vectorwrapper/include/vectorwrapper/vectorwrapper.hpp

452 lines
18 KiB
C++

/*
* Copyright 2015, 2016 Michele "King_DuckZ" Santullo
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef id1F562E68E5184552A7E8C9270B016692
#define id1F562E68E5184552A7E8C9270B016692
#include "vectorwrapper/has_method.hpp"
#include "vectorwrapper/sequence_bt.hpp"
#include <cstddef>
#include <ciso646>
#include <type_traits>
#include <array>
#include <cassert>
namespace vwr {
template <typename V>
struct VectorWrapperInfo;
template <typename V, std::size_t S=VectorWrapperInfo<V>::dimensions>
class Vec;
namespace implem {
define_has_typedef(lower_vector_type, LowerVec);
define_has_typedef(higher_vector_type, HigherVec);
define_has_enum(offset_x, OffsetX);
define_has_method(get_at, GetAt);
define_has_enum(cast_ignore_trailing_properties, CastIgnoreTrailingProperties);
template <typename V1, typename V2, std::size_t D>
Vec<V1>& assign ( Vec<V1, D>& parLeft, const Vec<V2, D>& parRight );
template <typename V>
Vec<V>& assign_same_type ( Vec<V>& parLeft, const Vec<V>& parRight );
template <typename T, std::size_t I> struct get_offset_enum_from_index;
template <typename T> struct get_offset_enum_from_index<T, 0> {
enum { value = VectorWrapperInfo<T>::offset_x };
};
template <typename T> struct get_offset_enum_from_index<T, 1> {
enum { value = VectorWrapperInfo<T>::offset_y };
};
template <typename T> struct get_offset_enum_from_index<T, 2> {
enum { value = VectorWrapperInfo<T>::offset_z };
};
template <typename T> struct get_offset_enum_from_index<T, 3> {
enum { value = VectorWrapperInfo<T>::offset_w };
};
template <typename T, std::size_t S=VectorWrapperInfo<T>::dimensions> struct min_offset {
enum {
value = (
static_cast<int>(get_offset_enum_from_index<T, S-1>::value) < static_cast<int>(min_offset<T, S-1>::value) ?
static_cast<int>(get_offset_enum_from_index<T, S-1>::value) :
static_cast<int>(min_offset<T, S-1>::value)
)
};
};
template <typename T> struct min_offset<T, 1> {
enum { value = get_offset_enum_from_index<T, 0>::value };
};
template <
typename T,
typename U,
std::size_t S=(
static_cast<int>(VectorWrapperInfo<T>::dimensions) < static_cast<int>(VectorWrapperInfo<U>::dimensions) ?
static_cast<int>(VectorWrapperInfo<T>::dimensions)
:
static_cast<int>(VectorWrapperInfo<U>::dimensions)
)
> struct have_compat_offsets;
template <typename T, typename U> struct have_compat_offsets<T, U, 1> {
enum {
value = true
};
};
template <typename T, typename U> struct have_compat_offsets<T, U, 2> {
enum {
value =
VectorWrapperInfo<T>::offset_x - min_offset<T>::value == VectorWrapperInfo<U>::offset_x - min_offset<U>::value and
VectorWrapperInfo<T>::offset_y - min_offset<T>::value == VectorWrapperInfo<U>::offset_y - min_offset<U>::value
};
};
template <typename T, typename U> struct have_compat_offsets<T, U, 3> {
enum {
value =
VectorWrapperInfo<T>::offset_x - min_offset<T>::value == VectorWrapperInfo<U>::offset_x - min_offset<U>::value and
VectorWrapperInfo<T>::offset_y - min_offset<T>::value == VectorWrapperInfo<U>::offset_y - min_offset<U>::value and
VectorWrapperInfo<T>::offset_z - min_offset<T>::value == VectorWrapperInfo<U>::offset_z - min_offset<U>::value
};
};
template <typename T, typename U> struct have_compat_offsets<T, U, 4> {
enum {
value =
VectorWrapperInfo<T>::offset_x - min_offset<T>::value == VectorWrapperInfo<U>::offset_x - min_offset<U>::value and
VectorWrapperInfo<T>::offset_y - min_offset<T>::value == VectorWrapperInfo<U>::offset_y - min_offset<U>::value and
VectorWrapperInfo<T>::offset_z - min_offset<T>::value == VectorWrapperInfo<U>::offset_z - min_offset<U>::value and
