1
0
Fork 0
mirror of https://github.com/AquariaOSE/Aquaria.git synced 2024-11-25 17:53:47 +00:00
Aquaria/ExternalLibs/tbsp.hh

994 lines
30 KiB
C++

/* Tiny B-spline evaluation and interpolation library
License:
Public domain, WTFPL, CC0 or your favorite permissive license; whatever is available in your country.
Origin:
https://github.com/fgenesis/tinypile
This library is split into two parts:
- (1) Bspline evaluation (given a set of control points, generate points along the spline)
- (2) Bspline interpolation (given some points, generate control points so that the resulting spline
goes through these points. Needs part (1) to function.)
Requirements:
- Part (1) has zero dependencies (not even libc)
- Part (2) requires sqrt() from the libc. Change TBSP_SQRT() to use your own.
Design notes:
- C++98 compatible. Stand-alone.
- No memory allocation; all memory is caller-controlled and caller-owned.
In cases where this is needed, the caller needs to pass appropriately-sized working memory.
This is a template library and your types must fulfil certain criteria:
- Scalar (T): Same semantics as float or double. Should be POD. Best use float.
- Point (P): Interpolated type. Must support the following operators:
Point operator+(const Point& o) const // Element addition
Point operator-(const Point& o) const // Element subtraction
Point& operator+=(const Point& o) // Add to self
Point& operator-=(const Point& o) // Subtract from self
Point operator*(Scalar m) const // Scalar multiplication
Point& operator=(const Point& o) // Assignment
No constructors are required and the code does not need the type to be zero-inited.
--- Example usage, Bspline evaluation: ---
enum { DEGREE = 3 }; // Cubic
const Point cp[NCP] = {...}; // Control points for the spline
float knots[tbsp__getNumKnots(NCP, DEGREE)]; // knot vector; used for evaluating the spline
Point tmp[DEGREE]; // Temporary working memory must be provided by the caller.
// This is just a tiny array. Must have as many elements as the degree of the spline.
// This must be done once for each B-spline; the spline is then defined by the knot vector.
// In particular, this inits a knot vector with end points [L..R],
// ie. the spline will interpolate values for t = [L..R].
// (You can use any boundary values L < R, eg. [-4..+5], but [0..1] is the most common)
// Note that this depends only on the number of the control points, but not their values.
// This means you only need to compute this when NCP changes!
tbsp::fillKnotVector(knots, NCP, DEGREE, L, R);
// Evaluate the spline at point t
// Returns cp[0] if t <= L; cp[NCP-1] if t >= R; otherwise an interpolated point
Point p = tbsp::evalOne(tmp, knots, cp, NCP, DEGREE, t);
// Evaluate NP points between t=0.2 .. t=0.5, equidistantly spaced, and write to p[].
// (If you have multiple points to evaluate, this is much faster than multiple evalOne() calls)
Point p[NP];
tbsp::evalRange(p, NP, tmp, knots, cp, NCP, DEGREE, 0.2f, 0.5f);
*/
#pragma once
#include <stddef.h> // size_t
// ---- Compile-time config ------
#ifndef TBSP_SQRT // Needed for part (2) only
# include <math.h>
# define TBSP_SQRT(x) sqrt(x)
#endif
#if !defined(NDEBUG) || defined(_DEBUG) || defined(DEBUG)
# ifndef TBSP_ASSERT
# include <assert.h>
# define TBSP_ASSERT(x) assert(x)
# endif
#endif
// ---- Generic defines and stuff we need ----
// Should be constexpr, but we want to stay C++98-compatible
#define tbsp__getNumKnots(numControlPoints, degree) ((numControlPoints) + (degree) + 1)
#ifndef TBSP_ASSERT
# define TBSP_ASSERT(x)
#endif
#ifdef _MSC_VER
# define TBSP_RESTRICT __restrict
#else
# define TBSP_RESTRICT restrict
#endif
#ifndef TBSP_HAS_CPP11
# if (__cplusplus > 201103L) || (defined(_MSC_VER) && ((_MSC_VER+0) >= 1900))
# define TBSP_HAS_CPP11 1
# else
# define TBSP_HAS_CPP11 0
# endif
#endif
// -----------------------------------------------------------------------------------
// ---- Part (1) begin: B-Spline eval ----
// Given some control points, calculate points along the spline.
