mirror of
https://github.com/AquariaOSE/Aquaria.git
synced 2024-11-25 17:53:47 +00:00
new tbsp version; working spline control point generation prototype
This commit is contained in:
parent
753718c7ad
commit
fc3580ca64
5 changed files with 876 additions and 87 deletions
|
@ -1,6 +1,5 @@
|
|||
#include "Interpolators.h"
|
||||
#include <math.h>
|
||||
#include "tbsp.hh"
|
||||
|
||||
// usually one would expect that a bspline goes from t=0 to t=1.
|
||||
// here, splines eval between these -0.5 .. +0.5.
|
||||
|
@ -79,7 +78,24 @@ tail:
|
|||
}
|
||||
|
||||
BSpline2D::BSpline2D()
|
||||
: _cpx(0), _cpy(0), _degx(0), _degy(0), _tmin(0), _tmax(0)
|
||||
: _cpx(0), _cpy(0), _degx(0), _degy(0), _tmin(0), _tmax(0), _ext(NULL)
|
||||
{
|
||||
}
|
||||
|
||||
BSpline2D::~BSpline2D()
|
||||
{
|
||||
if(_ext)
|
||||
{
|
||||
_ext->~Extended();
|
||||
free(_ext);
|
||||
}
|
||||
}
|
||||
|
||||
BSpline2D::BSpline2D(const BSpline2D& o)
|
||||
: _cpx(o._cpx), _cpy(o._cpy), _degx(o._degx), _degy(o._degy)
|
||||
, _tmin(o._tmin), _tmax(o._tmax)
|
||||
, knotsX(o.knotsX), knotsY(o.knotsY)
|
||||
, _ext(NULL) // VERY important
|
||||
{
|
||||
}
|
||||
|
||||
|
@ -97,13 +113,83 @@ void BSpline2D::resize(size_t cx, size_t cy, unsigned degx, unsigned degy)
|
|||
_degy = degy;
|
||||
_tmin = tmin;
|
||||
_tmax = tmax;
|
||||
|
||||
|
||||
const size_t maxCp = std::max(cx, cy);
|
||||
|
||||
const size_t interpStorageSizeX = tbsp__getInterpolatorStorageSize(cx, cx);
|
||||
const size_t interpStorageSizeY = tbsp__getInterpolatorStorageSize(cy, cy);
|
||||
const size_t interpInitTempSize = tbsp__getInterpolatorInitTempSize(maxCp, maxCp);
|
||||
const size_t interpStorageNeeded = interpStorageSizeX + interpStorageSizeY;
|
||||
|
||||
if(_ext && _ext->capacity < interpStorageNeeded)
|
||||
{
|
||||
free(_ext);
|
||||
_ext = NULL;
|
||||
}
|
||||
|
||||
if(!_ext)
|
||||
{
|
||||
void *extmem = malloc(sizeof(Extended) + sizeof(float) * interpStorageNeeded);
|
||||
Extended *ext = new (extmem) Extended;
|
||||
ext->capacity = interpStorageNeeded;
|
||||
_ext = ext;
|
||||
}
|
||||
|
||||
if(_ext)
|
||||
{
|
||||
// Some extra temp memory is required during init, but can be discarded right afterward
|
||||
std::vector<float> interptmp(interpInitTempSize);
|
||||
|
||||
float *mx = _ext->floats();
|
||||
float *my = mx + interpStorageSizeX;
|
||||
|
||||
_ext->interp.x = tbsp::initInterpolator(mx, &interptmp[0], degx, cx, cx, &knotsX[0]);
|
||||
_ext->interp.y = tbsp::initInterpolator(my, &interptmp[0], degy, cy, cy, &knotsY[0]);
|
||||
_ext->tmp2d.init(cx, cy);
|
||||
}
|
||||
}
|
||||
|
||||
void BSpline2D::recalc(Vector* dst, size_t xres, size_t yres, const Vector *controlpoints)
|
||||
{
|
||||
if(_ext)
|
||||
{
|
||||
const size_t maxCp = std::max(_cpx, _cpy);
|
||||
|
||||
Array2d<Vector>& tmp2d = _ext->tmp2d;
|
||||
std::vector<Vector> tmpcp(maxCp), tmpin(maxCp);
|
||||
|
||||
// FIXME: should have in/out stride in the generator function
|
||||
|
||||
// y direction first
|
||||
for(size_t x = 0; x < _cpx; ++x)
|
||||
{
|
||||
const Vector *src = &controlpoints[x];
|
||||
for(size_t i = 0; i < _cpy; ++i, src += _cpx)
|
||||
tmpin[i] = *src;
|
||||
|
||||
tbsp::generateControlPoints<Vector>(&tmpcp[0], NULL, _ext->interp.y, &tmpin[0]);
|
||||
|
||||
for(size_t y = 0; y < _cpy; ++y)
|
||||
tmp2d(x, y) = tmpcp[y];
|
||||
}
|
||||
|
||||
// x direction
|
||||
for(size_t y = 0; y < _cpy; ++y)
|
||||
{
|
||||
Vector *row = tmp2d.row(y);
|
||||
memcpy(&tmpin[0], row, sizeof(Vector) * _cpx);
|
||||
tbsp::generateControlPoints<Vector>(row, NULL, _ext->interp.x, &tmpin[0]);
|
||||
}
|
||||
|
||||
controlpoints = tmp2d.data();
|
||||
}
|
||||
|
||||
|
||||
const unsigned maxDeg = std::max(_degx, _degy);
|
||||
|
||||
std::vector<Vector> tmpv;
|
||||
size_t degn = std::max(_degx, _degy);
|
||||
size_t tmpn = (yres * _cpx) + degn;
|
||||
size_t tmpn = (yres * _cpx) + maxDeg;
|
||||
size_t tmpsz = tmpn * sizeof(Vector);
|
||||
Vector *tmp;
|
||||
if(tmpsz < 17*1024)
|
||||
|
@ -113,7 +199,7 @@ void BSpline2D::recalc(Vector* dst, size_t xres, size_t yres, const Vector *cont
|
|||
tmpv.resize(tmpn);
|
||||
tmp = &tmpv[0];
|
||||
}
|
||||
Vector *work = tmp + (tmpn - degn);
|
||||
Vector *work = tmp + (tmpn - maxDeg);
|
||||
|
||||
// Each column -> Y-axis interpolation
|
||||
for(size_t x = 0; x < _cpx; ++x)
|
||||
|
|
|
@ -4,6 +4,15 @@
|
|||
#include <algorithm> // std::pair
|
||||
#include <vector>
|
||||
#include "Vector.h"
|
||||
#include "tbsp.hh"
|
||||
#include "DataStructures.h"
|
||||
|
||||
enum SplineType
|
||||
{
|
||||
INTERPOLATOR_BSPLINE,
|
||||
INTERPOLATOR_COSINE,
|
||||
INTERPOLATOR_BSPLINE_EXT
|
||||
};
|
||||
|
||||
class CosineInterpolator
|
||||
{
|
||||
|
@ -23,6 +32,9 @@ class BSpline2D
|
|||
{
|
||||
public:
|
||||
BSpline2D();
|
||||
BSpline2D(const BSpline2D&);
|
||||
~BSpline2D();
|
||||
|
||||
|
||||
// # of control points on each axis
|
||||
void resize(size_t cx, size_t cy, unsigned degx, unsigned degy);
