1
0
Fork 0
mirror of https://github.com/AquariaOSE/Aquaria.git synced 2025-01-26 02:07:26 +00:00
Aquaria/BBGE/Quad.cpp

741 lines
17 KiB
C++

/*
Copyright (C) 2007, 2010 - Bit-Blot
This file is part of Aquaria.
Aquaria is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "Quad.h"
#include "Core.h"
#include "RenderBase.h"
#include <assert.h>
Quad::Quad(const std::string &tex, const Vector &pos)
: RenderObject()
{
renderBorderColor = Vector(1,1,1);
initQuad();
position = pos;
setTexture(tex);
}
void Quad::setSegs(int x, int y, float dgox, float dgoy, float dgmx, float dgmy, float dgtm, bool dgo)
{
deleteGrid();
if (x == 0 || y == 0)
{
doUpdateGrid = false;
}
else
{
doUpdateGrid = true;
this->drawGridOffsetX = dgox;
this->drawGridOffsetY = dgoy;
this->drawGridModX = dgmx;
this->drawGridModY = dgmy;
this->drawGridTimeMultiplier = dgtm;
drawGridOut = dgo;
createGrid(x, y);
}
gridTimer = 0;
}
void Quad::createGrid(int xd, int yd)
{
drawGrid.init(xd, yd);
resetGrid();
Vector *dg = drawGrid.data();
for(size_t i = 0; i < drawGrid.linearsize(); ++i)
dg[i].z = 1.0f;
}
void Quad::setDrawGridAlpha(size_t x, size_t y, float alpha)
{
if (x < drawGrid.width() && y < drawGrid.height())
{
drawGrid(x, y).z = alpha;
}
}
void Quad::setStripPoints(bool vert, const Vector *points, size_t n)
{
if (drawGrid.empty()) return;
resetGrid();
const float mul = float(n);
if (!vert) // horz
{
const size_t xmax = std::min(drawGrid.width(), n);
for (size_t y = 0; y < drawGrid.height(); y++)
{
Vector *row = drawGrid.row(y);
for (size_t x = 0; x < xmax; x++)
row[x] += points[x] * mul;
}
}
else
{
const size_t ymax = std::min(drawGrid.height(), n);
for (size_t x = 0; x < drawGrid.width(); x++)
for (size_t y = 0; y < ymax; y++)
drawGrid(x, y) += points[y] * mul;
}
}
void Quad::ResetGrid(Vector* dst, size_t w, size_t h)
{
assert(w > 1 && h > 1);
const float xMulF = 1.0f / (float)(w-1);
const float yMulF = 1.0f / (float)(h-1);
for (size_t y = 0; y < h; y++)
{
const float yval = float(y)*yMulF-0.5f;
for (size_t x = 0; x < w; x++)
{
dst->x = float(x)*xMulF-0.5f;
dst->y = yval;
++dst;
}
}
}
void Quad::ResetGridAndAlpha(Vector* dst, size_t w, size_t h, float alpha)
{
assert(w > 1 && h > 1);
const float xMulF = 1.0f / (float)(w-1);
const float yMulF = 1.0f / (float)(h-1);
for (size_t y = 0; y < h; y++)
{
const float yval = float(y)*yMulF-0.5f;
for (size_t x = 0; x < w; x++)
{
dst->x = float(x)*xMulF-0.5f;
dst->y = yval;
dst->z = alpha;
++dst;
}
}
}
void Quad::resetGrid()
{
if (drawGrid.empty()) return;
ResetGrid(drawGrid.data(), drawGrid.width(), drawGrid.height());
}
void Quad::initQuad()
{
repeatToFillScale = Vector(1,1);
gridType = GRID_WAVY;
gridTimer = 0;
doUpdateGrid = false;
autoWidth = autoHeight = 0;
renderBorder = false;
renderCenter = true;
width = 2; height = 2;
upperLeftTextureCoordinates = Vector(0,0);
lowerRightTextureCoordinates = Vector(1,1);
renderQuad = true;
}
void Quad::_renderBorder(const RenderState& rs, Vector color, float borderalpha) const
{
glBindTexture(GL_TEXTURE_2D, 0);
if (rs.forceRenderCenter || renderCenter)
{
glColor4f(color.x, color.y, color.z, borderalpha*alpha.x*alphaMod);