// -----------------------------------------------------------------------------------
namespace tbsp {
namespace detail {
// returns index of first element strictly less than val
template<typename T>
static size_t findKnotIndexOffs(T val, const T *p, size_t n)
{
// Binary search to find leftmost element that is < val
size_t L = 0;
size_t R = n;
size_t m;
while(L < R)
{
m = (L + R) / 2u;
if(p[m] < val)
L = m + 1;
else
R = m;
}
// FIXME: can we just return m at this point?
if(L && !(p[L] < val))
--L;
TBSP_ASSERT(!L || p[L] < val);
return L;
}
template<typename T>
static inline size_t findKnotIndex(T val, const T *knots, size_t numknots, size_t degree)
{
TBSP_ASSERT(numknots > degree);
TBSP_ASSERT(val < knots[numknots - degree - 1]); // beyond right end? should have been caught by caller
// skip endpoints
return degree + findKnotIndexOffs(val, knots + degree, numknots - (degree * 2u));
}
template<typename K>
static void genKnotsUniform(K *knots, size_t nn, K mink, K maxk)
{
const K m = (maxk - mink) / K(nn + 1);
for(size_t i = 0; i < nn; ++i)
knots[i] = mink + K(i+1) * m;
}
template<typename T, typename P>
static P deBoor(P * TBSP_RESTRICT work, const P * TBSP_RESTRICT src, const T * TBSP_RESTRICT knots, const size_t r, const size_t k, const T t, size_t inputStride)
{
P last = src[0]; // init so that it works correctly even with degree == 0
for(size_t worksize = k; worksize > 1; --worksize)
{
const size_t j = k - worksize + 1; // iteration number, starting with 1, going up to k
const size_t tmp = r - k + 1 + j;
for(size_t w = 0, wr = 0; w < worksize - 1; ++w, wr += inputStride)
{
const size_t i = w + tmp;
const T ki = knots[i];
TBSP_ASSERT(ki <= t);
const T div = knots[i+k-j] - ki;
TBSP_ASSERT(div > 0);
const T a = (t - ki) / div;
const T a1 = T(1) - a;
work[w] = last = (src[wr] * a1) + (src[wr + inputStride] * a); // lerp
}
src = work; // done writing the initial data to work, now use that as input for further iterations
inputStride = 1;
}
return last;
}
} // end namespace detail
//--------------------------------------
template<typename T>
static size_t fillKnotVector(T *knots, size_t numcp, size_t degree, T mink, T maxk)
{
TBSP_ASSERT(mink < maxk);
const size_t n = numcp - 1;
if(n < degree) // lower degree if not enough control points
degree = n;
TBSP_ASSERT(n >= degree);
const size_t ep = degree + 1; // ep knots on each end
const size_t ne = n - degree; // non-endpoint knots in the middle
// endpoint interpolation, beginning
for(size_t i = 0; i < ep; ++i)
*knots++ = mink;
// TODO: allow more parametrizations
detail::genKnotsUniform(knots, ne, mink, maxk);
knots += ne;
// endpoint interpolation, end
for(size_t i = 0; i < ep; ++i)
*knots++ = maxk;
return degree;
}
// evaluate single point at t
template<typename T, typename P>
static P evalOne(P * TBSP_RESTRICT work, const T * TBSP_RESTRICT knots, const P * TBSP_RESTRICT controlpoints, size_t numcp, size_t degree, T t, size_t inputStride = 1)
{
if(t < knots[0])
return controlpoints[0]; // left out-of-bounds
if(numcp - 1 < degree)
degree = numcp - 1;
const size_t numknots = tbsp__getNumKnots(numcp, degree);
const T maxknot = knots[numknots - 1];
if(t < maxknot)
{
const size_t r = detail::findKnotIndex(t, knots, numknots, degree);
TBSP_ASSERT(r >= degree);
const size_t k = degree + 1;
TBSP_ASSERT(r + k < numknots); // check that the copy below stays in bounds