|
||||
|
@ -37,10 +49,26 @@ public:
|
|||
inline unsigned degY() const { return _degy; }
|
||||
|
||||
private:
|
||||
|
||||
size_t _cpx, _cpy; // # of control points
|
||||
unsigned _degx, _degy;
|
||||
float _tmin, _tmax;
|
||||
std::vector<float> knotsX, knotsY;
|
||||
|
||||
// always allocated on heap, with extra space at the end
|
||||
struct Extended
|
||||
{
|
||||
Array2d<Vector> tmp2d;
|
||||
struct
|
||||
{
|
||||
tbsp::Interpolator<float> x, y;
|
||||
} interp;
|
||||
size_t capacity;
|
||||
float *floats() { return reinterpret_cast<float*>(this + 1); }
|
||||
// space for n floats follows
|
||||
};
|
||||
|
||||
Extended *_ext;
|
||||
};
|
||||
|
||||
|
||||
|
|
|
@ -1660,7 +1660,9 @@ void SkeletalSprite::loadSkeletal(const std::string &fn)
|
|||
XMLElement *animation = animations->FirstChildElement("Animation");
|
||||
while(animation)
|
||||
{
|
||||
Animation newAnimation;
|
||||
this->animations.push_back(Animation());
|
||||
Animation& newAnimation = this->animations.back();
|
||||
|
||||
newAnimation.name = animation->Attribute("name");
|
||||
if(animation->Attribute("resetOnEnd"))
|
||||
newAnimation.resetOnEnd = animation->BoolAttribute("resetOnEnd");
|
||||
|
@ -1786,8 +1788,15 @@ void SkeletalSprite::loadSkeletal(const std::string &fn)
|
|||
}
|
||||
|
||||
// <Interpolator bone="name or idx" type="TYPE config and params" data="controlpoints; aded by editor" />
|
||||
size_t numInterp = 0;
|
||||
XMLElement *interp = animation->FirstChildElement("Interpolator");
|
||||
for( ; interp; interp = interp->NextSiblingElement("Interpolator"))
|
||||
++numInterp;
|
||||
|
||||
newAnimation.interpolators.resize(numInterp);
|
||||
|
||||
interp = animation->FirstChildElement("Interpolator");
|
||||
for(numInterp = 0 ; interp; interp = interp->NextSiblingElement("Interpolator"), ++numInterp)
|
||||
{
|
||||
Bone *bi = NULL;
|
||||
const char *sbone = interp->Attribute("bone");
|
||||
|
@ -1817,17 +1826,16 @@ void SkeletalSprite::loadSkeletal(const std::string &fn)
|
|||
continue;
|
||||
}
|
||||
|
||||
SplineType spline = SPLINE_BSPLINE;
|
||||
SplineType spline = INTERPOLATOR_BSPLINE;
|
||||
unsigned cx = 3, cy = 3, degx = 3, degy = 3;
|
||||
if(const char *stype = interp->Attribute("type"))
|
||||
{
|
||||
SimpleIStringStream is(stype, SimpleIStringStream::REUSE);
|
||||
std::string ty;
|
||||
is >> ty;
|
||||
BoneGridInterpolator bgip;
|
||||
if(ty == "bspline")
|
||||
{
|
||||
spline = SPLINE_BSPLINE;
|
||||
spline = INTERPOLATOR_BSPLINE;
|
||||
if(!(is >> cx >> cy >> degx >> degy))
|
||||
{
|
||||
if(!degx)
|
||||
|
@ -1851,9 +1859,7 @@ void SkeletalSprite::loadSkeletal(const std::string &fn)
|
|||
// bone grid should have been created via <Bone grid=... /> earlier
|
||||
|
||||
const char *idata = interp->Attribute("data");
|
||||
newAnimation.interpolators.push_back(BoneGridInterpolator());
|
||||
BoneGridInterpolator& bgip = newAnimation.interpolators.back();
|
||||
//bgip.type = spline;
|
||||
BoneGridInterpolator& bgip = newAnimation.interpolators[numInterp];
|
||||
bgip.idx = bi->boneIdx;
|
||||
bgip.storeBoneByIdx = boneByIdx;
|
||||
|
||||
|
@ -1895,7 +1901,6 @@ void SkeletalSprite::loadSkeletal(const std::string &fn)
|
|||
}
|
||||
|
||||
animation = animation->NextSiblingElement("Animation");
|
||||
this->animations.push_back(newAnimation);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -7,11 +7,6 @@
|
|||
#include "Quad.h"
|
||||
#include "Interpolators.h"
|
||||
|
||||
enum SplineType
|
||||
{
|
||||
SPLINE_BSPLINE,
|
||||
SPLINE_COSINE,
|
||||
};
|
||||
|
||||
class SplineGridCtrlPoint : public Quad
|
||||
{
|
||||
|
|
|
@ -1,65 +1,125 @@
|
|||
/* Tiny B-spline evaluation library
|
||||
/* Tiny B-spline evaluation and interpolation library
|
||||
|
||||
License:
|
||||
Public domain, WTFPL, CC0 or your favorite permissive license; whatever is available in your country.
|
||||
|
||||
Dependencies:
|
||||
- Requires C++98 without libc
|
||||
|
||||
Origin:
|
||||
https://github.com/fgenesis/tinypile
|
||||
|
||||
This library is split into two parts:
|
||||
- (1) Bspline evaluation (given a set of control points, generate points along the spline)
|
||||
- (2) Bspline interpolation (given some points, generate control points so that the resulting spline
|
||||
goes through these points. Needs part (1) to function.)
|
||||
|
||||
--- Example usage: ---
|
||||
Requirements:
|
||||
- Part (1) has zero dependencies (not even libc)
|
||||
- Part (2) requires sqrt() from the libc. Change TBSP_SQRT() to use your own.
|
||||
|
||||
Design notes:
|
||||
- C++98 compatible. Stand-alone.
|
||||
- No memory allocation; all memory is caller-controlled.
|
||||
In cases where this is needed, the caller needs to pass appropriately-sized working memory.
|
||||
|
||||
|
||||
This is a template library and your types must fulfil certain criteria:
|
||||
|
||||
- Scalar (T): Same semantics as float or double. Should be POD. Best use float.
