mirror of
https://github.com/AquariaOSE/Aquaria.git
synced 2024-11-29 03:33:48 +00:00
536 lines
10 KiB
C++
536 lines
10 KiB
C++
/*
|
|
Copyright (C) 2007, 2010 - Bit-Blot
|
|
|
|
This file is part of Aquaria.
|
|
|
|
Aquaria is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
as published by the Free Software Foundation; either version 2
|
|
of the License, or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
#ifndef BBGE_VECTOR_H
|
|
#define BBGE_VECTOR_H
|
|
|
|
#include <cmath>
|
|
#include <float.h>
|
|
#include <vector>
|
|
#include "Event.h"
|
|
|
|
typedef float scalar_t;
|
|
|
|
class Vector
|
|
{
|
|
public:
|
|
scalar_t x;
|
|
scalar_t y;
|
|
scalar_t z; // x,y,z coordinates
|
|
|
|
Vector(scalar_t a = 0, scalar_t b = 0, scalar_t c = 0) : x(a), y(b), z(c) {}
|
|
Vector(const Vector &vec) : x(vec.x), y(vec.y), z(vec.z) {}
|
|
|
|
|
|
float inline *getv(float *v) const
|
|
{
|
|
v[0] = x; v[1] = y; v[2] = z;
|
|
return v;
|
|
}
|
|
|
|
float inline *getv4(float *v, float param) const
|
|
{
|
|
v[0] = x; v[1] = y; v[2] = z; v[3] = param;
|
|
return v;
|
|
}
|
|
|
|
// vector assignment
|
|
const Vector &operator=(const Vector &vec)
|
|
{
|
|
x = vec.x;
|
|
y = vec.y;
|
|
z = vec.z;
|
|
|
|
return *this;
|
|
}
|
|
|
|
// vecector equality
|
|
bool operator==(const Vector &vec) const
|
|
{
|
|
return ((x == vec.x) && (y == vec.y) && (z == vec.z));
|
|
}
|
|
|
|
// vecector inequality
|
|
bool operator!=(const Vector &vec) const
|
|
{
|
|
return !(*this == vec);
|
|
}
|
|
|
|
// vector add
|
|
const Vector operator+(const Vector &vec) const
|
|
{
|
|
return Vector(x + vec.x, y + vec.y, z + vec.z);
|
|
}
|
|
|
|
// vector add (opposite of negation)
|
|
const Vector operator+() const
|
|
{
|
|
return Vector(*this);
|
|
}
|
|
|
|
// vector increment
|
|
const Vector& operator+=(const Vector& vec)
|
|
{ x += vec.x;
|
|
y += vec.y;
|
|
z += vec.z;
|
|
return *this;
|
|
}
|
|
|
|
// vector subtraction
|
|
const Vector operator-(const Vector& vec) const
|
|
{
|
|
return Vector(x - vec.x, y - vec.y, z - vec.z);
|
|
}
|
|
|
|
// vector negation
|
|
const Vector operator-() const
|
|
{
|
|
return Vector(-x, -y, -z);
|
|
}
|
|
|
|
// vector decrement
|
|
const Vector &operator-=(const Vector& vec)
|
|
{
|
|
x -= vec.x;
|
|
y -= vec.y;
|
|
z -= vec.z;
|
|
|
|
return *this;
|
|
}
|
|
|
|
// scalar self-multiply
|
|
const Vector &operator*=(const scalar_t &s)
|
|
{
|
|
x *= s;
|
|
y *= s;
|
|
z *= s;
|
|
|
|
return *this;
|
|
}
|
|
|
|
// scalar self-divecide
|
|
const Vector &operator/=(const scalar_t &s)
|
|
{
|
|
const float recip = 1/s; // for speed, one divecision
|
|
|
|
x *= recip;
|
|
y *= recip;
|
|
z *= recip;
|
|
|
|
return *this;
|
|
}
|
|
|
|
// vector self-divide
|
|
const Vector &operator/=(const Vector &v)
|
|
{
|
|
x /= v.x;
|
|
y /= v.y;
|
|
z /= v.z;
|
|
|
|
return *this;
|
|
}
|
|
|
|
const Vector &operator*=(const Vector &v)
|
|
{
|
|
x *= v.x;
|
|
y *= v.y;
|
|
z *= v.z;
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
// post multiply by scalar
|
|
const Vector operator*(const scalar_t &s) const
|
|
{
|
|
return Vector(x*s, y*s, z*s);
|
|
}
|
|
|
|
// post multiply by Vector
|
|
const Vector operator*(const Vector &v) const
|
|
{
|
|
return Vector(x*v.x, y*v.y, z*v.z);
|
|
}
|
|
|
|
// pre multiply by scalar
|
|
friend inline const Vector operator*(const scalar_t &s, const Vector &vec)
|
|
{
|
|
return vec*s;
|
|
}
|
|
|
|
// divecide by scalar
|
|
const Vector operator/(scalar_t s) const
|
|
{
|
|
s = 1/s;
|
|
|
|
return Vector(s*x, s*y, s*z);
|
|
}
|
|
|
|
|
|