const P* const src = &controlpoints[r - degree];
return detail::deBoor(work, src, knots, r, k, t, inputStride);
}
return controlpoints[numcp - 1]; // right out-of-bounds
}
// evaluate numdst points in range [tmin..tmax], equally spaced
template<typename T, typename P>
static void evalRange(P * TBSP_RESTRICT dst, size_t numdst, P * TBSP_RESTRICT work, const T * TBSP_RESTRICT knots, const P * TBSP_RESTRICT controlpoints, size_t numcp, size_t degree, T tmin, T tmax, size_t inputStride = 1, size_t outputStride = 1)
{
TBSP_ASSERT(tmin <= tmax);
if(numcp - 1 < degree)
degree = numcp - 1;
const size_t numknots = tbsp__getNumKnots(numcp, degree);
size_t r = detail::findKnotIndex(tmin, knots, numknots, degree);
TBSP_ASSERT(r >= degree);
const size_t k = degree + 1;
TBSP_ASSERT(r + k < numknots); // check that the copy below stays in bounds
const T step = (tmax - tmin) / T(numdst - 1);
T t = tmin;
const size_t maxidx = numknots - k;
size_t i = 0;
// left out-of-bounds
for( ; i < numdst && t < knots[0]; ++i, t += step)
{
*dst = controlpoints[0];
dst += outputStride;
}
// actually interpolated points
const T maxknot = knots[numknots - 1];
for( ; i < numdst && t < maxknot; ++i, t += step)
{
while(r < maxidx && knots[r+1] < t) // find new index; don't need to do binary search again
++r;
const P * const src = &controlpoints[(r - degree) * inputStride];
*dst = detail::deBoor(work, src, knots, r, k, t, inputStride);
dst += outputStride;
}
// right out-of-bounds
if(i < numdst)
{
const P p = controlpoints[(numcp - 1) * inputStride];
do
{
*dst = p;
dst += outputStride;
++i;
}
while(i < numdst);
}
}
// -----------------------------------------------------------------------------------
// --- Part (2) begin: B-spline interpolation ----
// Given some points that should lie on a spline, calculate its control points
// -----------------------------------------------------------------------------------
namespace detail {
struct Size2d
{
size_t w, h;
inline bool operator==(const Size2d& o) const { return w == o.w && h == o.h; }
};
// Wrap any pointer to access it like a vector (with proper bounds checking)
template<typename T>
class VecAcc
{
public:
typedef T value_type;
VecAcc(T *p, const size_t n)
: p(p), n(n) {}
inline T& operator[](size_t i)
{
TBSP_ASSERT(i < n);
return p[i];
}
inline const T& operator[](size_t i) const
{
TBSP_ASSERT(i < n);
return p[i];
}
template<typename V>
VecAcc& operator=(const V& o)
{
TBSP_ASSERT(n == o.size());
for(size_t i = 0; i < n; ++i)
p[i] = o[i];
return *this;
}
VecAcc& operator=(const VecAcc<T>& o) // Required for C++11
{
TBSP_ASSERT(n == o.size());
for(size_t i = 0; i < n; ++i)
p[i] = o[i];
return *this;
}
template<typename V>
VecAcc& operator+=(const V& o)
{
TBSP_ASSERT(n == o.size());
for(size_t i = 0; i < n; ++i)
p[i] += o[i];
return *this;
}
template<typename V>
VecAcc& operator-=(const V& o)
{
TBSP_ASSERT(n == o.size());
for(size_t i = 0; i < n; ++i)
p[i] -= o[i];
return *this;
}
T dot(VecAcc<T>& o) const // vector dot product
{
T s = 0;
const size_t n = this->n;
tbsp__ASSERT(n == o.n);
for(size_t i = 0; i < n; ++i)
s += a.p[i] * b.p[i];
return s;
}
inline size_t size() const { return n; }
inline T *data() { return p; }
inline const T *data() const { return p; }
T *p;
size_t n;
};
// Wraps any pointer to access it like a row matrix.