|
||||
|
||||
- Point (P): Interpolated type. Must support the following operators:
|
||||
Point operator+(const Point& o) const // Element addition
|
||||
Point operator-(const Point& o) const // Element subtraction
|
||||
Point& operator+=(const Point& o) // Add to self
|
||||
Point& operator-=(const Point& o) // Subtract from self
|
||||
Point operator*(Scalar m) const // Scalar multiplication
|
||||
Point& operator=(const Point& o) // Assignment
|
||||
No constructors are required and the code does not need the type to be zero-inited.
|
||||
|
||||
|
||||
--- Example usage, Bspline evaluation: ---
|
||||
|
||||
enum { DEGREE = 3 }; // Cubic
|
||||
// You can interpolate anything as long as it supports element addition and scalar multiplication
|
||||
struct Point { ... operator+(Point) and operator*(float) overloaded ... };
|
||||
const Point ps[N] = {...}; // Control points for the spline
|
||||
const Point cp[NCP] = {...}; // Control points for the spline
|
||||
|
||||
float knots[tbsp__getNumKnots(N, DEGREE)]; // knot vector; used for evaluating the spline
|
||||
float knots[tbsp__getNumKnots(NCP, DEGREE)]; // knot vector; used for evaluating the spline
|
||||
Point tmp[DEGREE]; // Temporary working memory must be provided by the caller.
|
||||
// This is just a tiny array. Must have as many elements as the degree of the spline.
|
||||
|
||||
// This must be done once for each B-spline; the spline is then defined by the knot vector.
|
||||
// In particular, this inits a knot vector with end points [L..R],
|
||||
// ie. the spline will interpolate values for t = [L..R].
|
||||
// (You can use any boundary values, eg. [-4..+5], but [0..1] is the most common)
|
||||
tbsp::fillKnotVector(knots, N, DEGREE, L, R);
|
||||
// (You can use any boundary values L < R, eg. [-4..+5], but [0..1] is the most common)
|
||||
// Note that this depends only on the number of the control points, but not their values.
|
||||
// This means you only need to compute this when NCP changes!
|
||||
tbsp::fillKnotVector(knots, NCP, DEGREE, L, R);
|
||||
|
||||
// Evaluate the spline at point t
|
||||
// Returns ps[0] if t <= L; ps[N-1] if t >= R; otherwise an interpolated point
|
||||
Point p = tbsp::evalOne(tmp, knots, ps, N, DEGREE, t);
|
||||
// Returns cp[0] if t <= L; cp[NCP-1] if t >= R; otherwise an interpolated point
|
||||
Point p = tbsp::evalOne(tmp, knots, cp, NCP, DEGREE, t);
|
||||
|
||||
// Evaluate A points between t=0.2 .. t=0.5, equidistantly spaced, and write to a[].
|
||||
// (If you have multiple points to evaluate, this is faster than multiple evalOne() calls)
|
||||
Point a[A];
|
||||
tbsp::evalRange(out, A, tmp, knots, ps, N, DEGREE, 0.2f, 0.5f);
|
||||
// Evaluate NP points between t=0.2 .. t=0.5, equidistantly spaced, and write to p[].
|
||||
// (If you have multiple points to evaluate, this is much faster than multiple evalOne() calls)
|
||||
Point p[NP];
|
||||
tbsp::evalRange(p, NP, tmp, knots, cp, NCP, DEGREE, 0.2f, 0.5f);
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <stddef.h> // size_t
|
||||
|
||||
// ---- Compile-time config ------
|
||||
|
||||
|
||||
#ifndef TBSP_SQRT // Needed for part (2) only
|
||||
# include <math.h>
|
||||
# define TBSP_SQRT(x) sqrt(x)
|
||||
#endif
|
||||
|
||||
#if !defined(NDEBUG) || defined(_DEBUG) || defined(DEBUG)
|
||||
# ifndef TBSP_ASSERT
|
||||
# include <assert.h>
|
||||
# define TBSP_ASSERT(x) assert(x)
|
||||
# endif
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
// ---- Generic defines and stuff we need ----
|
||||
|
||||
|
||||
// Should be constexpr, but we want to stay C++98-compatible
|
||||
#define tbsp__getNumKnots(numControlPoints, degree) ((numControlPoints) + (degree) + 1)
|
||||
|
||||
#ifndef TBSP_ASSERT
|
||||
# define TBSP_ASSERT(x)
|
||||
#endif
|
||||
|
||||
#ifdef _MSC_VER
|
||||
# define TBSP_RESTRICT __restrict
|
||||
#else
|
||||
# define TBSP_RESTRICT restrict
|
||||
#endif
|
||||
|
||||
#ifndef TBSP_HAS_CPP11
|
||||
# if (__cplusplus > 201103L) || (defined(_MSC_VER) && ((_MSC_VER+0) >= 1900))
|
||||
# define TBSP_HAS_CPP11 1
|
||||
# else
|
||||
# define TBSP_HAS_CPP11 0
|
||||
# endif
|
||||
#endif
|
||||
|
||||
// -----------------------------------------------------------------------------------
|
||||
// ---- Part (1) begin: B-Spline eval ----
|
||||
// Given some control points, calculate points along the spline.
|
||||
// -----------------------------------------------------------------------------------
|
||||
|
||||
// ---- B-Spline eval part begin ----
|
||||
|
||||
namespace tbsp {
|
||||
|
||||
// These should be constexpr, but we want to stay C++98-compatible
|
||||
#define tbsp__getNumKnots(points, degree) ((points) + (degree) + 1)
|
||||
#define tbsp__getKnotVectorAllocSize(K, points, degree) (sizeof(K) * tbsp__getNumKnots((points), (degree)))
|
||||
|
||||
namespace detail {
|
||||
|
||||
// returns index of first element strictly less than t
|
||||
template<typename K>
|
||||
static size_t findKnotIndexOffs(K val, const K *p, size_t n)
|
||||
// returns index of first element strictly less than val
|
||||
template<typename T>
|
||||
static size_t findKnotIndexOffs(T val, const T *p, size_t n)
|
||||
{
|
||||
// Binary search to find leftmost element that is < val
|
||||
size_t L = 0;
|
||||
|
@ -73,17 +133,21 @@ static size_t findKnotIndexOffs(K val, const K *p, size_t n)
|
|||
else
|
||||
R = m;
|
||||
}
|
||||
// FIXME: can we just return m at this point?