VectorWrapperInfo<T>::offset_w - min_offset<T>::value == VectorWrapperInfo<U>::offset_w - min_offset<U>::value
};
};
template <typename T, typename U>
struct have_compat_layout {
enum {
value =
HasOffsetXEnum<VectorWrapperInfo<T>>::value and
HasOffsetXEnum<VectorWrapperInfo<U>>::value and
have_compat_offsets<T, U>::value
};
};
template <std::size_t A, std::size_t... Others>
struct Sum {
enum {
value = A + Sum<Others...>::value
};
};
template <std::size_t A>
struct Sum<A> {
enum {
value = A
};
};
template <typename T, typename Seq>
struct IsInterleavedMemory;
template <typename T, std::size_t... I>
struct IsInterleavedMemory<T, bt::index_seq<I...>> {
enum {
value = Sum<(
get_offset_enum_from_index<T, I>::value == I * sizeof(typename VectorWrapperInfo<T>::scalar_type) + get_offset_enum_from_index<T, 0>::value ? 0 : 1
)...>::value
};
};
template <typename T, bool RawDataAccess=HasOffsetXEnum<VectorWrapperInfo<T>>::value>
struct WrappedTypeLayoutInfo;
template <typename T>
struct WrappedTypeLayoutInfo<T, true> {
enum {
is_interleaved_mem = (IsInterleavedMemory<T, bt::index_range<0, VectorWrapperInfo<T>::dimensions>>::value ? 1 : 0)
};
};
template <typename T>
struct WrappedTypeLayoutInfo<T, false> {
enum {
is_interleaved_mem = 2
};
};
template <typename V> struct is_vec {
enum { value = false };
};
template <typename V> struct is_vec<Vec<V>> {
typedef V vector_type;
enum { value = true };
};
template <typename V>
class VecBase {
friend Vec<V>& assign_same_type<V> ( Vec<V>& parLeft, const Vec<V>& parRight );
public:
typedef V vector_type;
typedef typename VectorWrapperInfo<V>::scalar_type scalar_type;
enum {
dimensions = VectorWrapperInfo<V>::dimensions,
is_interleaved_mem = WrappedTypeLayoutInfo<V>::is_interleaved_mem
};
VecBase ( void ) = default;
template <typename T>
explicit VecBase ( const T& parInit, typename std::enable_if<std::is_same<T, scalar_type>::value and not std::is_same<scalar_type, vector_type>::value, bool>::type=false );
explicit VecBase ( const vector_type& parInit );
template <typename... Args>
VecBase ( scalar_type parX, scalar_type parY, Args... parArgs );
~VecBase ( void ) = default;
scalar_type& operator[] ( std::size_t parIndex );
scalar_type& operator[] ( int parIndex );
const scalar_type& operator[] ( std::size_t parIndex ) const;
const scalar_type& operator[] ( int parIndex ) const;
vector_type& data ( void ) { return m_wrapped; }
const vector_type& data ( void ) const { return m_wrapped; }
template <typename V2>
const typename std::enable_if<is_vec<V2>::value, V2>::type& cast ( void ) const;
template <typename V2>
typename std::enable_if<is_vec<V2>::value, V2>::type& cast ( void );
template <typename V2> VecBase& operator+= ( const VecBase<V2>& parOther );
template <typename V2> VecBase& operator-= ( const VecBase<V2>& parOther );
template <typename V2> VecBase& operator*= ( const VecBase<V2>& parOther );
template <typename V2> VecBase& operator/= ( const VecBase<V2>& parOther );
private:
vector_type m_wrapped;
};
template <typename T, std::size_t S=VectorWrapperInfo<T>::dimensions>
struct offsets_array_wrapper {
template <std::size_t... I>
offsets_array_wrapper ( const bt::index_seq<I...>& );
const std::array<unsigned int, S> offsets;
};
template <typename T, bool=HasOffsetXEnum<VectorWrapperInfo<T>>::value and std::is_standard_layout<T>::value>
class VecGetter;
template <typename T>
struct VecGetter<T, true> {
static typename VectorWrapperInfo<T>::scalar_type& get_at ( T& parVec, std::size_t parIndex );
};
template <typename T>
struct VecGetter<T, false> {
private:
static_assert(HasGetAtMethod<VectorWrapperInfo<T>>::value, "You must provide a get_at() static method for this vector_type");
typedef typename VectorWrapperInfo<T>::scalar_type scalar_type;
using get_at_func = decltype(&VectorWrapperInfo<T>::get_at)(std::size_t, scalar_type&);
static_assert(not std::is_rvalue_reference<typename std::result_of<get_at_func>::type>::value, "rvalue ref return types not implemented");
static_assert(std::is_lvalue_reference<typename std::result_of<get_at_func>::type>::value, "Read-only vectors not implemented");
public:
static typename VectorWrapperInfo<T>::scalar_type& get_at ( T& parVec, std::size_t parIndex );
};
template <typename V, bool Enabled> struct Vec1Promotion;
template <typename V> struct Vec1Promotion<V, false> { };
template <typename V> struct Vec1Promotion<V, true> {
typedef Vec<typename VectorWrapperInfo<V>::higher_vector_type> higher_vector_type;
typedef typename VectorWrapperInfo<V>::scalar_type scalar_type;
static_assert(VectorWrapperInfo<typename VectorWrapperInfo<V>::higher_vector_type>::dimensions == 2, "Wrong promoted vector type");
higher_vector_type x1 ( void ) const { return xn(scalar_type(1)); }
higher_vector_type x0 ( void ) const { return xn(scalar_type(0)); }
higher_vector_type xn ( const scalar_type& parN ) const;
higher_vector_type nx ( const scalar_type& parN ) const;
};
template <typename V, bool Enabled> struct Vec2Promotion;
template <typename V> struct Vec2Promotion<V, false> {};
template <typename V> struct Vec2Promotion<V, true> {
typedef Vec<typename VectorWrapperInfo<V>::higher_vector_type> higher_vector_type;
typedef typename VectorWrapperInfo<V>::scalar_type scalar_type;
static_assert(VectorWrapperInfo<typename VectorWrapperInfo<V>::higher_vector_type>::dimensions == 3, "Wrong promoted vector type");
higher_vector_type xy1 ( void ) const { return xyn(scalar_type(1)); }
higher_vector_type xy0 ( void ) const { return xyn(scalar_type(0)); }
higher_vector_type xyn ( const scalar_type& parZ ) const;
};
template <typename V, bool Enabled> struct Vec3Promotion;
template <typename V> struct Vec3Promotion<V, false> {};
template <typename V> struct Vec3Promotion<V, true> {
typedef Vec<typename VectorWrapperInfo<V>::higher_vector_type> higher_vector_type;
typedef typename VectorWrapperInfo<V>::scalar_type scalar_type;
static_assert(VectorWrapperInfo<typename VectorWrapperInfo<V>::higher_vector_type>::dimensions == 4, "Wrong promoted vector type");
higher_vector_type xyz1 ( void ) const { return xyzw(scalar_type(1)); }
higher_vector_type xyz0 ( void ) const { return xyzw(scalar_type(0)); }
higher_vector_type xyzw ( const scalar_type& parW ) const;
};
template <typename V, bool Enabled> struct Vec3Demotion;
template <typename V> struct Vec3Demotion<V, false> : Vec3Promotion<V, HasHigherVecTypedef<V>::value> {};
template <typename V> struct Vec3Demotion<V, true> : Vec3Promotion<V, HasHigherVecTypedef<V>::value> {
typedef Vec<typename VectorWrapperInfo<V>::lower_vector_type> lower_vector_type;
typedef typename VectorWrapperInfo<V>::scalar_type scalar_type;
static_assert(VectorWrapperInfo<typename VectorWrapperInfo<V>::lower_vector_type>::dimensions == 2, "Wrong demoted vector type");
lower_vector_type xy ( void ) const;
lower_vector_type xz ( void ) const;
lower_vector_type yz ( void ) const;
};
template <typename V, std::size_t D>
struct VecAccessors;
//Workaround for visual studio - VecAccessors<V, 3> should inherit from
//both Vec3Promotion and Vec3Demotion, but when I do that, sizeof(Vec)
//is wrong. I had to linearize the inheritance hierarchy so that the
//sizeof(Vec<V>) == sizeof(V) condition is verified.
