1
0
Fork 0
mirror of https://github.com/AquariaOSE/Aquaria.git synced 2025-01-13 19:56:54 +00:00
Aquaria/BBGE/Model.cpp

460 lines
13 KiB
C++

/*
Copyright (C) 2007, 2010 - Bit-Blot
This file is part of Aquaria.
Aquaria is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "Model.h"
#include "Core.h"
#include "cal3d/cal3d.h"
#include "../ExternalLibs/glpng.h"
const std::string modelPath = "models/";
Model::Model() : RenderObject()
{
m_calModel = 0;
//, coreModel("poot")
m_calCoreModel = new CalCoreModel("model");
if (!m_calCoreModel)
{
errorLog("Model: failed: new CalCoreModel");
}
m_motionBlend[0] = 0.6f;
m_motionBlend[1] = 0.1f;
m_motionBlend[2] = 0.3f;
m_animationCount = 0;
m_meshCount = 0;
m_renderScale = 1.0f;
m_lodLevel = 1.0f;
cull = false;
}
void Model::destroy()
{
RenderObject::destroy();
}
bool Model::load(const std::string& _strFilename)
{
// open the model configuration file
std::ifstream file;
std::string strFilename(core->adjustFilenameCase(_strFilename));
file.open(strFilename.c_str(), std::ios::in | std::ios::binary);
if(!file)
{
std::ostringstream os;
os << "Failed to open model configuration file '" << strFilename << "'." << std::endl;
errorLog(os.str());
return false;
}
// initialize the data path
std::string strPath = m_path;
// initialize the animation count
int animationCount;
animationCount = 0;
// parse all lines from the model configuration file
int line;
for(line = 1; ; line++)
{
// read the next model configuration line
std::string strBuffer;
std::getline(file, strBuffer);
// stop if we reached the end of file
if(file.eof()) break;
// check if an error happend while reading from the file
if(!file)
{
std::cerr << "Error while reading from the model configuration file '" << strFilename << "'." << std::endl;
return false;
}
// find the first non-whitespace character
std::string::size_type pos;
pos = strBuffer.find_first_not_of(" \t");
// check for empty lines
if((pos == std::string::npos) || (strBuffer[pos] == '\n') || (strBuffer[pos] == '\r') || (strBuffer[pos] == 0)) continue;
// check for comment lines
if(strBuffer[pos] == '#') continue;
// get the key
std::string strKey;
strKey = strBuffer.substr(pos, strBuffer.find_first_of(" =\t\n\r", pos) - pos);
pos += strKey.size();
// get the '=' character
pos = strBuffer.find_first_not_of(" \t", pos);
if((pos == std::string::npos) || (strBuffer[pos] != '='))
{
std::cerr << strFilename << "(" << line << "): Invalid syntax." << std::endl;
return false;
}
// find the first non-whitespace character after the '=' character
pos = strBuffer.find_first_not_of(" \t", pos + 1);
// get the data
std::string strData;
strData = strBuffer.substr(pos, strBuffer.find_first_of("\n\r", pos) - pos);
// handle the model creation
if(strKey == "scale")
{
// set rendering scale factor
m_renderScale = atof(strData.c_str());
}
else if(strKey == "path")
{
// set the new path for the data files if one hasn't been set already
if (m_path == "") strPath = strData;
}
else if(strKey == "skeleton")
{
// load core skeleton
std::cout << "Loading skeleton '" << strData << "'..." << std::endl;
if(!m_calCoreModel->loadCoreSkeleton(strPath + strData))
{
CalError::printLastError();
return false;
}
}
else if(strKey == "animation")
{
// load core animation
std::cout << "Loading animation '" << strData << "'..." << std::endl;
m_animationId[animationCount] = m_calCoreModel->loadCoreAnimation(strPath + strData);
if(m_animationId[animationCount] == -1)
{
CalError::printLastError();
return false;
}
animationCount++;
}
else if(strKey == "mesh")
{
// load core mesh
std::cout << "Loading mesh '" << strData << "'..." << std::endl;
if(m_calCoreModel->loadCoreMesh(strPath + strData) == -1)
{
CalError::printLastError();
return false;
}
}
else if(strKey == "material")
{
// load core material
std::cout << "Loading material '" << strData << "'..." << std::endl;
if(m_calCoreModel->loadCoreMaterial(strPath + strData) == -1)
{
CalError::printLastError();
return false;
}
}
else
{
std::cerr << strFilename << "(" << line << "): Invalid syntax." << std::endl;
return false;
}
}
// explicitely close the file
file.close();
// load all textures and store the opengl texture id in the corresponding map in the material
int materialId;
for(materialId = 0; materialId < m_calCoreModel->getCoreMaterialCount(); materialId++)
{
// get the core material
CalCoreMaterial *pCoreMaterial;
pCoreMaterial = m_calCoreModel->getCoreMaterial(materialId);
// loop through all maps of the core material
int mapId;
for(mapId = 0; mapId < pCoreMaterial->getMapCount(); mapId++)
{
// get the filename of the texture
std::string strFilename;
strFilename = pCoreMaterial->getMapFilename(mapId);
// load the texture from the file
GLuint textureId;
pngInfo info;
textureId = pngBind((strPath + strFilename).c_str(), PNG_BUILDMIPMAPS, PNG_ALPHA, &info, GL_CLAMP, GL_LINEAR_MIPMAP_LINEAR, GL_LINEAR);
//loadTexture(strPath + strFilename);
// store the opengl texture id in the user data of the map
pCoreMaterial->setMapUserData(mapId, (Cal::UserData)textureId);
}
}
// make one material thread for each material
// NOTE: this is not the right way to do it, but this viewer can't do the right
// mapping without further information on the model etc.