|
||||
if(L && !(p[L] < val))
|
||||
--L;
|
||||
TBSP_ASSERT(!L || p[L] < val);
|
||||
return L;
|
||||
}
|
||||
|
||||
template<typename K>
|
||||
static inline size_t findKnotIndex(K val, const K *knots, size_t n, size_t degree)
|
||||
template<typename T>
|
||||
static inline size_t findKnotIndex(T val, const T *knots, size_t numknots, size_t degree)
|
||||
{
|
||||
TBSP_ASSERT(n > degree);
|
||||
TBSP_ASSERT(val < knots[n - degree - 1]); // beyond right end? should have been caught by caller
|
||||
TBSP_ASSERT(numknots > degree);
|
||||
TBSP_ASSERT(val < knots[numknots - degree - 1]); // beyond right end? should have been caught by caller
|
||||
|
||||
// skip endpoints
|
||||
return degree + findKnotIndexOffs(val, knots + degree, n - degree);
|
||||
return degree + findKnotIndexOffs(val, knots + degree, numknots - (degree * 2u));
|
||||
}
|
||||
|
||||
template<typename K>
|
||||
|
@ -94,10 +158,10 @@ static void genKnotsUniform(K *knots, size_t nn, K mink, K maxk)
|
|||
knots[i] = mink + K(i+1) * m;
|
||||
}
|
||||
|
||||
template<typename K, typename T>
|
||||
static T deBoor(T *work, const T *src, const K *knots, const size_t r, const size_t k, const K t, size_t inputStride)
|
||||
template<typename T, typename P>
|
||||
static P deBoor(P * TBSP_RESTRICT work, const P * TBSP_RESTRICT src, const T * TBSP_RESTRICT knots, const size_t r, const size_t k, const T t, size_t inputStride)
|
||||
{
|
||||
T last = src[0]; // init so that it works correctly even with degree == 0
|
||||
P last = src[0]; // init so that it works correctly even with degree == 0
|
||||
for(size_t worksize = k; worksize > 1; --worksize)
|
||||
{
|
||||
const size_t j = k - worksize + 1; // iteration number, starting with 1, going up to k
|
||||
|
@ -105,12 +169,12 @@ static T deBoor(T *work, const T *src, const K *knots, const size_t r, const siz
|
|||
for(size_t w = 0, wr = 0; w < worksize - 1; ++w, wr += inputStride)
|
||||
{
|
||||
const size_t i = w + tmp;
|
||||
const K ki = knots[i];
|
||||
const T ki = knots[i];
|
||||
TBSP_ASSERT(ki <= t);
|
||||
const K div = knots[i+k-j] - ki;
|
||||
const T div = knots[i+k-j] - ki;
|
||||
TBSP_ASSERT(div > 0);
|
||||
const K a = (t - ki) / div;
|
||||
const K a1 = K(1) - a;
|
||||
const T a = (t - ki) / div;
|
||||
const T a1 = T(1) - a;
|
||||
work[w] = last = (src[wr] * a1) + (src[wr + inputStride] * a); // lerp
|
||||
}
|
||||
src = work; // done writing the initial data to work, now use that as input for further iterations
|
||||
|
@ -122,11 +186,13 @@ static T deBoor(T *work, const T *src, const K *knots, const size_t r, const siz
|
|||
} // end namespace detail
|
||||
//--------------------------------------
|
||||
|
||||
template<typename K>
|
||||
static size_t fillKnotVector(K *knots, size_t points, size_t degree, K mink, K maxk)
|
||||
template<typename T>
|
||||
static size_t fillKnotVector(T *knots, size_t numcp, size_t degree, T mink, T maxk)
|
||||
{
|
||||
const size_t n = points - 1;
|
||||
if(n < degree) // lower degree if not enough points
|
||||
TBSP_ASSERT(mink < maxk);
|
||||
|
||||
const size_t n = numcp - 1;
|
||||
if(n < degree) // lower degree if not enough control points
|
||||
degree = n;
|
||||
TBSP_ASSERT(n >= degree);
|
||||
|
||||
|
@ -149,17 +215,17 @@ static size_t fillKnotVector(K *knots, size_t points, size_t degree, K mink, K m
|
|||
}
|
||||
|
||||
// evaluate single point at t
|
||||
template<typename K, typename T>
|
||||
static T evalOne(T *work, const K *knots, const T *points, size_t numpoints, size_t degree, K t)
|
||||
template<typename T, typename P>
|
||||
static P evalOne(P * TBSP_RESTRICT work, const T * TBSP_RESTRICT knots, const P * TBSP_RESTRICT controlpoints, size_t numcp, size_t degree, T t, size_t inputStride = 1)
|
||||
{
|
||||
if(t < knots[0])
|
||||
return points[0]; // left out-of-bounds
|
||||
return controlpoints[0]; // left out-of-bounds
|
||||
|
||||
if(numpoints - 1 < degree)
|
||||
degree = numpoints - 1;
|
||||
if(numcp - 1 < degree)
|
||||
degree = numcp - 1;
|
||||
|
||||
const size_t numknots = tbsp__getNumKnots(numpoints, degree);
|
||||
const K maxknot = knots[numknots - 1];
|
||||
const size_t numknots = tbsp__getNumKnots(numcp, degree);
|
||||
const T maxknot = knots[numknots - 1];
|
||||
if(t < maxknot)
|
||||
{
|
||||
const size_t r = detail::findKnotIndex(t, knots, numknots, degree);
|
||||
|
@ -167,29 +233,29 @@ static T evalOne(T *work, const K *knots, const T *points, size_t numpoints, siz
|
|||
const size_t k = degree + 1;
|
||||
TBSP_ASSERT(r + k < numknots); // check that the copy below stays in bounds
|
||||
|
||||
const T* const src = &points[r - degree];
|
||||
return detail::deBoor(work, src, knots, r, k, t);
|
||||
const P* const src = &controlpoints[r - degree];
|
||||
return detail::deBoor(work, src, knots, r, k, t, inputStride);
|
||||
}
|
||||
|
||||
return points[numpoints - 1]; // right out-of-bounds
|
||||
return controlpoints[numcp - 1]; // right out-of-bounds
|
||||
}
|
||||
|
||||
// evaluate numdst points in range [tmin..tmax], equally spaced
|
||||
template<typename K, typename T>
|
||||
static void evalRange(T *dst, size_t numdst, T *work, const K *knots, const T *points, size_t numpoints, size_t degree, K tmin, K tmax, size_t inputStride = 1, size_t outputStride = 1)
|
||||
template<typename T, typename P>
|
||||
static void evalRange(P * TBSP_RESTRICT dst, size_t numdst, P * TBSP_RESTRICT work, const T * TBSP_RESTRICT knots, const P * TBSP_RESTRICT controlpoints, size_t numcp, size_t degree, T tmin, T tmax, size_t inputStride = 1, size_t outputStride = 1)
|
||||
{
|
||||
TBSP_ASSERT(tmin <= tmax);
