivec3 b(0x15, 0x20, 0x1000);
ivec3 res(0xE9 % 0x15, 0x104A % 0x20, 0x28FF % 0x1000);
EXPECT_EQ(res, a % b);
}
}

View file

@ -14,10 +14,6 @@ target_link_libraries(${PROJECT_NAME}
gtest gtest
) )
target_compile_definitions(${PROJECT_NAME}
PRIVATE VWR_STATIC_CAST_RESULTS
)
set_target_properties(${PROJECT_NAME} PROPERTIES CXX_STANDARD_REQUIRED ON) set_target_properties(${PROJECT_NAME} PROPERTIES CXX_STANDARD_REQUIRED ON)
set_target_properties(${PROJECT_NAME} PROPERTIES CXX_STANDARD 14) set_target_properties(${PROJECT_NAME} PROPERTIES CXX_STANDARD 14)