// Intentionally a dumb POD struct, do NOT put ctors!
template<typename T>
struct MatrixAcc
{
typedef T value_type;
typedef VecAcc<T> RowAcc;
inline T& operator()(size_t x, size_t y)
{
TBSP_ASSERT(x < size.w);
TBSP_ASSERT(y < size.h);
return p[y * size.w + x];
}
inline const T& operator()(size_t x, size_t y) const
{
TBSP_ASSERT(x < size.w);
TBSP_ASSERT(y < size.h);
return p[y * size.w + x];
}
inline T *rowPtr(size_t y) const
{
return p + (y * size.w);
}
// w,h of (this * o)
inline Size2d multSize(const MatrixAcc<T>& o) const
{
// in math notation: (n x m) * (m x p) -> (n x p)
// and because math is backwards:
// (h x w) * (H x W) -> (h x W)
TBSP_ASSERT(size.w == o.size.h);
Size2d wh { o.size.w, size.h };
return wh;
}
inline RowAcc row(size_t y) const
{
TBSP_ASSERT(y < size.h);
return RowAcc(p + (y * size.w), size.w);
}
T *p;
Size2d size;
};
// Cut away the borders from A, so that the new matrix A' size is (A.size.w - 2, A.size.h - 2):
// ( xxxxx ) (where x means cut and any other letter means keep)
// ( xabcx ) ( abc )
// A = ( xdefx ), A' = ( def )
// ( xxxxx )
// then compute T(A') x A', ie.
// ( ad ) ( abc )
// R = ( be ) X ( def )
// ( cf )
// R must be already the correct size, ie. (A.size.w - 2, A.size.w - 2)!
template<typename T>
static void matMultCenterCutTransposeWithSelf(MatrixAcc<T>& TBSP_RESTRICT R, const MatrixAcc<T>& TBSP_RESTRICT A)
{
TBSP_ASSERT(A.size.w > 2 && A.size.h > 2);
const size_t w = A.size.w - 2; // also the final size of R: (w x w);
const size_t h = A.size.h - 2; // when iterating over w/h it stops before the last element in that row/col
TBSP_ASSERT(R.size.w == w && R.size.h == w);
T *out = R.p;
for (size_t y = 0; y < w; ++y)
{
for (size_t x = 0; x < w; ++x)
{
const T *row = A.p + y + 1; // skip first elem (+1)
const T *col = A.p + x + w; // skip first row (+w)
T temp = 0;
for (size_t k = 0; k < h; ++k, row += w, col += w)
temp += *row * *col;
*out++ = temp;
}
}
}
// Linear system solver via Cholesky decomposition
template<typename T>
struct Cholesky
{
typedef T value_type;
typedef MatrixAcc<T> Mat;
// Initializes a solver in the given memory.
// On success, bumps ptr forward by the memory it needs;
// on failure, returns NULL.
// Memory needed: (sizeof(T) * ((A.size.w + 1) * A.size.h))
T *init(T *mem, Size2d size)
{
T * const pdiag = mem + (size.w * size.h);
T * const myend = pdiag + size.w;
L.p = mem;
L.size = size;
idiag = pdiag; // T[n]
return myend;
}
// Sets the matrix A used for solving later. The solver is preconditioned
// for that matrix so that in (A * x + b) b is the only variable.