|
||||
if(numpoints - 1 < degree)
|
||||
degree = numpoints - 1;
|
||||
if(numcp - 1 < degree)
|
||||
degree = numcp - 1;
|
||||
|
||||
const size_t numknots = tbsp__getNumKnots(numpoints, degree);
|
||||
const size_t numknots = tbsp__getNumKnots(numcp, degree);
|
||||
size_t r = detail::findKnotIndex(tmin, knots, numknots, degree);
|
||||
TBSP_ASSERT(r >= degree);
|
||||
const size_t k = degree + 1;
|
||||
TBSP_ASSERT(r + k < numknots); // check that the copy below stays in bounds
|
||||
|
||||
const K step = (tmax - tmin) / K(numdst - 1);
|
||||
K t = tmin;
|
||||
const T step = (tmax - tmin) / T(numdst - 1);
|
||||
T t = tmin;
|
||||
const size_t maxidx = numknots - k;
|
||||
|
||||
|
||||
|
@ -198,33 +264,642 @@ static void evalRange(T *dst, size_t numdst, T *work, const K *knots, const T *p
|
|||
// left out-of-bounds
|
||||
for( ; i < numdst && t < knots[0]; ++i, t += step)
|
||||
{
|
||||
*dst = points[0];
|
||||
*dst = controlpoints[0];
|
||||
dst += outputStride;
|
||||
}
|
||||
|
||||
// actually interpolated points
|
||||
const K maxknot = knots[numknots - 1];
|
||||
const T maxknot = knots[numknots - 1];
|
||||
for( ; i < numdst && t < maxknot; ++i, t += step)
|
||||
{
|
||||
while(r < maxidx && knots[r+1] < t) // find new index; don't need to do binary search again
|
||||
++r;
|
||||
|
||||
const T* const src = &points[(r - degree) * inputStride];
|
||||
const P * const src = &controlpoints[(r - degree) * inputStride];
|
||||
*dst = detail::deBoor(work, src, knots, r, k, t, inputStride);
|
||||
dst += outputStride;
|
||||
}
|
||||
|
||||
// right out-of-bounds
|
||||
if(i < numdst)
|
||||
{
|
||||
T last = points[(numpoints - 1) * inputStride];
|
||||
for( ; i < numdst; ++i)
|
||||
{
|
||||
*dst = last;
|
||||
*dst = controlpoints[numcp - 1];
|
||||
dst += outputStride;
|
||||
}
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------------
|
||||
// --- Part (2) begin: B-spline interpolation ----
|
||||
// Given some points that should lie on a spline, calculate its control points
|
||||
// -----------------------------------------------------------------------------------
|
||||
|
||||
namespace detail {
|
||||
|
||||
struct Size2d
|
||||
{
|
||||
size_t w, h;
|
||||
};
|
||||
|
||||
// Wrap any pointer to access it like a vector (with proper bounds checking)
|
||||
template<typename T>
|
||||
class VecAcc
|
||||
{
|
||||
public:
|
||||
typedef T value_type;
|
||||
VecAcc(T *p, const size_t n)
|
||||
: p(p), n(n) {}
|
||||
|
||||
inline T& operator[](size_t i)
|
||||
{
|
||||
TBSP_ASSERT(i < n);
|
||||
return p[i];
|
||||
}
|
||||
inline const T& operator[](size_t i) const
|
||||
{
|
||||
TBSP_ASSERT(i < n);
|
||||
return p[i];
|
||||
}
|
||||
template<typename V>
|
||||
VecAcc& operator=(const V& o)
|
||||
{
|
||||
TBSP_ASSERT(n == o.size());
|
||||
for(size_t i = 0; i < n; ++i)
|
||||
p[i] = o[i];
|
||||
return *this;
|
||||
}
|
||||
VecAcc& operator=(const VecAcc<T>& o) // Required for C++11
|
||||
{
|
||||
TBSP_ASSERT(n == o.size());
|
||||
for(size_t i = 0; i < n; ++i)
|
||||
p[i] = o[i];
|
||||
return *this;
|
||||
}
|
||||
template<typename V>
|
||||
VecAcc& operator+=(const V& o)
|
||||
{
|
||||
TBSP_ASSERT(n == o.size());
|
||||
for(size_t i = 0; i < n; ++i)
|
||||
p[i] += o[i];
|
||||
return *this;
|
||||
}
|
||||
template<typename V>
|
||||
VecAcc& operator-=(const V& o)
|
||||
{
|
||||
TBSP_ASSERT(n == o.size());
|
||||
for(size_t i = 0; i < n; ++i)
|
||||
p[i] -= o[i];
|
||||
return *this;
|
||||
}
|
||||
|
||||
T dot(VecAcc<T>& o) const // vector dot product
|
||||
{
|
||||
T s = 0;
|
||||
const size_t n = this->n;
|
||||
tbsp__ASSERT(n == o.n);
|
||||
for(size_t i = 0; i < n; ++i)
|
||||
s += a.p[i] * b.p[i];
|
||||
return s;
|
||||
}
|
||||
|
||||
inline size_t size() const { return n; }
|
||||
inline T *data() { return p; }
|
||||
inline const T *data() const { return p; }
|
||||
|
||||
T *p;
|
||||
size_t n;
|
||||
};
|
||||
|
||||
// Wraps any pointer to access it like a row matrix.
|
||||
// Intentionally a dumb POD struct, do NOT put ctors!
|
||||
template<typename T>
|
||||
struct MatrixAcc
|
||||
{
|
||||
typedef T value_type;
|
||||
typedef VecAcc<T> RowAcc;
|
||||
|
||||
inline T& operator()(size_t x, size_t y)
|
||||
{
|
||||
TBSP_ASSERT(x < size.w);
|
||||
TBSP_ASSERT(y < size.h);
|
||||
return p[y * size.w + x];
|
||||
}
|
||||
inline const T& operator()(size_t x, size_t y) const
|
||||
{
|
||||
TBSP_ASSERT(x < size.w);
|
||||
TBSP_ASSERT(y < size.h);
|
||||
return p[y * size.w + x];
|
||||
}
|
||||
|
||||
inline T *rowPtr(size_t y) const
|
||||
{
|
||||
return p + (y * size.w);
|
||||
}
|
||||
|
||||
// w,h of (this * o)
|
||||
inline Size2d multSize(const MatrixAcc<T>& o) const
|
||||
{
|
||||
// in math notation: (n x m) * (m x p) -> (n x p)
|
||||
// and because math is backwards:
|
||||
// (h x w) * (H x W) -> (h x W)
|
||||
TBSP_ASSERT(size.w == o.size.h);
|
||||
Size2d wh { o.size.w, size.h };
|
||||
return wh;
|
||||
}
|
||||
|
||||
inline RowAcc row(size_t y) const
|
||||
{
|
||||
TBSP_ASSERT(y < size.h);
|
||||
return RowAcc(p + (y * size.w), size.w);
|
||||
}
|
||||
|
||||
T *p;
|
||||
Size2d size;
|
||||
};
|
||||
|
||||
// Cut away the borders from A, so that the new matrix A' size is (A.size.w - 2, A.size.h - 2):
|
||||
// ( xxxxx ) (where x means cut and any other letter means keep)
|
||||
// ( xabcx ) ( abc )
|
||||
// A = ( xdefx ), A' = ( def )
|
||||
// ( xxxxx )
|
||||
// then compute T(A') x A', ie.
|
||||
// ( ad ) ( abc )
|
||||
// R = ( be ) X ( def )
|
||||
// ( cf )
|
||||
// R must be already the correct size, ie. (A.size.w - 2, A.size.w - 2)!