glPointSize(16);
glBegin(GL_POINTS);
glVertex2f(0,0);
glEnd();
}
glColor4f(color.x, color.y, color.z, alpha.x*alphaMod);
glLineWidth(2);
const float _w2 = width*0.5f;
const float _h2 = height*0.5f;
glBegin(GL_LINES);
glVertex2f(-_w2, _h2);
glVertex2f(_w2, _h2);
glVertex2f(_w2, -_h2);
glVertex2f(_w2, _h2);
glVertex2f(-_w2, -_h2);
glVertex2f(-_w2, _h2);
glVertex2f(-_w2, -_h2);
glVertex2f(_w2, -_h2);
glEnd();
RenderObject::lastTextureApplied = 0;
}
Quad::Quad() : RenderObject()
{
addType(SCO_QUAD);
borderAlpha = 0.5;
drawOrder = GRID_DRAW_DEFAULT;
initQuad();
}
void Quad::deleteGrid()
{
drawGrid.clear();
}
void Quad::destroy()
{
deleteGrid();
RenderObject::destroy();
}
bool Quad::isCoordinateInside(Vector coord, int minSize) const
{
Vector realscale = getRealScale();
int hw = fabsf((width)*realscale.x)*0.5f;
int hh = fabsf((height)*realscale.y)*0.5f;
if (hw < minSize)
hw = minSize;
if (hh < minSize)
hh = minSize;
Vector pos = getRealPosition();
if (coord.x >= pos.x - hw && coord.x <= pos.x + hw)
{
if (coord.y >= pos.y - hh && coord.y <= pos.y + hh)
{
return true;
}
}
return false;
}
bool Quad::isCoordinateInsideWorld(const Vector &coord, int minSize) const
{
int hw = fabsf((width)*getRealScale().x)*0.5f;
int hh = fabsf((height)*getRealScale().y)*0.5f;
if (hw < minSize)
hw = minSize;
if (hh < minSize)
hh = minSize;
Vector pos = getWorldPosition();
if (coord.x >= pos.x + offset.x - hw && coord.x <= pos.x + offset.x + hw)
{
if (coord.y >= pos.y + offset.y - hh && coord.y <= pos.y + offset.y + hh)
{
return true;
}
}
return false;
}
bool Quad::isCoordinateInsideWorldRect(const Vector &coord, int w, int h) const
{
int hw = w*0.5f;
int hh = h*0.5f;
Vector pos = getWorldPosition();
if (coord.x >= pos.x + offset.x - hw && coord.x <= pos.x + offset.x + hw)
{
if (coord.y >= pos.y + offset.y - hh && coord.y <= pos.y + offset.y + hh)
{
return true;
}
}
return false;
}
void Quad::updateGrid(float dt)
{
if (!doUpdateGrid) return;
if (gridType == GRID_WAVY)
{
gridTimer += dt * drawGridTimeMultiplier;
resetGrid();
size_t hx = drawGrid.width()/2;
for (size_t x = 0; x < drawGrid.width(); x++)
{
float yoffset = x * drawGridOffsetY;
float addY = 0;
if (drawGridModY != 0)
addY = cosf(gridTimer+yoffset)*drawGridModY;
for (size_t y = 0; y < drawGrid.height(); y++)
{
float xoffset = y * drawGridOffsetX;
if (drawGridModX != 0)
{
float addX = (sinf(gridTimer+xoffset)*drawGridModX);
if (drawGridOut && x < hx)
drawGrid(x,y).x += addX;
else
drawGrid(x,y).x -= addX;
}
drawGrid(x,y).y += addY;
}
}
}
}
void Quad::renderGrid(const RenderState& rs) const
{
if (drawGrid.width() < 2 || drawGrid.height() < 2)
return;
switch(drawOrder)
{
case GRID_DRAW_LRTB:
renderGrid_LRTB(rs);
break;
case GRID_DRAW_LRBT:
renderGrid_LRBT(rs);
break;
case GRID_DRAW_WORLDMAP:
renderGridWithAlpha(rs);
break;
}
// debug points
if (RenderObject::renderCollisionShape)
{
const size_t NX = drawGrid.width()-1;
const size_t NY = drawGrid.height()-1;
const float w = this->getWidth();
const float h = this->getHeight();
glBindTexture(GL_TEXTURE_2D, 0);
glPointSize(2);
glColor3f(1,0,0);
glBegin(GL_POINTS);