// May fail if A is not well formed.
bool refresh(const Mat& A)
{
TBSP_ASSERT(A.size == L.size);
TBSP_ASSERT(A.size.w >= A.size.h);
const size_t n = L.size.w;
// Fill the lower left triangle, storing the diagonal separately
for(size_t y = 0; y < n; ++y)
{
const typename Mat::RowAcc rrow = A.row(y);
typename Mat::RowAcc wrow = L.row(y);
for(size_t x = y; x < n; ++x)
{
T s = rrow[x];
for(size_t k = 0; k < y; ++k)
s -= wrow[k] * L(k,x);
if(x != y)
L(y,x) = s * idiag[y];
else if(s > 0)
idiag[y] = T(1) / (wrow[y] = TBSP_SQRT(s));
else
{
TBSP_ASSERT(0 && "Cholesky decomposition failed");
return false;
}
}
}
// Fill the upper right triangle with zeros
const T zero = T(0);
for(size_t y = 0; y < n; ++y)
{
typename Mat::RowAcc row = L.row(y);
for(size_t x = y+1; x < n; ++x)
row[x] = zero;
}
return true;
}
// Solves x for A * x + b. Both b and x must have length n.
// Can solve in-place, ie. you may pass xv == bv.
template<typename P>
void solve(P * const xv, const P * const bv) const
{
const size_t n = L.size.w;
for(size_t y = 0; y < n; ++y)
{
const typename Mat::RowAcc Lrow = L.row(y);
P p = bv[y];
for(size_t x = 0; x < y; ++x)
p -= xv[x] * Lrow[x];
xv[y] = p * idiag[y];
}
for(size_t y = n; y--; )
{
P p = xv[y];
for(size_t x = y+1; x < n; ++x)
p -= xv[x] * L(y,x);
xv[y] = p * idiag[y];
}
}
Mat L; // lower left triangle matrix
T *idiag; // 1 / diag; length is L.size.w
};
// Linear system solver via LU decomposition
// (Slower than Cholesky, but a bit more general ie. applicable to more cases)
template<typename T>
struct LUDecomp
{
typedef T value_type;
typedef MatrixAcc<T> Mat;
// Initializes a solver in the given memory.
// On success, bumps ptr forward by the memory it needs;
// on failure, returns NULL.
// Memory needed: (sizeof(T) * ((A.size.w + 1) * A.size.h))
T *init(T *mem, Size2d size)
{
T * const pdiag = mem + (size.w * size.h);
T * const myend = pdiag + size.w;
TBSP_ASSERT(size.w == size.h);
LU.p = mem;
LU.size = size;
idiag = pdiag;
return myend;
}
// Sets the matrix A used for solving later. The solver is preconditioned
// for that matrix so that in (A * x + b) b is the only variable.
void refresh(const Mat& A)
{
TBSP_ASSERT(A.size == LU.size);
const size_t n = LU.size.w;
// Note: This doesn't do pivoting.
for (size_t y = 0; y < n; ++y)
{
for (size_t x = y; x < n; ++x)
{
T e = A(x, y);
for (size_t k = 0; k < y; ++k)
e -= LU(k, y) * LU(x, k);
LU(x, y) = e;
}
const T idiagval = T(1) / LU(y,y);
idiag[y] = idiagval;
for (size_t x = y + 1; x < n; ++x)
{
T e = A(y,x);
for (size_t k = 0; k < y; ++k)
e -= LU(k, x) * LU(y, k);
LU(y, x) = idiagval * e;
}
}
}
// Solves x for A * x + b. Both b and x must have length n.
// Can solve in-place, ie. you may pass xv == bv.
template<typename P>
void solve(P * const xv, const P * const bv) const
{
const size_t n = LU.size.w;
for (size_t y = 0; y < n; ++y)
{
P p = bv[y];
const typename Mat::RowAcc LUrow = LU.row(y);
for (size_t x = 0; x < y; ++x)
p -= xv[x] * LUrow[x];
xv[y] = p;
}
for (size_t y = n; y--; )
{
P p = xv[y];
const typename Mat::RowAcc LUrow = LU.row(y);
for (size_t x = y + 1; x < n; ++x)
p -= xv[x] * LUrow[x];
xv[y] = p * idiag[y];
}
}
Mat LU; // combined both lower right & upper left triangles matrix
T *idiag; // 1 / diag; length is L.size.w
};
// The coeff vector for a given position u on the spline describes the influence of each control point
// towards the final result, ie.:
// resultPoint(u) = SUM(Nrow[i] * controlpoint[i]) for i in [0..Nrow),
// where Nrow[] are the coefficients for u.
