/////////////////////////////////////////////////////////////////////////////////////////////////// // OpenGL Mathematics Copyright (c) 2005 - 2011 G-Truc Creation (www.g-truc.net) /////////////////////////////////////////////////////////////////////////////////////////////////// // Created : 2011-03-07 // Updated : 2011-04-26 // Licence : This source is under MIT License // File : glm/gtx/ulp.inl /////////////////////////////////////////////////////////////////////////////////////////////////// #include #include /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ typedef union { float value; /* FIXME: Assumes 32 bit int. */ unsigned int word; } ieee_float_shape_type; typedef union { double value; struct { glm::detail::int32 lsw; glm::detail::int32 msw; } parts; } ieee_double_shape_type; #define GLM_EXTRACT_WORDS(ix0,ix1,d) \ do { \ ieee_double_shape_type ew_u; \ ew_u.value = (d); \ (ix0) = ew_u.parts.msw; \ (ix1) = ew_u.parts.lsw; \ } while (0) #define GLM_GET_FLOAT_WORD(i,d) \ do { \ ieee_float_shape_type gf_u; \ gf_u.value = (d); \ (i) = gf_u.word; \ } while (0) #define GLM_SET_FLOAT_WORD(d,i) \ do { \ ieee_float_shape_type sf_u; \ sf_u.word = (i); \ (d) = sf_u.value; \ } while (0) #define GLM_INSERT_WORDS(d,ix0,ix1) \ do { \ ieee_double_shape_type iw_u; \ iw_u.parts.msw = (ix0); \ iw_u.parts.lsw = (ix1); \ (d) = iw_u.value; \ } while (0) namespace glm{ namespace detail { GLM_FUNC_QUALIFIER float nextafterf(float x, float y) { volatile float t; glm::detail::int32 hx, hy, ix, iy; GLM_GET_FLOAT_WORD(hx,x); GLM_GET_FLOAT_WORD(hy,y); ix = hx&0x7fffffff; // |x| iy = hy&0x7fffffff; // |y| if((ix>0x7f800000) || // x is nan (iy>0x7f800000)) // y is nan return x+y; if(x==y) return y; // x=y, return y if(ix==0) { // x == 0 GLM_SET_FLOAT_WORD(x,(hy&0x80000000)|1);// return +-minsubnormal t = x*x; if(t==x) return t; else return x; // raise underflow flag } if(hx>=0) { // x > 0 if(hx>hy) { // x > y, x -= ulp hx -= 1; } else { // x < y, x += ulp hx += 1; } } else { // x < 0 if(hy>=0||hx>hy){ // x < y, x -= ulp hx -= 1; } else { // x > y, x += ulp hx += 1; } } hy = hx&0x7f800000; if(hy>=0x7f800000) return x+x; // overflow if(hy<0x00800000) { // underflow t = x*x; if(t!=x) { // raise underflow flag GLM_SET_FLOAT_WORD(y,hx); return y; } } GLM_SET_FLOAT_WORD(x,hx); return x; } GLM_FUNC_QUALIFIER double nextafter(double x, double y) { volatile double t; glm::detail::int32 hx, hy, ix, iy; glm::detail::uint32 lx, ly; GLM_EXTRACT_WORDS(hx, lx, x); GLM_EXTRACT_WORDS(hy, ly, y); ix = hx & 0x7fffffff; // |x| iy = hy & 0x7fffffff; // |y| if(((ix>=0x7ff00000)&&((ix-0x7ff00000)|lx)!=0) || // x is nan ((iy>=0x7ff00000)&&((iy-0x7ff00000)|ly)!=0)) // y is nan return x+y; if(x==y) return y; // x=y, return y if((ix|lx)==0) { // x == 0 GLM_INSERT_WORDS(x, hy & 0x80000000, 1); // return +-minsubnormal t = x*x; if(t==x) return t; else return x; // raise underflow flag } if(hx>=0) { // x > 0 if(hx>hy||((hx==hy)&&(lx>ly))) { // x > y, x -= ulp if(lx==0) hx -= 1; lx -= 1; } else { // x < y, x += ulp lx += 1; if(lx==0) hx += 1; } } else { // x < 0 if(hy>=0||hx>hy||((hx==hy)&&(lx>ly))){// x < y, x -= ulp if(lx==0) hx -= 1; lx -= 1; } else { // x > y, x += ulp lx += 1; if(lx==0) hx += 1; } } hy = hx&0x7ff00000; if(hy>=0x7ff00000) return x+x; // overflow if(hy<0x00100000) { // underflow t = x*x; if(t!