|
||||
template<typename T>
|
||||
static void matMultCenterCutTransposeWithSelf(MatrixAcc<T>& TBSP_RESTRICT R, const MatrixAcc<T>& TBSP_RESTRICT A)
|
||||
{
|
||||
TBSP_ASSERT(A.size.w > 2 && A.size.h > 2);
|
||||
|
||||
const size_t w = A.size.w - 2; // also the final size of R: (w x w);
|
||||
const size_t h = A.size.h - 2; // when iterating over w/h it stops before the last element in that row/col
|
||||
TBSP_ASSERT(R.size.w == w && R.size.h == w);
|
||||
|
||||
T *out = R.p;
|
||||
for (size_t y = 0; y < w; ++y)
|
||||
{
|
||||
for (size_t x = 0; x < w; ++x)
|
||||
{
|
||||
const T *row = A.p + y + 1; // skip first elem (+1)
|
||||
const T *col = A.p + x + w; // skip first row (+w)
|
||||
T temp = 0;
|
||||
for (size_t k = 0; k < h; ++k, row += w, col += w)
|
||||
temp += *row * *col;
|
||||
*out++ = temp;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Linear system solver via Cholesky decomposition
|
||||
template<typename T>
|
||||
struct Cholesky
|
||||
{
|
||||
typedef T value_type;
|
||||
typedef MatrixAcc<T> Mat;
|
||||
|
||||
// Initializes a solver in the given memory.
|
||||
// On success, bumps ptr forward by the memory it needs;
|
||||
// on failure, returns NULL. Note that this may also fail if A is not well-formed.
|
||||
// Memory needed: (sizeof(T) * ((A.size.w + 1) * A.size.h))
|
||||
T *init(T *mem, const Mat& A)
|
||||
{
|
||||
T * const pdiag = mem + (A.size.w * A.size.h);
|
||||
T * const myend = pdiag + A.size.w;
|
||||
|
||||
TBSP_ASSERT(A.size.w >= A.size.h);
|
||||
const size_t n = A.size.w;
|
||||
idiag = pdiag; // T[n]
|
||||
|
||||
L.p = mem;
|
||||
L.size = A.size;
|
||||
|
||||
// Fill the lower left triangle, storing the diagonal separately
|
||||
for(size_t y = 0; y < n; ++y)
|
||||
{
|
||||
const typename Mat::RowAcc rrow = A.row(y);
|
||||
typename Mat::RowAcc wrow = L.row(y);
|
||||
for(size_t x = y; x < n; ++x)
|
||||
{
|
||||
T s = rrow[x];
|
||||
for(size_t k = 0; k < y; ++k)
|
||||
s -= wrow[k] * L(k,x);
|
||||
if(x != y)
|
||||
L(y,x) = s * idiag[y];
|
||||
else if(s > 0)
|
||||
idiag[y] = T(1) / (wrow[y] = TBSP_SQRT(s));
|
||||
else
|
||||
{
|
||||
TBSP_ASSERT(0 && "Cholesky decomposition failed");
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Fill the upper right triangle with zeros
|
||||
const T zero = T(0);
|
||||
for(size_t y = 0; y < n; ++y)
|
||||
{
|
||||
typename Mat::RowAcc row = L.row(y);
|
||||
for(size_t x = y+1; x < n; ++x)
|
||||
row[x] = zero;
|
||||
}
|
||||
|
||||
return myend;
|
||||
}
|
||||
|
||||
// Solves x for A * x + b. Both b and x must have length n.
|
||||
template<typename P>
|
||||
void solve(P * TBSP_RESTRICT const xv, const P * TBSP_RESTRICT const bv) const
|
||||
{
|
||||
const size_t n = L.size.w;
|
||||
|
||||
for(size_t y = 0; y < n; ++y)
|
||||
{
|
||||
const typename Mat::RowAcc Lrow = L.row(y);
|
||||
P p = bv[y];
|
||||
for(size_t x = 0; x < y; ++x)
|
||||
p -= xv[x] * Lrow[x];
|
||||
xv[y] = p * idiag[y];
|
||||
}
|
||||
for(size_t y = n; y--; )
|
||||
{
|
||||
P p = xv[y];
|
||||
for(size_t x = y+1; x < n; ++x)
|
||||
p -= xv[x] * L(y,x);
|
||||
xv[y] = p * idiag[y];
|
||||
}
|
||||
}
|
||||
|
||||
Mat L; // lower left triangle matrix
|
||||
T *idiag; // 1 / diag; length is L.size.w
|
||||
};
|
||||
|
||||
// Linear system solver via LU decomposition
|
||||
// (Slower than Cholesky, but a bit more general ie. applicable to more cases)
|
||||
template<typename T>
|
||||
struct LUDecomp
|
||||
{
|
||||
typedef T value_type;
|
||||
typedef MatrixAcc<T> Mat;
|
||||
|
||||
// Initializes a solver in the given memory.
|
||||
// On success, bumps ptr forward by the memory it needs;
|
||||
// on failure, returns NULL. Note that this may also fail if A is not well-formed.
|
||||
// Memory needed: (sizeof(T) * ((A.size.w + 1) * A.size.h))
|
||||
T *init(T *mem, const Mat& A)
|
||||
{
|
||||
T * const pdiag = mem + (A.size.w * A.size.h);
|
||||
T * const myend = pdiag + A.size.w;
|
||||
|
||||
TBSP_ASSERT(A.size.w == A.size.h);
|
||||
|
||||
MatrixAcc<T> LU;
|
||||
LU.p = mem;
|
||||
idiag = pdiag;
|
||||
LU.size = A.size;
|
||||
|
||||
const size_t n = A.size.w;
|
||||
|
||||
// Note: This doesn't do pivoting.
|
||||
for (size_t y = 0; y < n; ++y)
|
||||
{
|
||||
for (size_t x = y; x < n; ++x)
|
||||
{
|
||||
T e = A(x, y);
|
||||
for (size_t k = 0; k < y; ++k)
|
||||
e -= LU(k, y) * LU(x, k);
|
||||
LU(x, y) = e;
|
||||
}
|
||||
const T idiagval = T(1) / LU(y,y);
|
||||
idiag[y] = idiagval;
|
||||
for (size_t x = y + 1; x < n; ++x)
|
||||
{
|
||||
T e = A(y,x);
|
||||
for (size_t k = 0; k < y; ++k)
|
||||
e -= LU(k, x) * LU(y, k);
|
||||
LU(y, x) = idiagval * e;
|
||||
}
|
||||
}
|
||||
this->LU = LU;
|
||||
|
||||
return myend;
|
||||
}
|
||||
|
||||
// Solves x for A * x + b. Both b and x must have length n.
