1
0
Fork 0
mirror of https://github.com/AquariaOSE/Aquaria.git synced 2024-11-29 03:33:48 +00:00
Aquaria/BBGE/Vector.h
fgenesis 8472718fb7 Major include refactor; changes to pretty much everything
This untangles some of the gigantic kitchen sink headers
in an attempt to split things into smaller files.
Also don't include gl.h, glext.h, windows.h,
and other such nonsense *everywhere*.

Lots of cleanups on the way too. More dead/unused code removal.

Remove incrFlag(), decrFlag() Lua functions.
2016-07-09 04:18:40 +02:00

525 lines
10 KiB
C++

/*
Copyright (C) 2007, 2010 - Bit-Blot
This file is part of Aquaria.
Aquaria is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifndef BBGE_VECTOR_H
#define BBGE_VECTOR_H
#include <cmath>
#include <float.h>
#include <vector>
typedef float scalar_t;
class Vector
{
public:
scalar_t x;
scalar_t y;
scalar_t z; // x,y,z coordinates
Vector(scalar_t a = 0, scalar_t b = 0, scalar_t c = 0) : x(a), y(b), z(c) {}
Vector(const Vector &vec) : x(vec.x), y(vec.y), z(vec.z) {}
float inline *getv(float *v) const
{
v[0] = x; v[1] = y; v[2] = z;
return v;
}
float inline *getv4(float *v, float param) const
{
v[0] = x; v[1] = y; v[2] = z; v[3] = param;
return v;
}
// vector assignment
const Vector &operator=(const Vector &vec)
{
x = vec.x;
y = vec.y;
z = vec.z;
return *this;
}
// vecector equality
bool operator==(const Vector &vec) const
{
return ((x == vec.x) && (y == vec.y) && (z == vec.z));
}
// vecector inequality
bool operator!=(const Vector &vec) const
{
return !(*this == vec);
}
// vector add
const Vector operator+(const Vector &vec) const
{
return Vector(x + vec.x, y + vec.y, z + vec.z);
}
// vector add (opposite of negation)
const Vector operator+() const
{
return Vector(*this);
}
// vector increment
const Vector& operator+=(const Vector& vec)
{ x += vec.x;
y += vec.y;
z += vec.z;
return *this;
}
// vector subtraction
const Vector operator-(const Vector& vec) const
{
return Vector(x - vec.x, y - vec.y, z - vec.z);
}
// vector negation
const Vector operator-() const
{
return Vector(-x, -y, -z);
}
// vector decrement
const Vector &operator-=(const Vector& vec)
{
x -= vec.x;
y -= vec.y;
z -= vec.z;
return *this;
}
// scalar self-multiply
const Vector &operator*=(const scalar_t &s)
{
x *= s;
y *= s;
z *= s;
return *this;
}
// scalar self-divecide
const Vector &operator/=(const scalar_t &s)
{
const float recip = 1/s; // for speed, one divecision
x *= recip;
y *= recip;
z *= recip;
return *this;
}
// vector self-divide
const Vector &operator/=(const Vector &v)
{
x /= v.x;
y /= v.y;
z /= v.z;
return *this;
}
const Vector &operator*=(const Vector &v)
{
x *= v.x;
y *= v.y;
z *= v.z;
return *this;
}
// post multiply by scalar
const Vector operator*(const scalar_t &s) const
{
return Vector(x*s, y*s, z*s);
}
// post multiply by Vector
const Vector operator*(const Vector &v) const
{
return Vector(x*v.x, y*v.y, z*v.z);
}
// pre multiply by scalar
friend inline const Vector operator*(const scalar_t &s, const Vector &vec)
{
return vec*s;
}
// divecide by scalar
const Vector operator/(scalar_t s) const
{
s = 1/s;
return Vector(s*x, s*y, s*z);
}
// cross product
const Vector CrossProduct(const Vector &vec) const
{
return Vector(y*vec.z - z*vec.y, z*vec.x - x*vec.z, x*vec.y - y*vec.x);
}
inline Vector getPerpendicularLeft()
{
return Vector(-y, x);
}
inline Vector getPerpendicularRight()
{
return Vector(y, -x);
}
// cross product
const Vector operator^(const Vector &vec) const
{
return Vector(y*vec.z - z*vec.y, z*vec.x - x*vec.z, x*vec.y - y*vec.x);
}
// dot product
inline scalar_t dot(const Vector &vec) const
{
return x*vec.x + y*vec.y + z*vec.z;
}
inline scalar_t dot2D(const Vector &vec) const
{
return x*vec.x + y*vec.y;
}
// dot product
scalar_t operator%(const Vector &vec) const
{
return x*vec.x + y*vec.x + z*vec.z;
}
// length of vector
inline scalar_t getLength3D() const
{
return (scalar_t)sqrtf(x*x + y*y + z*z);
}
inline scalar_t getLength2D() const
{
return (scalar_t)sqrtf(x*x + y*y);
}
// return the unit vector
inline const Vector unitVector3D() const
{
return (*this) * (1/getLength3D());
}
// normalize this vector
inline void normalize3D()
{
if (x == 0 && y == 0 && z == 0)
{
x = y = z = 0;
}
else
{
(*this) *= 1/getLength3D();
}
}
inline void normalize2D()
{
if (x == 0 && y == 0)
{
x = y = z= 0;
}
else
{
(*this) *= 1/getLength2D();
}
}
scalar_t operator!() const
{