// And to keep the parametrization simple, u is computed from t=0..1
template<typename T>
void computeCoeffVector(T * TBSP_RESTRICT Nrow, size_t numcp, T t01, const T * TBSP_RESTRICT knots, size_t degree)
{
for(size_t i = 0; i < numcp; ++i)
Nrow[i] = T(0);
const size_t n = numcp - 1;
// special cases
if(t01 <= T(0))
{
Nrow[0] = T(1);
return;
}
else if(t01 >= T(1))
{
Nrow[n] = T(1);
return;
}
const size_t numknots = tbsp__getNumKnots(numcp, degree);
const size_t m = numknots - 1;
const T mink = knots[0];
const T maxk = knots[m];
// Position on the knot vector aka transform t=0..1 into knot vector space
const T u = mink + t01 * (maxk - mink);
// find index k, so that u is in [knots[k], knots[k+1])
const size_t k = detail::findKnotIndex(u, knots, numknots, degree);
Nrow[k] = T(1);
// Coefficient computation
// See also: https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-curve-coef.html
for(size_t d = 1; d <= degree; ++d)
{
TBSP_ASSERT(d <= k);
const T q = (knots[k+1] - u) / (knots[k+1] - knots[k-d+1]);
Nrow[k-d] = q * Nrow[k-d+1];
for(size_t i = k-d+1; i < k; ++i)
{
const T a = (u - knots[i]) / (knots[i+d] - knots[i]);
const T b = (knots[i+d+1] - u) / (knots[i+d+1] - knots[i+1]);
Nrow[i] = a * Nrow[i] + b * Nrow[i+1];
}
Nrow[k] *= ((u - knots[k]) / (knots[k+d] - knots[k]));
}
}
template<typename T>
T *allocateCoeffMatrix(MatrixAcc<T>& N, T *mem, size_t nump, size_t numcp)
{
N.size.w = numcp;
N.size.h = nump;
N.p = mem;
return mem + (nump * numcp);
}
template<typename T>
void computeCoeffMatrix(MatrixAcc<T>& N, const T *knots, size_t degree)
{
const size_t numcp = N.size.w;
const size_t nump = N.size.h;
const T invsz = T(1) / T(nump - 1);
for(size_t i = 0; i < nump; ++i) // rows
{
// TODO: this is the parametrization. currently, this is equidistant. allow more.
const T t01 = float(i) * invsz; // position of point assuming uniform parametrization
typename MatrixAcc<T>::RowAcc row = N.row(i);
computeCoeffVector(&row[0], numcp, t01, knots, degree); // row 0 stores all coefficients for _t[0], etc
}
}
template<typename T>
Size2d getLeastSquaresSize(const MatrixAcc<T>& N)
{
Size2d sz;
sz.w = N.size.w - 2;
sz.h = N.size.w - 2; // (h = w) is intended, M is a square matrix!
return sz;
}
// Generate least-squares approximator for spline approximation
template<typename T>
MatrixAcc<T> generateLeastSquares(T *mem, const MatrixAcc<T>& N)
{
MatrixAcc<T> M;
M.p = mem;
M.size == getLeastSquaresSize(N);
T * const pend = M.p + (M.size.w * M.size.h);
matMultCenterCutTransposeWithSelf(M, N);
return M;
}
} // end namespace detail
// --------------------------------------------------
// Calculate how many elements of type T are needed as storage for the interpolator
// These should ideally be constexpr, but we want C++98 compatibility.