|
||||
template<typename P>
|
||||
void solve(P * TBSP_RESTRICT const xv, const P * TBSP_RESTRICT const bv) const
|
||||
{
|
||||
const size_t n = LU.size.w;
|
||||
|
||||
for (size_t y = 0; y < n; ++y)
|
||||
{
|
||||
P p = bv[y];
|
||||
const typename Mat::RowAcc LUrow = LU.row(y);
|
||||
for (size_t x = 0; x < y; ++x)
|
||||
p -= xv[x] * LUrow[x];
|
||||
xv[y] = p;
|
||||
}
|
||||
for (size_t y = n; y--; )
|
||||
{
|
||||
P p = xv[y];
|
||||
const typename Mat::RowAcc LUrow = LU.row(y);
|
||||
for (size_t x = y + 1; x < n; ++x)
|
||||
p -= xv[x] * LUrow[x];
|
||||
xv[y] = p * idiag[y];
|
||||
}
|
||||
}
|
||||
|
||||
Mat LU; // combined both lower right & upper left triangles matrix
|
||||
T *idiag; // 1 / diag; length is L.size.w
|
||||
};
|
||||
|
||||
// The coeff vector for a given position u on the spline describes the influence of each control point
|
||||
// towards the final result, ie.:
|
||||
// resultPoint(u) = SUM(Nrow[i] * controlpoint[i]) for i in [0..Nrow),
|
||||
// where Nrow[] are the coefficients for u.
|
||||
// And to keep the parametrization simple, u is computed from t=0..1
|
||||
template<typename T>
|
||||
void computeCoeffVector(T * TBSP_RESTRICT Nrow, size_t numcp, T t01, const T * TBSP_RESTRICT knots, size_t degree)
|
||||
{
|
||||
for(size_t i = 0; i < numcp; ++i)
|
||||
Nrow[i] = T(0);
|
||||
|
||||
const size_t n = numcp - 1;
|
||||
|
||||
// special cases
|
||||
if(t01 <= T(0))
|
||||
{
|
||||
Nrow[0] = T(1);
|
||||
return;
|
||||
}
|
||||
else if(t01 >= T(1))
|
||||
{
|
||||
Nrow[n] = T(1);
|
||||
return;
|
||||
}
|
||||
|
||||
const size_t numknots = tbsp__getNumKnots(numcp, degree);
|
||||
const size_t m = numknots - 1;
|
||||
const T mink = knots[0];
|
||||
const T maxk = knots[m];
|
||||
|
||||
// Position on the knot vector aka transform t=0..1 into knot vector space
|
||||
const T u = mink + t01 * (maxk - mink);
|
||||
|
||||
// find index k, so that u is in [knots[k], knots[k+1])
|
||||
const size_t k = detail::findKnotIndex(u, knots, numknots, degree);
|
||||
Nrow[k] = T(1);
|
||||
|
||||
// Coefficient computation
|
||||
// See also: https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-curve-coef.html
|
||||
for(size_t d = 1; d <= degree; ++d)
|
||||
{
|
||||
TBSP_ASSERT(d <= k);
|
||||
const T q = (knots[k+1] - u) / (knots[k+1] - knots[k-d+1]);
|
||||
Nrow[k-d] = q * Nrow[k-d+1];
|
||||
|
||||
for(size_t i = k-d+1; i < k; ++i)
|
||||
{
|
||||
const T a = (u - knots[i]) / (knots[i+d] - knots[i]);
|
||||
const T b = (knots[i+d+1] - u) / (knots[i+d+1] - knots[i+1]);
|
||||
Nrow[i] = a * Nrow[i] + b * Nrow[i+1];
|
||||
}
|
||||
|
||||
Nrow[k] *= ((u - knots[k]) / (knots[k+d] - knots[k]));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template<typename T>
|
||||
T* computeCoeffMatrix(MatrixAcc<T>& N, T *mem, const T *knots, size_t nump, size_t numcp, size_t degree)
|
||||
{
|
||||
N.size.w = numcp;
|
||||
N.size.h = nump;
|
||||
N.p = mem;
|
||||
T * const pend = N.p + (nump * numcp);
|
||||
|
||||
const T invsz = T(1) / T(nump - 1);
|
||||
|
||||
for(size_t i = 0; i < nump; ++i) // rows
|
||||
{
|
||||
// TODO: this is the parametrization. currently, this is equidistant. allow more.
|
||||
const T t01 = float(i) * invsz; // position of point assuming uniform parametrization
|
||||
|
||||
typename MatrixAcc<T>::RowAcc row = N.row(i);
|
||||
computeCoeffVector(&row[0], numcp, t01, knots, degree); // row 0 stores all coefficients for _t[0], etc
|
||||
}
|
||||
|
||||
return pend;
|
||||
}
|
||||
|
||||
// Generate least-squares approximator for spline approximation
|
||||
template<typename T>
|
||||
T* generateLeastSquares(MatrixAcc<T>& M, T *mem, const MatrixAcc<T>& N)
|
||||
{
|
||||
M.p = mem;
|
||||
M.size.w = N.size.w - 2;
|
||||
M.size.h = N.size.w - 2; // (h = w) is intended, M is a square matrix!
|
||||
|
||||
T * const pend = M.p + (M.size.w * M.size.h);
|
||||
|
||||
matMultCenterCutTransposeWithSelf(M, N);
|
||||
|
||||
return pend;
|
||||
}
|
||||
|
||||
} // end namespace detail
|
||||
// --------------------------------------------------
|
||||
|
||||
// One interpolator is precomputed for a specific number of input points and output control points
|
||||
template<typename T>
|
||||
struct Interpolator
|
||||
{
|
||||
inline Interpolator() : numcp(0), nump(0) {}
|
||||
|
||||
size_t numcp, nump;
|
||||
union
|
||||
{
|
||||
detail::Cholesky<T> cholesky;
|
||||
detail::LUDecomp<T> ludecomp;
|
||||
} solver;
|
||||
detail::MatrixAcc<T> N;
|
||||
|
||||
// To make it checkable in if()
|
||||
#if TBSP_HAS_CPP11
|
||||
explicit inline operator bool() const { return !!numcp; }
|
||||
#else // Explicit conversion operator is not supported in C++98
|
||||
inline operator const void*() const { return numcp ? this : NULL; }
|
||||
#endif
|
||||
};
|
||||
|
||||
// Calculate how many elements of type T are needed as storage for the interpolator
|
||||
// This should ideally be constexpr, but we want C++98 compatibility.