for (size_t y = 0; y < NY; y++)
{
for (size_t x = 0; x < NX; x++)
{
glVertex2f(w*drawGrid(x,y).x, h*drawGrid(x,y).y);
glVertex2f(w*drawGrid(x,y+1).x, h*drawGrid(x,y+1).y);
glVertex2f(w*drawGrid(x+1,y+1).x, h*drawGrid(x+1,y+1).y);
glVertex2f(w*drawGrid(x+1,y).x, h*drawGrid(x+1,y).y);
}
}
glEnd();
RenderObject::lastTextureApplied = 0;
}
}
void Quad::renderGrid_LRTB(const RenderState& rs) const
{
const float percentX = lowerRightTextureCoordinates.x - upperLeftTextureCoordinates.x;
const float percentY = lowerRightTextureCoordinates.y - upperLeftTextureCoordinates.y;
const float baseX = upperLeftTextureCoordinates.x;
const float baseY = upperLeftTextureCoordinates.y;
const size_t NX = drawGrid.width()-1;
const size_t NY = drawGrid.height()-1;
// NOTE: These are used to avoid repeated expensive divide operations,
// but they may cause rounding error of around 1 part per million,
// which could in theory cause minor graphical glitches with broken
// OpenGL implementations. --achurch
const float incX = percentX / float(NX);
const float incY = percentY / float(NY);
const float w = this->getWidth();
const float h = this->getHeight();
const float red = rs.color.x * this->color.x;
const float green = rs.color.y * this->color.y;
const float blue = rs.color.z * this->color.z;
const float alpha = rs.alpha * this->alpha.x * this->alphaMod;
glColor4f(red, green, blue, alpha);
glBegin(GL_QUADS);
float v0 = baseY;
float v1 = v0 + incY;
for (size_t y = 0; y < NY; y++, v0 = v1, v1 += incY)
{
float u0 = baseX;
float u1 = u0 + incX;
const Vector *row0 = drawGrid.row(y);
const Vector *row1 = drawGrid.row(y+1);
for (size_t x = 0; x < NX; x++, u0 = u1, u1 += incX)
{
const Vector dg00 = row0[x];
const Vector dg01 = row1[x];
const Vector dg10 = row0[x+1];
const Vector dg11 = row1[x+1];
glTexCoord2f(u0, v0);
glVertex2f(w*dg00.x, h*dg00.y);
glTexCoord2f(u0, v1);
glVertex2f(w*dg01.x, h*dg01.y);
glTexCoord2f(u1, v1);
glVertex2f(w*dg11.x, h*dg11.y);
glTexCoord2f(u1, v0);
glVertex2f(w*dg10.x, h*dg10.y);
}
}
glEnd();
}
void Quad::renderGrid_LRBT(const RenderState& rs) const
{
const float percentX = lowerRightTextureCoordinates.x - upperLeftTextureCoordinates.x;
const float percentY = upperLeftTextureCoordinates.y - lowerRightTextureCoordinates.y;
const float baseX = upperLeftTextureCoordinates.x;
const float baseY = lowerRightTextureCoordinates.y;
const size_t NX = drawGrid.width()-1;
const size_t NY = drawGrid.height()-1;
// NOTE: These are used to avoid repeated expensive divide operations,
// but they may cause rounding error of around 1 part per million,
// which could in theory cause minor graphical glitches with broken
// OpenGL implementations. --achurch
const float incX = percentX / float(NX);
const float incY = percentY / float(NY);
const float w = this->getWidth();
const float h = this->getHeight();
const float red = rs.color.x * this->color.x;
const float green = rs.color.y * this->color.y;
const float blue = rs.color.z * this->color.z;
const float alpha = rs.alpha * this->alpha.x * this->alphaMod;
glColor4f(red, green, blue, alpha);
glBegin(GL_QUADS);
float v0 = baseY;
float v1 = v0 + incY;
