1
0
Fork 0
mirror of https://github.com/AquariaOSE/Aquaria.git synced 2024-11-29 03:33:48 +00:00
Aquaria/ExternalLibs/tbsp.hh

230 lines
7.1 KiB
C++

/* Tiny B-spline evaluation library
License:
Public domain, WTFPL, CC0 or your favorite permissive license; whatever is available in your country.
Dependencies:
- Requires C++98 without libc
Origin:
https://github.com/fgenesis/tinypile
--- Example usage: ---
enum { DEGREE = 3 }; // Cubic
// You can interpolate anything as long as it supports element addition and scalar multiplication
struct Point { ... operator+(Point) and operator*(float) overloaded ... };
const Point ps[N] = {...}; // Control points for the spline
float knots[tbsp__getNumKnots(N, DEGREE)]; // knot vector; used for evaluating the spline
Point tmp[DEGREE]; // Temporary working memory must be provided by the caller.
// This is just a tiny array. Must have as many elements as the degree of the spline.
// This must be done once for each B-spline; the spline is then defined by the knot vector.
// In particular, this inits a knot vector with end points [L..R],
// ie. the spline will interpolate values for t = [L..R].
// (You can use any boundary values, eg. [-4..+5], but [0..1] is the most common)
tbsp::fillKnotVector(knots, N, DEGREE, L, R);
// Evaluate the spline at point t
// Returns ps[0] if t <= L; ps[N-1] if t >= R; otherwise an interpolated point
Point p = tbsp::evalOne(tmp, knots, ps, N, DEGREE, t);
// Evaluate A points between t=0.2 .. t=0.5, equidistantly spaced, and write to a[].
// (If you have multiple points to evaluate, this is faster than multiple evalOne() calls)
Point a[A];
tbsp::evalRange(out, A, tmp, knots, ps, N, DEGREE, 0.2f, 0.5f);
*/
#pragma once
#include <stddef.h> // size_t
#ifndef TBSP_ASSERT
# include <assert.h>
# define TBSP_ASSERT(x) assert(x)
#endif
// ---- B-Spline eval part begin ----
namespace tbsp {
// These should be constexpr, but we want to stay C++98-compatible
#define tbsp__getNumKnots(points, degree) ((points) + (degree) + 1)
#define tbsp__getKnotVectorAllocSize(K, points, degree) (sizeof(K) * tbsp__getNumKnots((points), (degree)))
namespace detail {
// returns index of first element strictly less than t
template<typename K>
static size_t findKnotIndexOffs(K val, const K *p, size_t n)
{
// Binary search to find leftmost element that is < val
size_t L = 0;
size_t R = n;
size_t m;
while(L < R)
{
m = (L + R) / 2u;
if(p[m] < val)
L = m + 1;
else
R = m;
}
return L;
}
template<typename K>
static inline size_t findKnotIndex(K val, const K *knots, size_t n, size_t degree)
{
TBSP_ASSERT(n > degree);
TBSP_ASSERT(val < knots[n - degree - 1]); // beyond right end? should have been caught by caller
// skip endpoints
return degree + findKnotIndexOffs(val, knots + degree, n - degree);
}
template<typename K>
static void genKnotsUniform(K *knots, size_t nn, K mink, K maxk)
{
const K m = (maxk - mink) / K(nn + 1);
for(size_t i = 0; i < nn; ++i)
knots[i] = mink + K(i+1) * m;
}
template<typename K, typename T>
static T deBoor(T *work, const T *src, const K *knots, const size_t r, const size_t k, const K t, size_t inputStride)
{
T last = src[0]; // init so that it works correctly even with degree == 0
for(size_t worksize = k; worksize > 1; --worksize)
{
const size_t j = k - worksize + 1; // iteration number, starting with 1, going up to k
const size_t tmp = r - k + 1 + j;
for(size_t w = 0, wr = 0; w < worksize - 1; ++w, wr += inputStride)
{
const size_t i = w + tmp;
const K ki = knots[i];
TBSP_ASSERT(ki <= t);
const K div = knots[i+k-j] - ki;
TBSP_ASSERT(div > 0);
const K a = (t - ki) / div;
const K a1 = K(1) - a;
work[w] = last = (src[wr] * a1) + (src[wr + inputStride] * a); // lerp
}
src = work; // done writing the initial data to work, now use that as input for further iterations
inputStride = 1;
}
return last;
}
} // end namespace detail
//--------------------------------------
template<typename K>
static size_t fillKnotVector(K *knots, size_t points, size_t degree, K mink, K maxk)
{
const size_t n = points - 1;
if(n < degree) // lower degree if not enough points
degree = n;
TBSP_ASSERT(n >= degree);
const size_t ep = degree + 1; // ep knots on each end
const size_t ne = n - degree; // non-endpoint knots in the middle
// endpoint interpolation, beginning
for(size_t i = 0; i < ep; ++i)
*knots++ = mink;
// TODO: allow more parametrizations
detail::genKnotsUniform(knots, ne, mink, maxk);
knots += ne;
// endpoint interpolation, end
for(size_t i = 0; i < ep; ++i)
*knots++ = maxk;
return degree;
}
// evaluate single point at t
template<typename K, typename T>
static T evalOne(T *work, const K *knots, const T *points, size_t numpoints, size_t degree, K t)
{
if(t < knots[0])
return points[0]; // left out-of-bounds
if(numpoints - 1 < degree)
degree = numpoints - 1;
const size_t numknots = tbsp__getNumKnots(numpoints, degree);
const K maxknot = knots[numknots - 1];
if(t < maxknot)
{
const size_t r = detail::findKnotIndex(t, knots, numknots, degree);
TBSP_ASSERT(r >= degree);
const size_t k = degree + 1;
TBSP_ASSERT(r + k < numknots); // check that the copy below stays in bounds
const T* const src = &points[r - degree];
return detail::deBoor(work, src, knots, r, k, t);
}
return points[numpoints - 1]; // right out-of-bounds
}
// evaluate numdst points in range [tmin..tmax], equally spaced
template<typename K, typename T>
static void evalRange(T *dst, size_t numdst, T *work, const K *knots, const T *points, size_t numpoints, size_t degree, K tmin, K tmax, size_t inputStride = 1, size_t outputStride = 1)
{
TBSP_ASSERT(tmin <= tmax);
if(numpoints - 1 < degree)
degree = numpoints - 1;
const size_t numknots = tbsp__getNumKnots(numpoints, degree);
size_t r = detail::findKnotIndex(tmin, knots, numknots, degree);
TBSP_ASSERT(r >= degree);
const size_t k = degree + 1;
TBSP_ASSERT(r + k < numknots); // check that the copy below stays in bounds
const K step = (tmax - tmin) / K(numdst - 1);
K t = tmin;
const size_t maxidx = numknots - k;
size_t i = 0;
// left out-of-bounds
for( ; i < numdst && t < knots[0]; ++i, t += step)
{
*dst = points[0];
dst += outputStride;
}
// actually interpolated points
const K maxknot = knots[numknots - 1];
for( ; i < numdst && t < maxknot; ++i, t += step)
{
while(r < maxidx && knots[r+1] < t) // find new index; don't need to do binary search again
++r;
const T* const src = &points[(r - degree) * inputStride];
*dst = detail::deBoor(work, src, knots, r, k, t, inputStride);
dst += outputStride;
}
// right out-of-bounds
if(i < numdst)
{
T last = points[(numpoints - 1) * inputStride];
for( ; i < numdst; ++i)
{
*dst = last;
dst += outputStride;
}
}
}
} // end namespace tbsp