for(materialId = 0; materialId < m_calCoreModel->getCoreMaterialCount(); materialId++)
{
// create the a material thread
m_calCoreModel->createCoreMaterialThread(materialId);
// initialize the material thread
m_calCoreModel->setCoreMaterialId(materialId, 0, materialId);
}
// Calculate Bounding Boxes
m_calCoreModel->getCoreSkeleton()->calculateBoundingBoxes(m_calCoreModel);
m_calModel = new CalModel(m_calCoreModel);
// attach all meshes to the model
int meshId;
for(meshId = 0; meshId < m_calCoreModel->getCoreMeshCount(); meshId++)
{
m_calModel->attachMesh(meshId);
}
// set the material set of the whole model
m_calModel->setMaterialSet(0);
// set initial animation state
/*
m_state = STATE_MOTION;
m_calModel->getMixer()->blendCycle(m_animationId[STATE_MOTION], m_motionBlend[0], 0.0f);
m_calModel->getMixer()->blendCycle(m_animationId[STATE_MOTION + 1], m_motionBlend[1], 0.0f);
m_calModel->getMixer()->blendCycle(m_animationId[STATE_MOTION + 2], m_motionBlend[2], 0.0f);
*/
return true;
}
void Model::onUpdate(float dt)
{
RenderObject::onUpdate(dt);
if (m_calModel)
m_calModel->update(dt);
}
void Model::renderMesh(bool bWireframe, bool bLight)
{
// get the renderer of the model
CalRenderer *pCalRenderer;
pCalRenderer = m_calModel->getRenderer();
// begin the rendering loop
if(!pCalRenderer->beginRendering()) return;
// set wireframe mode if necessary
if(bWireframe)
{
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
}
// set the global OpenGL states
glEnable(GL_DEPTH_TEST);
glShadeModel(GL_SMOOTH);
// set the lighting mode if necessary
if(bLight)
{
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
}
// we will use vertex arrays, so enable them
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
// get the number of meshes
int meshCount;
meshCount = pCalRenderer->getMeshCount();
// render all meshes of the model
int meshId;
for(meshId = 0; meshId < meshCount; meshId++)
{
// get the number of submeshes
int submeshCount;
submeshCount = pCalRenderer->getSubmeshCount(meshId);
// render all submeshes of the mesh
int submeshId;
for(submeshId = 0; submeshId < submeshCount; submeshId++)
{
// select mesh and submesh for further data access
if(pCalRenderer->selectMeshSubmesh(meshId, submeshId))
{
unsigned char meshColor[4];
GLfloat materialColor[4];
// set the material ambient color
pCalRenderer->getAmbientColor(&meshColor[0]);
materialColor[0] = meshColor[0] / 255.0f; materialColor[1] = meshColor[1] / 255.0f; materialColor[2] = meshColor[2] / 255.0f; materialColor[3] = meshColor[3] / 255.0f;
glMaterialfv(GL_FRONT, GL_AMBIENT, materialColor);
// set the material diffuse color
pCalRenderer->getDiffuseColor(&meshColor[0]);
materialColor[0] = meshColor[0] / 255.0f; materialColor[1] = meshColor[1] / 255.0f; materialColor[2] = meshColor[2] / 255.0f; materialColor[3] = meshColor[3] / 255.0f;
glMaterialfv(GL_FRONT, GL_DIFFUSE, materialColor);
// set the vertex color if we have no lights
if(!bLight)
{
glColor4fv(materialColor);
}
// set the material specular color
pCalRenderer->getSpecularColor(&meshColor[0]);
materialColor[0] = meshColor[0] / 255.0f; materialColor[1] = meshColor[1] / 255.0f; materialColor[2] = meshColor[2] / 255.0f; materialColor[3] = meshColor[3] / 255.0f;
glMaterialfv(GL_FRONT, GL_SPECULAR, materialColor);
// set the material shininess factor