|
||||
#define tbsp__getInterpolatorStorageSize(numControlPoints, numPoints) \
|
||||
( ((numControlPoints) == (numControlPoints)) \
|
||||
? (((numControlPoints)+1) * (numPoints)) /* solver(N) */ \
|
||||
: ( \
|
||||
((numControlPoints) * (numPoints)) /* N */ \
|
||||
+ (((numControlPoints)-1) * ((numControlPoints)-2)) /* solver(M) */ \
|
||||
) \
|
||||
)
|
||||
|
||||
#define tbsp__getInterpolatorInitTempSize(numControlPoints, numPoints) \
|
||||
( (numControlPoints) == (numControlPoints) \
|
||||
? ((numControlPoints) * (numPoints)) /* N */ \
|
||||
: (((numControlPoints)-2) * ((numControlPoints)-2)) /* M */ \
|
||||
)
|
||||
|
||||
template<typename T>
|
||||
Interpolator<T> initInterpolator(T * TBSP_RESTRICT const mem, T * TBSP_RESTRICT const tmp, size_t degree, size_t nump, size_t numcp, const T * TBSP_RESTRICT knots)
|
||||
{
|
||||
Interpolator<T> interp;
|
||||
|
||||
// Calling this with 2 points is pointless, < 2 is mathematically impossible
|
||||
if(nump < 2 || numcp < 2)
|
||||
return interp;
|
||||
|
||||
// Can only generate less or equal control points than points
|
||||
TBSP_ASSERT(numcp <= nump);
|
||||
if(!(numcp <= nump))
|
||||
return interp;
|
||||
|
||||
// Need storage memory
|
||||
TBSP_ASSERT(mem && tmp);
|
||||
|
||||
T *p = numcp == nump ? tmp : mem;
|
||||
p = detail::computeCoeffMatrix(interp.N, p, knots, nump, numcp, degree);
|
||||
if(!p)
|
||||
return interp;
|
||||
TBSP_ASSERT(p <= tmp + tbsp__getInterpolatorInitTempSize(numcp, nump));
|
||||
|
||||
if(nump == numcp)
|
||||
{
|
||||
// N allocated in tmp, solver(N) in mem
|
||||
|
||||
// N is point-symmetric, ie. NOT diagonally symmetric.
|
||||
// This means we can't use Cholesky decomposition, but LU decomposition is fine.
|
||||
// Note: Cholesky decomposition will at first appear to work,
|
||||
// but the solutions calculated with it are wrong. Don't use this here.
|
||||
p = interp.solver.ludecomp.init(mem, interp.N);
|
||||
|
||||
// N is no longer needed
|
||||
// solver(N) stays
|
||||
interp.N.p = NULL;
|
||||
interp.N.size.w = interp.N.size.h = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
// N allocated in mem, solver(M) in mem, M in tmp
|
||||
|
||||
// This calculates M = T(N') x N', where N' is N with its borders removed.
|
||||
// A nice property is that M is diagonally symmetric,
|
||||
// means it can be efficiently solved via cholesky decomposition.
|
||||
detail::MatrixAcc<T> M;
|
||||
p = detail::generateLeastSquares(M, tmp, interp.N);
|
||||
if(!p)
|
||||
return interp;
|
||||
TBSP_ASSERT(p <= tmp + tbsp__getInterpolatorInitTempSize(numcp, nump));
|
||||
|
||||
p = interp.solver.cholesky.init(mem, M);
|
||||
|
||||
// M is no longer needed
|
||||
// solver(M) stays
|
||||
// N stays
|
||||
}
|
||||
|
||||
if(p)
|
||||
{
|
||||
TBSP_ASSERT(p <= mem + tbsp__getInterpolatorStorageSize(numcp, nump));
|
||||
|
||||
interp.numcp = numcp;
|
||||
interp.nump = nump;
|
||||
}
|
||||
|
||||
return interp;
|
||||
}
|
||||
|
||||
#define tbsp_getInterpolatorWorkSize(numControlPoints, numPoints) \
|
||||
( ((numControlPoints) == (numPoints)) ? 0 : ((numControlPoints) - 2) )
|
||||
|
||||
// Pass workmem[] with at least tbsp_getInterpolatorWorkSize() elements;
|
||||
// workmem can be NULL if only interpolation is used (#controlpoints == #points).
|
||||
// Approximation (#controlpoints < #points) needs extra working memory though.
|
||||
// Returns how many control points were generated, for convenience.
|
||||
template<typename P, typename T>
|
||||
size_t generateControlPoints(P * cp, P * TBSP_RESTRICT workmem, const Interpolator<T>& interp, const P *points)
|
||||
{
|
||||
const size_t numcp = interp.numcp;
|
||||
if(numcp == interp.nump)
|
||||
{
|
||||
// This does not need extra working memory
|
||||
interp.solver.ludecomp.solve(cp, points);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Approximate points with less control points, this is more costly
|
||||
TBSP_ASSERT(workmem); // ... and needs extra memory
|
||||
const size_t h = numcp - 1;
|
||||
const size_t n = interp.nump - 1;
|
||||
const P p0 = points[0];
|
||||
const P pn = points[n];
|
||||
|
||||
// Wrap the least squares estimator somehow together with the points to approximate...
|
||||
// Unfortunately I forgot how this works, so no explanation of mathemagics here, sorry :<
|
||||
const detail::MatrixAcc<T> N = interp.N;
|
||||
const P initial = points[1] - (p0 * N(0,1)) - (pn * N(h,1));
|
||||
for(size_t i = 1; i < h; ++i)
|
||||
{
|
||||
P tmp = initial * N(i,1);
|
||||
for(size_t k = 2; k < n; ++k)
|
||||
{
|
||||
const typename detail::MatrixAcc<T>::RowAcc Nrow = N.row(k);
|
||||
tmp += (points[k] - (p0 * Nrow[0]) - (pn * Nrow[h])) * Nrow[i];
|
||||
}
|
||||
workmem[i-1] = tmp;
|
||||
}
|
||||
|
||||
// End points are not interpolated
|
||||
cp[0] = p0;
|
||||
cp[h] = pn;
|
||||
|
||||
// Solve for all points that are not endpoints
|
||||
TBSP_ASSERT(interp.solver.cholesky.L.size.w == h - 1);
|
||||
interp.solver.cholesky.solve(cp + 1, workmem);
|
||||
}
|
||||
return numcp;
|
||||
}
|
||||
|
||||
|
||||
// Helper functions for parametrization
|
||||
|
||||
template<typename T, typename P>
|
||||
void chordal(T *parm, const P *points, size_t n)
|
||||
{
|
||||
// Start and end points are always 0 and 1, respectively
|
||||
parm[0] = T(0);
|
||||
parm[--n] = T(1);
|
||||
|
||||
T totaldist = 0;
|
||||
for(size_t i = 1; i < n; ++i)
|
||||
{
|
||||
const T dist = distance(points[i-1], points[i]);
|
||||
totaldist += dist;
|
||||
parm[i] = totaldist
|
||||
}
|
||||
|
||||
// Normalize to 0..1
|
||||
const T m = T(1) / totaldist;
|
||||
for(size_t i = 1; i < n; ++i)
|
||||
parm[i] *= m;
|
||||
}
|
||||
|
||||
template<typename T, typename P>
|
||||
void uniform(T *parm, const P *points, size_t n)
|
||||
{
|
||||
const T m = T(1) / T(n - 1);
|
||||
for(size_t i = 0; i < n; ++i)
|
||||
parm[i] = T(i) * m;
|
||||
}
|
||||
|
||||
} // end namespace tbsp
|
||||
|
|
Loading…
Reference in a new issue