for (size_t y = NY; y --> 0; v0 = v1, v1 += incY)
{
float u0 = baseX;
float u1 = u0 + incX;
const Vector *row0 = drawGrid.row(y+1);
const Vector *row1 = drawGrid.row(y);
for (size_t x = 0; x < NX; x++, u0 = u1, u1 += incX)
{
const Vector dg00 = row0[x];
const Vector dg01 = row1[x];
const Vector dg10 = row0[x+1];
const Vector dg11 = row1[x+1];
glTexCoord2f(u0, v0);
glVertex2f(w*dg00.x, h*dg00.y);
glTexCoord2f(u0, v1);
glVertex2f(w*dg01.x, h*dg01.y);
glTexCoord2f(u1, v1);
glVertex2f(w*dg11.x, h*dg11.y);
glTexCoord2f(u1, v0);
glVertex2f(w*dg10.x, h*dg10.y);
}
}
glEnd();
}
void Quad::renderGridWithAlpha(const RenderState& rs) const
{
const float percentX = fabsf(this->lowerRightTextureCoordinates.x - this->upperLeftTextureCoordinates.x);
const float percentY = fabsf(this->upperLeftTextureCoordinates.y - this->lowerRightTextureCoordinates.y);
const float baseX =
(lowerRightTextureCoordinates.x < upperLeftTextureCoordinates.x)
? lowerRightTextureCoordinates.x : upperLeftTextureCoordinates.x;
const float baseY =
(lowerRightTextureCoordinates.y < upperLeftTextureCoordinates.y)
? lowerRightTextureCoordinates.y : upperLeftTextureCoordinates.y;
const size_t NX = drawGrid.width()-1;
const size_t NY = drawGrid.height()-1;
// NOTE: These are used to avoid repeated expensive divide operations,
// but they may cause rounding error of around 1 part per million,
// which could in theory cause minor graphical glitches with broken
// OpenGL implementations. --achurch
const float incX = percentX / float(NX);
const float incY = percentY / float(NY);
const float w = this->getWidth();
const float h = this->getHeight();
const float red = rs.color.x * this->color.x;
const float green = rs.color.y * this->color.y;
const float blue = rs.color.z * this->color.z;
const float alpha = rs.alpha * this->alpha.x * this->alphaMod;
glBegin(GL_QUADS);
float v0 = 1 - percentY + baseY;
float v1 = v0 + incY;
for (size_t y = 0; y < NY; y++, v0 = v1, v1 += incY)
{
float u0 = baseX;
float u1 = u0 + incX;
const Vector *row0 = drawGrid.row(y);
const Vector *row1 = drawGrid.row(y+1);
for (size_t x = 0; x < NX; x++, u0 = u1, u1 += incX)
{
const Vector dg00 = row0[x];
const Vector dg01 = row1[x];
const Vector dg10 = row0[x+1];
const Vector dg11 = row1[x+1];
if (dg00.z != 0 || dg01.z != 0 || dg10.z != 0 || dg11.z != 0)
{
glColor4f(red, green, blue, alpha*dg00.z);
glTexCoord2f(u0, v0);
glVertex2f(w*dg00.x, h*dg00.y);
glColor4f(red, green, blue, alpha*dg01.z);
glTexCoord2f(u0, v1);
glVertex2f(w*dg01.x, h*dg01.y);
glColor4f(red, green, blue, alpha*dg11.z);
glTexCoord2f(u1, v1);
glVertex2f(w*dg11.x, h*dg11.y);
glColor4f(red, green, blue, alpha*dg10.z);
glTexCoord2f(u1, v0);
glVertex2f(w*dg10.x, h*dg10.y);
}
}
}
glEnd();
}
void Quad::repeatTextureToFill(bool on)
{
repeatTexture = on;
refreshRepeatTextureToFill();
}
void Quad::onRender(const RenderState& rs) const
{
if (!renderQuad) return;
const float _w2 = width*0.5f;
const float _h2 = height*0.5f;
if (drawGrid.empty())
{
glBegin(GL_QUADS);
{
glTexCoord2f(upperLeftTextureCoordinates.x, 1.0f-upperLeftTextureCoordinates.y);
glVertex2f(-_w2, +_h2);