template <typename V>
struct VecAccessors<V, 3> : Vec3Demotion<V, HasLowerVecTypedef<VectorWrapperInfo<V>>::value> {
typedef typename VectorWrapperInfo<V>::scalar_type scalar_type;
const Vec<V>& xyz ( void ) const { return *static_cast<const Vec<V>*>(this); }
const scalar_type& x ( void ) const;
const scalar_type& y ( void ) const;
const scalar_type& z ( void ) const;
scalar_type& x ( void );
scalar_type& y ( void );
scalar_type& z ( void );
};
template <typename V>
struct VecAccessors<V, 2> : Vec2Promotion<V, HasHigherVecTypedef<VectorWrapperInfo<V>>::value> {
typedef typename VectorWrapperInfo<V>::scalar_type scalar_type;
const Vec<V>& xy ( void ) const { return *static_cast<const Vec<V>*>(this); }
const scalar_type& x ( void ) const;
const scalar_type& y ( void ) const;
scalar_type& x ( void );
scalar_type& y ( void );
};
template <typename V>
struct VecAccessors<V, 1> : Vec1Promotion<V, HasHigherVecTypedef<VectorWrapperInfo<V>>::value> {
typedef typename VectorWrapperInfo<V>::scalar_type scalar_type;
scalar_type& x ( void );
const scalar_type& x ( void ) const;
};
} //namespace implem
template <typename V, std::size_t S>
class Vec : public implem::VecBase<V> {
public:
enum {
dimensions = S
};
};
template <typename V>
class Vec<V, 1> : public implem::VecBase<V>, public implem::VecAccessors<V, 1> {
static_assert(std::is_standard_layout<implem::VecBase<V>>::value, "Base class must be a standard layout type");
public:
typedef typename implem::VecBase<V>::vector_type vector_type;
typedef typename implem::VecBase<V>::scalar_type scalar_type;
enum {
dimensions = 1
};
static const Vec<V, 1> unit_x;
Vec ( void ) = default;
Vec ( const Vec& ) = default;
explicit Vec ( const vector_type& parIn ) : implem::VecBase<V>(parIn) { }
template <typename T>
explicit Vec ( const typename std::enable_if<std::is_same<T, scalar_type>::value and not std::is_same<scalar_type, vector_type>::value, T>::type& parX ) : implem::VecBase<V>(parX) { }
template <typename V2> Vec ( const Vec<V2, dimensions>& parOther ) { implem::assign(*this, parOther); }
Vec& operator= ( const Vec& parOther ) { return implem::assign_same_type(*this, parOther); }
template <typename V2>
Vec& operator= ( const Vec<V2, dimensions>& parOther ) { return implem::assign(*this, parOther); }
};
template <typename V>
class Vec<V, 2> : public implem::VecBase<V>, public implem::VecAccessors<V, 2> {
static_assert(std::is_standard_layout<implem::VecBase<V>>::value, "Base class must be a standard layout type");
static_assert(std::is_standard_layout<implem::VecAccessors<V, 2>>::value, "Base class must be a standard layout type");
public:
typedef typename implem::VecBase<V>::scalar_type scalar_type;
typedef typename implem::VecBase<V>::vector_type vector_type;
enum {
dimensions = 2
};
static const Vec<V, 2> unit_x;
static const Vec<V, 2> unit_y;
Vec ( void ) = default;
Vec ( const Vec& ) = default;
explicit Vec ( const vector_type& parIn ) : implem::VecBase<V>(parIn) { }
explicit Vec ( const scalar_type parX ) : implem::VecBase<V>(parX) { }
Vec ( scalar_type parX, scalar_type parY ) : implem::VecBase<V>(parX, parY) { }
template <typename V2> Vec ( const Vec<V2, dimensions>& parOther ) { implem::assign(*this, parOther); }