// For Interpolator::init()
#define tbsp__getInterpolatorStorageSize(numControlPoints, numPoints) \
( ((numControlPoints) == (numControlPoints)) \
? (((numControlPoints)+1) * (numPoints)) /* solver(N) */ \
: ( \
((numControlPoints) * (numPoints)) /* N */ \
+ (((numControlPoints)-1) * ((numControlPoints)-2)) /* solver(M) */ \
) \
)
// For Interpolator::refresh()
#define tbsp__getInterpolatorRefreshTempSize(numControlPoints, numPoints) \
( (numControlPoints) == (numControlPoints) \
? ((numControlPoints) * (numPoints)) /* N */ \
: (((numControlPoints)-2) * ((numControlPoints)-2)) /* M */ \
)
// For Interpolator::generateControlPoints()
#define tbsp_getInterpolatorWorkTempSize(numControlPoints, numPoints) \
( ((numControlPoints) == (numPoints)) ? 0 : ((numControlPoints) - 2) )
// --------------------------------------------------
// One interpolator is precomputed for a specific number of input points and output control points
template<typename T>
struct Interpolator
{
inline Interpolator() : numcp(0), nump(0) {}
// Inits an Interpolator in the passed mem[]. This memory must outlive the Interpolator
// and be at least tbsp__getInterpolatorStorageSize() elements.
// You may move or copy the memory elsewhere and then call init() again to update internal
// pointers to point to the new location.
// This does not access mem at all, it only stores pointers.
// When the number of points or control points change, the memory requirements change too;
// in this case you must re-init(), generate a new knot vector, and refresh().
T *init(T *mem, size_t nump, size_t numcp);
// When the knot vector or degree changes, call this to update the internal matrix solver.
// Must be called before generateControlPoints() can be used.
// tmp[] must have space for at least tbsp__getInterpolatorRefreshTempSize() elements
// and can be discarded after the call returns.
bool refresh(T * TBSP_RESTRICT const tmp, const T * TBSP_RESTRICT knots, unsigned degree);
// Given a set of points P[nump], generate set of control points cp[numcp].
// nump, numcp are defined by the numbers passed to init().
// workmem can be NULL if only interpolation is used (#controlpoints == #points).
// Approximation (#controlpoints < #points) needs extra working memory though,
// so you must pass at least tbsp_getInterpolatorWorkTempSize() elements of P.
// Returns how many control points were generated, for convenience.
// The working memory can be discarded after the call returns.
template<typename P>
size_t generateControlPoints(P * cp, P * TBSP_RESTRICT workmem, const P *points) const;
inline size_t getNumGeneratedControlPoints() { return numcp; }
inline size_t getNumInputPoints() { return nump; }
// ------------------------
protected:
size_t numcp, nump;
union
{
detail::Cholesky<T> cholesky;
detail::LUDecomp<T> ludecomp;
} solver;
detail::MatrixAcc<T> N;
// To make it checkable in if()
#if TBSP_HAS_CPP11
explicit inline operator bool() const { return !!numcp; }
#else // Explicit conversion operator is not supported in C++98
inline operator const void*() const { return numcp ? this : NULL; }
#endif
};
template<typename T>
T *Interpolator<T>::init(T * TBSP_RESTRICT const mem, size_t nump, size_t numcp)
{
TBSP_ASSERT(mem);
// Calling this with 2 points is pointless, < 2 is mathematically impossible
if(nump < 2 || numcp < 2 || !mem)
return NULL;
// Can only generate less or equal control points than points
TBSP_ASSERT(numcp <= nump);
if(!(numcp <= nump))
return NULL;
T *p = mem;
if(nump == numcp)
{
detail::allocateCoeffMatrix<T>(N, NULL, nump, numcp); // just to get the size
p = solver.ludecomp.init(p, N.size);
}
else
{
p = detail::allocateCoeffMatrix<T>(N, p, nump, numcp);
p = solver.cholesky.init(p, detail::getLeastSquaresSize(N));
}
if(p)
{
TBSP_ASSERT(p <= mem + tbsp__getInterpolatorStorageSize(numcp, nump));
this->numcp = numcp;
this->nump = nump;
}
return p;
}
template<typename T>
bool Interpolator<T>::refresh(T * TBSP_RESTRICT const tmp, const T * TBSP_RESTRICT knots, unsigned degree)
{
// Need temporary memory
TBSP_ASSERT(tmp);
const size_t numcp = N.size.w;
const size_t nump = N.size.h;
TBSP_ASSERT(numcp && nump);
bool ret = false;
if(nump == numcp)
{
// N allocated in tmp, solver(N) in mem
T *p = detail::allocateCoeffMatrix(N, tmp, nump, numcp);
TBSP_ASSERT(p <= tmp + tbsp__getInterpolatorRefreshTempSize(numcp, nump));
detail::computeCoeffMatrix(N, knots, degree);
// N is point-symmetric, ie. NOT diagonally symmetric.