return sqrtf(x*x + y*y + z*z);
}
inline void setLength3D(const float l)
{
// IGNORE !!
if (l == 0)
{
}
else
{
float len = getLength3D();
this->x *= (l/len);
this->y *= (l/len);
this->z *= (l/len);
}
}
inline void setLength2D(const float l)
{
float len = getLength2D();
if (len == 0)
{
}
else
{
this->x *= (l/len);
this->y *= (l/len);
}
}
// return angle between two vectors
inline scalar_t Angle(const Vector& normal) const
{
return acosf(*this % normal);
}
inline bool isLength2DIn(float radius) const
{
return (x*x + y*y) <= (radius*radius);
}
inline void setZero()
{
this->x = this->y = this->z = 0;
}
inline scalar_t getSquaredLength2D() const
{
return (x*x) + (y*y);
}
inline bool isZero() const
{
return x==0 && y==0 && z==0;
}
inline bool isNan() const
{
#ifdef BBGE_BUILD_WINDOWS
return _isnan(x) || _isnan(y) || _isnan(z);
#elif defined(BBGE_BUILD_UNIX)
return std::isnan(x) || std::isnan(y) || std::isnan(z);
#else
return false;
#endif
}
inline void capLength2D(const float l)
{
if (!isLength2DIn(l)) setLength2D(l);
}
inline void capRotZ360()
{
while (z > 360)
z -= 360;
while (z < 0)
z += 360;
}
void rotate2DRad(float rad);
void rotate2D360(float angle);
};
class VectorPathNode
{
public:
VectorPathNode() { percent = 0; }
Vector value;
float percent;
};
class VectorPath
{
public:
void flip();
void clear();
void addPathNode(Vector v, float p);
Vector getValue(float percent);
int getNumPathNodes() { return pathNodes.size(); }
void resizePathNodes(int sz) { pathNodes.resize(sz); }
VectorPathNode *getPathNode(int i) { if (i<getNumPathNodes() && i >= 0) return &pathNodes[i]; return 0; }
void cut(int n);
void splice(const VectorPath &path, int sz);
void prepend(const VectorPath &path);
void append(const VectorPath &path);
void removeNode(unsigned int i);
void calculatePercentages();
float getLength();
void realPercentageCalc();
void removeNodes(unsigned int startInclusive, unsigned int endInclusive);
float getSubSectionLength(int startIncl, int endIncl);
protected:
std::vector <VectorPathNode> pathNodes;
};
// This struct is used to keep all of the interpolation-specific data out
// of the global InterpolatedVector class, so that we don't waste memory on
// non-interpolated vectors.
struct InterpolatedVectorData
{
InterpolatedVectorData()
{
interpolating = false;
pingPong = false;
loopType = 0;
pathTimer = 0;
pathTime = 0;
pathSpeed = 1;
pathTimeMultiplier = 1;
timePassed = 0;
timePeriod = 0;
ease = false;
followingPath = false;
}
Vector from;
Vector target;
VectorPath path;
int loopType;
float pathTimer, pathTime;
float pathSpeed;
float pathTimeMultiplier;
float timePassed, timePeriod;
bool interpolating;
bool pingPong;
bool ease;
bool followingPath;
};
class InterpolatedVector : public Vector
{
public:
InterpolatedVector(scalar_t a = 0, scalar_t b = 0, scalar_t c = 0) : Vector(a,b,c), data(NULL) {}
InterpolatedVector(const Vector &vec) : Vector(vec), data(NULL) {}
~InterpolatedVector() {delete data;}
InterpolatedVector(const InterpolatedVector &vec)
{
x = vec.x;
y = vec.y;
z = vec.z;
if (vec.data)
data = new InterpolatedVectorData(*vec.data);
else
data = NULL;
}
InterpolatedVector &operator=(const InterpolatedVector &vec)
{
x = vec.x;
y = vec.y;
z = vec.z;
if (vec.data)
{
if (data)
*data = *vec.data;
else
data = new InterpolatedVectorData(*vec.data);
}
else
{
delete data;
data = NULL;
}
return *this;
}
float interpolateTo (Vector vec, float timePeriod, int loopType = 0, bool pingPong = false, bool ease = false);
void inline update(float dt)
{
if (!data)
return;
if (isFollowingPath())
{
updatePath(dt);
}
if (isInterpolating())
{
doInterpolate(dt);
}
}
void doInterpolate(float dt);
inline bool isInterpolating() const
{
return data && data->interpolating;
}
void startPath(float time, float ease=0);
void startSpeedPath(float speed);
void stopPath();
void resumePath();
void updatePath(float dt);
void stop();
float getPercentDone();
inline bool isFollowingPath() const
{
return data && data->followingPath;
}
// We never allocate this if the vector isn't used for
// interpolation, which saves a _lot_ of memory.
InterpolatedVectorData *data;
inline InterpolatedVectorData *ensureData(void)
{
if (!data)
data = new InterpolatedVectorData;
return data;
}
};
Vector getRotatedVector(const Vector &vec, float rot);
Vector lerp(const Vector &v1, const Vector &v2, float dt, int lerpType);
#endif // BBGE_VECTOR_H