glTexCoord2f(lowerRightTextureCoordinates.x, 1.0f-upperLeftTextureCoordinates.y);
glVertex2f(+_w2, +_h2);
glTexCoord2f(lowerRightTextureCoordinates.x, 1.0f-lowerRightTextureCoordinates.y);
glVertex2f(+_w2, -_h2);
glTexCoord2f(upperLeftTextureCoordinates.x, 1.0f-lowerRightTextureCoordinates.y);
glVertex2f(-_w2, -_h2);
}
glEnd();
}
else
{
renderGrid(rs);
}
if(renderBorder)
_renderBorder(rs, renderBorderColor, borderAlpha);
else if(rs.forceRenderBorder)
_renderBorder(rs, rs.renderBorderColor, rs.renderBorderAlpha);
}
void Quad::flipHorizontal()
{
RenderObject::flipHorizontal();
}
void Quad::flipVertical()
{
if (!_fv)
{
lowerRightTextureCoordinates.y = 0;
upperLeftTextureCoordinates.y = 1;
}
else
{
lowerRightTextureCoordinates.y = 1;
upperLeftTextureCoordinates.y = 0;
}
RenderObject::flipVertical();
}
void Quad::refreshRepeatTextureToFill()
{
if (repeatTexture && texture)
{
upperLeftTextureCoordinates.x = texOff.x;
upperLeftTextureCoordinates.y = texOff.y;
lowerRightTextureCoordinates.x = (width*scale.x*repeatToFillScale.x)/texture->width + texOff.x;
lowerRightTextureCoordinates.y = (height*scale.y*repeatToFillScale.y)/texture->height + texOff.y;
}
else
{
if (fabsf(lowerRightTextureCoordinates.x) > 1 || fabsf(lowerRightTextureCoordinates.y)>1)
lowerRightTextureCoordinates = Vector(1,1);
}
}
void Quad::reloadDevice()
{
RenderObject::reloadDevice();
}
void Quad::onUpdate(float dt)
{
RenderObject::onUpdate(dt);
if (autoWidth == AUTO_VIRTUALWIDTH)
width = core->getVirtualWidth();
else if (autoWidth == AUTO_VIRTUALHEIGHT)
width = core->getVirtualHeight();
if (autoHeight == AUTO_VIRTUALWIDTH)
height = core->getVirtualWidth();
else if (autoHeight == AUTO_VIRTUALHEIGHT)
height = core->getVirtualHeight();
if (!drawGrid.empty() && alpha.x > 0 && alphaMod > 0)
{
updateGrid(dt);
}
}
void Quad::setWidthHeight(float w, float h)
{
if (h == -1)
height = w;
else
height = h;
width = w;
}
void Quad::setWidth(float w)
{
width = w;
}
void Quad::setHeight(float h)
{
height = h;
}
void Quad::onSetTexture()
{
if (texture)
{
width = this->texture->width;
height = this->texture->height;
}
else
{
width = 64;
height = 64;
}
}
PauseQuad::PauseQuad() : Quad(), pauseLevel(0), positionSnapTo(0)
{
addType(SCO_PAUSEQUAD);
}
PauseQuad::~PauseQuad()
{
}
void PauseQuad::onUpdate(float dt)
{
if (positionSnapTo)
this->position = *positionSnapTo;
if (core->particlesPaused <= pauseLevel)
{
Quad::onUpdate(dt);
}
}
void PauseQuad::setPositionSnapTo(InterpolatedVector *positionSnapTo)
{
this->positionSnapTo = positionSnapTo;
}
CollideQuad::CollideQuad()
: collideRadius(0)
{
addType(SCO_COLLIDE_QUAD);
}
CollideQuad::~CollideQuad()
{
}
void CollideQuad::renderCollision(const RenderState& rs) const
{
if (collideRadius > 0)
{
glPushMatrix();
glLoadIdentity();
core->setupRenderPositionAndScale();
glBindTexture(GL_TEXTURE_2D, 0);
glTranslatef(position.x+offset.x, position.y+offset.y, 0);
glTranslatef(internalOffset.x, internalOffset.y, 0);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glColor4f(1,0,0,0.5);
drawCircle(collideRadius, 8);
glDisable(GL_BLEND);
glTranslatef(offset.x, offset.y,0);
glPopMatrix();
}
}