// This means we can't use Cholesky decomposition, but LU decomposition is fine.
// Note: Cholesky decomposition will at first appear to work,
// but the solutions calculated with it are wrong. Don't use this here.
solver.ludecomp.refresh(N);
// N is no longer needed
// solver(N) stays
N.p = NULL;
ret = true;
}
else
{
// N allocated in mem, solver(M) in mem, M in tmp
detail::computeCoeffMatrix(N, knots, degree);
// This calculates M = T(N') x N', where N' is N with its borders removed.
// A nice property is that M is diagonally symmetric,
// means it can be efficiently solved via cholesky decomposition.
const detail::MatrixAcc<T> M = detail::generateLeastSquares(tmp, N);
TBSP_ASSERT(M.p + (M.size.w * M.size.h) <= tmp + tbsp__getInterpolatorRefreshTempSize(numcp, nump));
ret = solver.cholesky.refresh(M);
// M is no longer needed
// solver(M) stays
// N stays
}
return ret;
}
template<typename T> template<typename P>
size_t Interpolator<T>::generateControlPoints(P * cp, P * TBSP_RESTRICT workmem, const P *points) const
{
if(numcp == nump)
{
// This does not need extra working memory
solver.ludecomp.solve(cp, points);
}
else
{
// Approximate points with less control points, this is more costly
TBSP_ASSERT(workmem); // ... and needs extra memory
const size_t h = numcp - 1;
const size_t n = nump - 1;
const P p0 = points[0];
const P pn = points[n];
// Wrap the least squares estimator somehow together with the points to approximate...
// Unfortunately I forgot how this works, so no explanation of mathemagics here, sorry :<
const P initial = points[1] - (p0 * N(0,1)) - (pn * N(h,1));
for(size_t i = 1; i < h; ++i)
{
P tmp = initial * N(i,1);
for(size_t k = 2; k < n; ++k)
{
const typename detail::MatrixAcc<T>::RowAcc Nrow = N.row(k);
tmp += (points[k] - (p0 * Nrow[0]) - (pn * Nrow[h])) * Nrow[i];
}
workmem[i-1] = tmp;
}
// End points are not interpolated
cp[0] = p0;
cp[h] = pn;
// Solve for all points that are not endpoints
TBSP_ASSERT(solver.cholesky.L.size.w == h - 1);
solver.cholesky.solve(cp + 1, workmem);
}
return numcp;
}
// Helper functions for parametrization
template<typename T, typename P>
void chordal(T *parm, const P *points, size_t n)
{
// Start and end points are always 0 and 1, respectively
parm[0] = T(0);
parm[--n] = T(1);
T totaldist = 0;
for(size_t i = 1; i < n; ++i)
{
const T dist = distance(points[i-1], points[i]);
totaldist += dist;
parm[i] = totaldist
}
// Normalize to 0..1
const T m = T(1) / totaldist;
for(size_t i = 1; i < n; ++i)
parm[i] *= m;
}
template<typename T, typename P>
void uniform(T *parm, const P *points, size_t n)
{
const T m = T(1) / T(n - 1);
for(size_t i = 0; i < n; ++i)
parm[i] = T(i) * m;
}
} // end namespace tbsp