float shininess;
shininess = 50.0f; //TODO: pCalRenderer->getShininess();
glMaterialfv(GL_FRONT, GL_SHININESS, &shininess);
// get the transformed vertices of the submesh
static float meshVertices[30000][3];
int vertexCount;
vertexCount = pCalRenderer->getVertices(&meshVertices[0][0]);
// get the transformed normals of the submesh
static float meshNormals[30000][3];
pCalRenderer->getNormals(&meshNormals[0][0]);
// get the texture coordinates of the submesh
static float meshTextureCoordinates[30000][2];
int textureCoordinateCount;
textureCoordinateCount = pCalRenderer->getTextureCoordinates(0, &meshTextureCoordinates[0][0]);
// get the faces of the submesh
static CalIndex meshFaces[50000][3];
int faceCount;
faceCount = pCalRenderer->getFaces(&meshFaces[0][0]);
// set the vertex and normal buffers
glVertexPointer(3, GL_FLOAT, 0, &meshVertices[0][0]);
glNormalPointer(GL_FLOAT, 0, &meshNormals[0][0]);
// set the texture coordinate buffer and state if necessary
if((pCalRenderer->getMapCount() > 0) && (textureCoordinateCount > 0))
{
glEnable(GL_TEXTURE_2D);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glEnable(GL_COLOR_MATERIAL);
// set the texture id we stored in the map user data
glBindTexture(GL_TEXTURE_2D, (GLuint)pCalRenderer->getMapUserData(0));
// set the texture coordinate buffer
glTexCoordPointer(2, GL_FLOAT, 0, &meshTextureCoordinates[0][0]);
glColor4f(1.0f, 1.0f, 1.0f, 1.0f);
}
// draw the submesh
if(sizeof(CalIndex)==2)
glDrawElements(GL_TRIANGLES, faceCount * 3, GL_UNSIGNED_SHORT, &meshFaces[0][0]);
else
glDrawElements(GL_TRIANGLES, faceCount * 3, GL_UNSIGNED_INT, &meshFaces[0][0]);
// disable the texture coordinate state if necessary
if((pCalRenderer->getMapCount() > 0) && (textureCoordinateCount > 0))
{
glDisable(GL_COLOR_MATERIAL);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glDisable(GL_TEXTURE_2D);
}
// DEBUG-CODE //////////////////////////////////////////////////////////////////
/*
glBegin(GL_LINES);
glColor3f(1.0f, 1.0f, 1.0f);
int vertexId;
for(vertexId = 0; vertexId < vertexCount; vertexId++)
{
const float scale = 0.3f;
glVertex3f(meshVertices[vertexId][0], meshVertices[vertexId][1], meshVertices[vertexId][2]);
glVertex3f(meshVertices[vertexId][0] + meshNormals[vertexId][0] * scale, meshVertices[vertexId][1] + meshNormals[vertexId][1] * scale, meshVertices[vertexId][2] + meshNormals[vertexId][2] * scale);
}
glEnd();
*/
////////////////////////////////////////////////////////////////////////////////
}
}
}
// clear vertex array state
glDisableClientState(GL_NORMAL_ARRAY);
glDisableClientState(GL_VERTEX_ARRAY);
// reset the lighting mode
if(bLight)
{
glDisable(GL_LIGHTING);
glDisable(GL_LIGHT0);
}
// reset the global OpenGL states
glDisable(GL_DEPTH_TEST);
// reset wireframe mode if necessary
if(bWireframe)
{
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
}
// end the rendering
pCalRenderer->endRendering();
}
void Model::onRender()
{
/*
glClearDepth(1.0f);
core->resize3D();
*/
glEnable(GL_DEPTH_TEST); // Enables Depth Testing
glDepthFunc(GL_LEQUAL); // The Type Of Depth Testing To Do
glDisable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
glShadeModel(GL_SMOOTH);
// check if we need to render the mesh
renderMesh(false, false);
glEnable(GL_TEXTURE_2D);
glDisable(GL_DEPTH_TEST);
}