Vec& operator= ( const Vec& parOther ) { return implem::assign_same_type(*this, parOther); }
template <typename V2>
Vec& operator= ( const Vec<V2, dimensions>& parOther ) { return implem::assign(*this, parOther); }
Vec& operator= ( const vector_type& parOther ) { this->data() = parOther; return *this; }
};
template <typename V>
class Vec<V, 3> : public implem::VecBase<V>, public implem::VecAccessors<V, 3> {
static_assert(std::is_standard_layout<implem::VecBase<V>>::value, "Base class must be a standard layout type");
static_assert(std::is_standard_layout<implem::VecAccessors<V, 3>>::value, "Base class must be a standard layout type");
public:
typedef typename implem::VecBase<V>::scalar_type scalar_type;
typedef typename implem::VecBase<V>::vector_type vector_type;
enum {
dimensions = 3
};
static const Vec<V, 3> unit_x;
static const Vec<V, 3> unit_y;
static const Vec<V, 3> unit_z;
Vec ( void ) = default;
Vec ( const Vec& ) = default;
explicit Vec ( const vector_type& parIn ) : implem::VecBase<V>(parIn) { }
explicit Vec ( const scalar_type parX ) : implem::VecBase<V>(parX) { }
Vec ( scalar_type parX, scalar_type parY, scalar_type parZ ) : implem::VecBase<V>(parX, parY, parZ) { }
template <typename V2> Vec ( const Vec<V2, dimensions>& parOther ) { implem::assign(*this, parOther); }
Vec& operator= ( const Vec& parOther ) { return implem::assign_same_type(*this, parOther); }
template <typename V2>
Vec& operator= ( const Vec<V2, dimensions>& parOther ) { return implem::assign(*this, parOther); }
Vec& operator= ( const vector_type& parOther ) { this->data() = parOther; return *this; }
};
template <typename V>
Vec<V> mk_vec ( const V& parVec );
template <typename V1, typename V2>
bool operator== ( const Vec<V1>& parLeft, const Vec<V2>& parRight );
template <typename V1, typename V2>
bool operator< ( const Vec<V1>& parLeft, const Vec<V2>& parRight );
template <typename V>
bool operator== ( const Vec<V>& parLeft, const typename VectorWrapperInfo<V>::scalar_type& parRight );
template <typename V>
bool operator< ( const Vec<V>& parLeft, const typename VectorWrapperInfo<V>::scalar_type& parRight );
template <typename V1, typename T>
bool operator> ( const Vec<V1>& parLeft, const T& parRight );
template <typename V1, typename T>
bool operator<= ( const Vec<V1>& parLeft, const T& parRight );
template <typename V1, typename T>
bool operator>= ( const Vec<V1>& parLeft, const T& parRight );
template <typename V1, typename T>
bool operator!= ( const Vec<V1>& parLeft, const T& parRight );
template <typename V1, typename V2>
Vec<typename std::common_type<V1, V2>::type> operator+ ( const Vec<V1>& parLeft, const Vec<V2>& parRight );
template <typename V1, typename V2>
Vec<typename std::common_type<V1, V2>::type> operator- ( const Vec<V1>& parLeft, const Vec<V2>& parRight );
template <typename V1, typename V2>
Vec<typename std::common_type<V1, V2>::type> operator* ( const Vec<V1>& parLeft, const Vec<V2>& parRight );
template <typename V1, typename V2>
Vec<typename std::common_type<V1, V2>::type> operator/ ( const Vec<V1>& parLeft, const Vec<V2>& parRight );
} //namespace vwr
#include "vectorwrapper/vectorwrapper.inl"
#endif