=x) { // raise underflow flag GLM_INSERT_WORDS(y,hx,lx); return y; } } GLM_INSERT_WORDS(x,hx,lx); return x; } }//namespace detail }//namespace glm #if(GLM_COMPILER & GLM_COMPILER_VC) # define GLM_NEXT_AFTER_FLT(x, toward) glm::detail::nextafterf((x), (toward)) # define GLM_NEXT_AFTER_DBL(x, toward) _nextafter((x), (toward)) #else # define GLM_NEXT_AFTER_FLT(x, toward) nextafterf((x), (toward)) # define GLM_NEXT_AFTER_DBL(x, toward) nextafter((x), (toward)) #endif namespace glm{ namespace gtx{ namespace ulp { GLM_FUNC_QUALIFIER float next_float(float const & x) { return GLM_NEXT_AFTER_FLT(x, std::numeric_limits::max()); } GLM_FUNC_QUALIFIER double next_float(double const & x) { return GLM_NEXT_AFTER_DBL(x, std::numeric_limits::max()); } template class vecType> GLM_FUNC_QUALIFIER vecType next_float(vecType const & x) { vecType Result; for(std::size_t i = 0; i < Result.length(); ++i) Result[i] = next_float(x[i]); return Result; } GLM_FUNC_QUALIFIER float prev_float(float const & x) { return GLM_NEXT_AFTER_FLT(x, std::numeric_limits::min()); } GLM_FUNC_QUALIFIER double prev_float(double const & x) { return GLM_NEXT_AFTER_DBL(x, std::numeric_limits::min()); } template class vecType> GLM_FUNC_QUALIFIER vecType prev_float(vecType const & x) { vecType Result; for(std::size_t i = 0; i < Result.length(); ++i) Result[i] = prev_float(x[i]); return Result; } template GLM_FUNC_QUALIFIER T next_float(T const & x, uint const & ulps) { T temp = x; for(std::size_t i = 0; i < ulps; ++i) temp = next_float(temp); return temp; } template class vecType> GLM_FUNC_QUALIFIER vecType next_float(vecType const & x, vecType const & ulps) { vecType Result; for(std::size_t i = 0; i < Result.length(); ++i) Result[i] = next_float(x[i], ulps[i]); return Result; } template GLM_FUNC_QUALIFIER T prev_float(T const & x, uint const & ulps) { T temp = x; for(std::size_t i = 0; i < ulps; ++i) temp = prev_float(temp); return temp; } template class vecType> GLM_FUNC_QUALIFIER vecType prev_float(vecType const & x, vecType const & ulps) { vecType Result; for(std::size_t i = 0; i < Result.length(); ++i) Result[i] = prev_float(x[i], ulps[i]); return Result; } template GLM_FUNC_QUALIFIER uint float_distance(T const & x, T const & y) { uint ulp = 0; if(x < y) { T temp = x; while(temp != y && ulp < std::numeric_limits::max()) { ++ulp; temp = next_float(temp); } } else if(y < x) { T temp = y; while(temp != x && ulp < std::numeric_limits::max()) { ++ulp; temp = next_float(temp); } } else // == { } return ulp; } template class vecType> GLM_FUNC_QUALIFIER vecType float_distance(vecType const & x, vecType const & y) { vecType Result; for(std::size_t i = 0; i < Result.length(); ++i) Result[i] = float_distance(x[i], y[i]); return Result; } /* inline std::size_t ulp ( detail::thalf const & a, detail::thalf const & b ) { std::size_t Count = 0; float TempA(a); float TempB(b); //while((TempA = _nextafterf(TempA, TempB)) != TempB) ++Count; return Count; } inline std::size_t ulp ( float const & a, float const & b ) { std::size_t Count = 0; float Temp = a; //while((Temp = _nextafterf(Temp, b)) != b) { std::cout << Temp << " " << b << std::endl; ++Count; } return Count; } inline std::size_t ulp ( double const & a, double const & b ) { std::size_t Count = 0; double Temp = a; //while((Temp = _nextafter(Temp, b)) != b) { std::cout << Temp << " " << b << std::endl; ++Count; } return Count; } template inline std::size_t ulp ( detail::tvec2 const & a, detail::tvec2 const & b ) { std::size_t ulps[] = { ulp(a[0], b[0]), ulp(a[1], b[1]) }; return glm::max(ulps[0], ulps[1]); } template inline std::size_t ulp ( detail::tvec3 const & a, detail::tvec3 const & b ) { std::size_t ulps[] = { ulp(a[0], b[0]), ulp(a[1], b[1]), ulp(a[2], b[2]) }; return glm::max(glm::max(ulps[0], ulps[1]), ulps[2]); } template inline std::size_t ulp ( detail::tvec4 const & a, detail::tvec4 const & b ) { std::size_t ulps[] = { ulp(a[0], b[0]), ulp(a[1], b[1]), ulp(a[2], b[2]), ulp(a[3], b[3]) }; return glm::max(glm::max(ulps[0], ulps[1]), glm::max(ulps[2], ulps[3])); } */ }//namespace ulp }//namespace gtx }//namespace glm