// cross product
|
|
const Vector CrossProduct(const Vector &vec) const
|
|
{
|
|
return Vector(y*vec.z - z*vec.y, z*vec.x - x*vec.z, x*vec.y - y*vec.x);
|
|
}
|
|
|
|
inline Vector getPerpendicularLeft()
|
|
{
|
|
return Vector(-y, x);
|
|
}
|
|
|
|
inline Vector getPerpendicularRight()
|
|
{
|
|
return Vector(y, -x);
|
|
}
|
|
|
|
// cross product
|
|
const Vector operator^(const Vector &vec) const
|
|
{
|
|
return Vector(y*vec.z - z*vec.y, z*vec.x - x*vec.z, x*vec.y - y*vec.x);
|
|
}
|
|
|
|
// dot product
|
|
inline scalar_t dot(const Vector &vec) const
|
|
{
|
|
return x*vec.x + y*vec.y + z*vec.z;
|
|
}
|
|
|
|
inline scalar_t dot2D(const Vector &vec) const
|
|
{
|
|
return x*vec.x + y*vec.y;
|
|
}
|
|
|
|
// dot product
|
|
scalar_t operator%(const Vector &vec) const
|
|
{
|
|
return x*vec.x + y*vec.x + z*vec.z;
|
|
}
|
|
|
|
|
|
// length of vector
|
|
inline scalar_t getLength3D() const
|
|
{
|
|
return (scalar_t)sqrtf(x*x + y*y + z*z);
|
|
}
|
|
inline scalar_t getLength2D() const
|
|
{
|
|
return (scalar_t)sqrtf(x*x + y*y);
|
|
}
|
|
|
|
// return the unit vector
|
|
inline const Vector unitVector3D() const
|
|
{
|
|
return (*this) * (1/getLength3D());
|
|
}
|
|
|
|
// normalize this vector
|
|
inline void normalize3D()
|
|
{
|
|
if (x == 0 && y == 0 && z == 0)
|
|
{
|
|
|
|
x = y = z = 0;
|
|
}
|
|
else
|
|
{
|
|
(*this) *= 1/getLength3D();
|
|
}
|
|
}
|
|
inline void normalize2D()
|
|
{
|
|
if (x == 0 && y == 0)
|
|
{
|
|
|
|
x = y = z= 0;
|
|
}
|
|
else
|
|
{
|
|
(*this) *= 1/getLength2D();
|
|
}
|
|
}
|
|
|
|
scalar_t operator!() const
|
|
{
|
|
return sqrtf(x*x + y*y + z*z);
|
|
}
|
|
|
|
|
|
|
|
inline void setLength3D(const float l)
|
|
{
|
|
// IGNORE !!
|
|
if (l == 0)
|
|
{
|
|
|
|
}
|
|
else
|
|
{
|
|
float len = getLength3D();
|
|
this->x *= (l/len);
|
|
this->y *= (l/len);
|
|
this->z *= (l/len);
|
|
}
|
|
}
|
|
inline void setLength2D(const float l)
|
|
{
|
|
float len = getLength2D();
|
|
if (len == 0)
|
|
{
|
|
|
|
}
|
|
else
|
|
{
|
|
this->x *= (l/len);
|
|
this->y *= (l/len);
|
|
}
|
|
|
|
}
|
|
|
|
// return angle between two vectors
|
|
inline scalar_t Angle(const Vector& normal) const
|
|
{
|
|
return acosf(*this % normal);
|
|
}
|
|
|
|
|
|
|
|
inline bool isLength2DIn(float radius) const
|
|
{
|
|
return (x*x + y*y) <= (radius*radius);
|
|
}
|
|
|
|
|
|
|
|
inline void setZero()
|
|
{
|
|
this->x = this->y = this->z = 0;
|
|
}
|
|
inline scalar_t getSquaredLength2D() const
|
|
{
|
|
return (x*x) + (y*y);
|
|
}
|
|
inline bool isZero() const
|
|
{
|
|
return x==0 && y==0 && z==0;
|
|
}
|
|
|
|
inline bool isNan() const
|
|
{
|
|
#ifdef BBGE_BUILD_WINDOWS
|
|
return _isnan(x) || _isnan(y) || _isnan(z);
|
|
#elif defined(BBGE_BUILD_UNIX)
|
|
return std::isnan(x) || std::isnan(y) || std::isnan(z);
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
inline void capLength2D(const float l)
|
|
{
|
|
if (!isLength2DIn(l)) setLength2D(l);
|
|
}
|
|
inline void capRotZ360()
|
|
{
|
|
while (z > 360)
|
|
z -= 360;
|
|
while (z < 0)
|
|
z += 360;
|
|
}
|
|
|
|
void rotate2DRad(float rad);
|
|
void rotate2D360(float angle);
|
|
};
|
|
|
|
|
|
class VectorPathNode
|
|
{
|
|
public:
|
|
VectorPathNode() { percent = 0; }
|
|
|
|
Vector value;
|
|
float percent;
|
|
};
|
|
|
|
class VectorPath
|
|
{
|
|
public:
|
|
void flip();
|
|
void clear();
|
|
void addPathNode(Vector v, float p);
|
|
Vector getValue(float percent);
|
|
int getNumPathNodes() { return pathNodes.size(); }
|
|
void resizePathNodes(int sz) { pathNodes.resize(sz); }
|
|
VectorPathNode *getPathNode(int i) { if (i<getNumPathNodes() && i >= 0) return &pathNodes[i]; return 0; }
|
|
void cut(int n);
|
|
void splice(const VectorPath &path, int sz);
|
|
void prepend(const VectorPath &path);
|
|
void append(const VectorPath &path);
|
|
void removeNode(unsigned int i);
|
|
void calculatePercentages();
|
|
float getLength();
|
|
void realPercentageCalc();
|
|
void removeNodes(unsigned int startInclusive, unsigned int endInclusive);
|
|
float getSubSectionLength(int startIncl, int endIncl);
|
|
protected:
|
|
std::vector <VectorPathNode> pathNodes;
|
|
};
|
|
|
|
|
|
class InterpolatedVector;
|
|
struct InterpolatedVectorData
|
|
{
|
|
InterpolatedVectorData()
|
|
{
|
|
interpolating = false;
|
|
pingPong = false;
|
|
loopType = 0;
|
|
pathTimer = 0;
|
|
pathTime = 0;
|
|
pathSpeed = 1;
|
|
pathTimeMultiplier = 1;
|
|
timePassed = 0;
|
|
timePeriod = 0;
|
|
|
|
ease = false;
|
|
followingPath = false;
|
|
}
|
|
|
|
Vector from;
|
|
Vector target;
|
|
|
|
VectorPath path;
|
|
|
|
int loopType;
|
|
|
|
float pathTimer, pathTime;
|
|
float pathSpeed;
|
|
float pathTimeMultiplier;
|
|
float timePassed, timePeriod;
|
|
|
|
bool interpolating;
|
|
bool pingPong;
|
|
bool ease;
|
|
bool followingPath;
|
|
};
|
|
|
|
|
|
// This struct is used to keep all of the interpolation-specific data out
|
|
// of the global InterpolatedVector class, so that we don't waste memory on
|
|
// non-interpolated vectors.
|
|
class InterpolatedVector : public Vector
|
|
{
|
|
public:
|
|
InterpolatedVector(scalar_t a = 0, scalar_t b = 0, scalar_t c = 0) : Vector(a,b,c), data(NULL) {}
|
|
InterpolatedVector(const Vector &vec) : Vector(vec), data(NULL) {}
|
|
~InterpolatedVector() {delete data;}
|
|
|
|
InterpolatedVector(const InterpolatedVector &vec)
|
|
{
|
|
x = vec.x;
|
|
y = vec.y;
|
|
z = vec.z;
|
|
if (vec.data)
|
|
data = new InterpolatedVectorData(*vec.data);
|
|
else
|
|
data = NULL;
|
|
}
|
|
InterpolatedVector &operator=(const InterpolatedVector &vec)
|
|
{
|
|
x = vec.x;
|
|
y = vec.y;
|
|
z = vec.z;
|
|
if (vec.data)
|
|
{
|
|
if (data)
|
|
*data = *vec.data;
|
|
else
|
|
data = new InterpolatedVectorData(*vec.data);
|
|
}
|
|
else
|
|
{
|
|
delete data;
|
|
data = NULL;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
float interpolateTo (Vector vec, float timePeriod, int loopType = 0, bool pingPong = false, bool ease = false);
|
|
void inline update(float dt)
|
|
{
|
|
if (!data)
|
|
return;
|
|
|
|
if (isFollowingPath())
|
|
{
|
|
updatePath(dt);
|
|
}
|
|
if (isInterpolating())
|
|
{
|
|
doInterpolate(dt);
|
|
}
|
|
}
|
|
|
|
void doInterpolate(float dt);
|
|
|
|
inline bool isInterpolating() const
|
|
{
|
|
return data && data->interpolating;
|
|
}
|
|
|
|
void startPath(float time, float ease=0);
|
|
void startSpeedPath(float speed);
|
|
void stopPath();
|
|
void resumePath();
|
|
|
|
void updatePath(float dt);
|
|
|
|
void stop();
|
|
|
|
float getPercentDone();
|
|
|
|
inline bool isFollowingPath() const
|
|
{
|
|
return data && data->followingPath;
|
|
}
|
|
|
|
// for faking a single value
|
|
inline float getValue() const
|
|
{
|
|
return x;
|
|
}
|
|
|
|
|
|
// We never allocate this if the vector isn't used for
|
|
// interpolation, which saves a _lot_ of memory.
|
|
InterpolatedVectorData *data;
|
|
|
|
inline InterpolatedVectorData *ensureData(void)
|
|
{
|
|
if (!data)
|
|
data = new InterpolatedVectorData;
|
|
return data;
|
|
}
|
|
};
|
|
|
|
Vector getRotatedVector(const Vector &vec, float rot);
|
|
|
|
Vector lerp(const Vector &v1, const Vector &v2, float dt, int lerpType);
|
|
|
|
#endif // BBGE_VECTOR_H
|