mirror of
https://github.com/AquariaOSE/Aquaria.git
synced 2025-01-26 02:07:26 +00:00
992 lines
30 KiB
C++
992 lines
30 KiB
C++
/* Tiny B-spline evaluation and interpolation library
|
|
|
|
License:
|
|
Public domain, WTFPL, CC0 or your favorite permissive license; whatever is available in your country.
|
|
|
|
Origin:
|
|
https://github.com/fgenesis/tinypile
|
|
|
|
This library is split into two parts:
|
|
- (1) Bspline evaluation (given a set of control points, generate points along the spline)
|
|
- (2) Bspline interpolation (given some points, generate control points so that the resulting spline
|
|
goes through these points. Needs part (1) to function.)
|
|
|
|
Requirements:
|
|
- Part (1) has zero dependencies (not even libc)
|
|
- Part (2) requires sqrt() from the libc. Change TBSP_SQRT() to use your own.
|
|
|
|
Design notes:
|
|
- C++98 compatible. Stand-alone.
|
|
- No memory allocation; all memory is caller-controlled and caller-owned.
|
|
In cases where this is needed, the caller needs to pass appropriately-sized working memory.
|
|
|
|
|
|
This is a template library and your types must fulfil certain criteria:
|
|
|
|
- Scalar (T): Same semantics as float or double. Should be POD. Best use float.
|
|
|
|
- Point (P): Interpolated type. Must support the following operators:
|
|
Point operator+(const Point& o) const // Element addition
|
|
Point operator-(const Point& o) const // Element subtraction
|
|
Point& operator+=(const Point& o) // Add to self
|
|
Point& operator-=(const Point& o) // Subtract from self
|
|
Point operator*(Scalar m) const // Scalar multiplication
|
|
Point& operator=(const Point& o) // Assignment
|
|
No constructors are required and the code does not need the type to be zero-inited.
|
|
|
|
|
|
--- Example usage, Bspline evaluation: ---
|
|
|
|
enum { DEGREE = 3 }; // Cubic
|
|
const Point cp[NCP] = {...}; // Control points for the spline
|
|
|
|
float knots[tbsp__getNumKnots(NCP, DEGREE)]; // knot vector; used for evaluating the spline
|
|
Point tmp[DEGREE]; // Temporary working memory must be provided by the caller.
|
|
// This is just a tiny array. Must have as many elements as the degree of the spline.
|
|
|
|
// This must be done once for each B-spline; the spline is then defined by the knot vector.
|
|
// In particular, this inits a knot vector with end points [L..R],
|
|
// ie. the spline will interpolate values for t = [L..R].
|
|
// (You can use any boundary values L < R, eg. [-4..+5], but [0..1] is the most common)
|
|
// Note that this depends only on the number of the control points, but not their values.
|
|
// This means you only need to compute this when NCP changes!
|
|
tbsp::fillKnotVector(knots, NCP, DEGREE, L, R);
|
|
|
|
// Evaluate the spline at point t
|
|
// Returns cp[0] if t <= L; cp[NCP-1] if t >= R; otherwise an interpolated point
|
|
Point p = tbsp::evalOne(tmp, knots, cp, NCP, DEGREE, t);
|
|
|
|
// Evaluate NP points between t=0.2 .. t=0.5, equidistantly spaced, and write to p[].
|
|
// (If you have multiple points to evaluate, this is much faster than multiple evalOne() calls)
|
|
Point p[NP];
|
|
tbsp::evalRange(p, NP, tmp, knots, cp, NCP, DEGREE, 0.2f, 0.5f);
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <stddef.h> // size_t
|
|
|
|
// ---- Compile-time config ------
|
|
|
|
|
|
#ifndef TBSP_SQRT // Needed for part (2) only
|
|
# include <math.h>
|
|
# define TBSP_SQRT(x) sqrt(x)
|
|
#endif
|
|
|
|
#if !defined(NDEBUG) || defined(_DEBUG) || defined(DEBUG)
|
|
# ifndef TBSP_ASSERT
|
|
# include <assert.h>
|
|
# define TBSP_ASSERT(x) assert(x)
|
|
# endif
|
|
#endif
|
|
|
|
|
|
|
|
// ---- Generic defines and stuff we need ----
|
|
|
|
|
|
// Should be constexpr, but we want to stay C++98-compatible
|
|
#define tbsp__getNumKnots(numControlPoints, degree) ((numControlPoints) + (degree) + 1)
|
|
|
|
#ifndef TBSP_ASSERT
|
|
# define TBSP_ASSERT(x)
|
|
#endif
|
|
|
|
#define TBSP_RESTRICT __restrict
|
|
|
|
#ifndef TBSP_HAS_CPP11
|
|
# if (__cplusplus > 201103L) || (defined(_MSC_VER) && ((_MSC_VER+0) >= 1900))
|
|
# define TBSP_HAS_CPP11 1
|
|
# else
|
|
# define TBSP_HAS_CPP11 0
|
|
# endif
|
|
#endif
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// ---- Part (1) begin: B-Spline eval ----
|
|
// Given some control points, calculate points along the spline.
|
|
// -----------------------------------------------------------------------------------
|
|
|
|
|
|
namespace tbsp {
|
|
|
|
namespace detail {
|
|
|
|
// returns index of first element strictly less than val
|
|
template<typename T>
|
|
static size_t findKnotIndexOffs(T val, const T *p, size_t n)
|
|
{
|
|
// Binary search to find leftmost element that is < val
|
|
size_t L = 0;
|
|
size_t R = n;
|
|
size_t m;
|
|
while(L < R)
|
|
{
|
|
m = (L + R) / 2u;
|
|
if(p[m] < val)
|
|
L = m + 1;
|
|
else
|
|
R = m;
|
|
}
|
|
// FIXME: can we just return m at this point?
|
|
if(L && !(p[L] < val))
|
|
--L;
|
|
TBSP_ASSERT(!L || p[L] < val);
|
|
return L;
|
|
}
|
|
|
|
template<typename T>
|
|
static inline size_t findKnotIndex(T val, const T *knots, size_t numknots, size_t degree)
|
|
{
|
|
TBSP_ASSERT(numknots > degree);
|
|
TBSP_ASSERT(val < knots[numknots - degree - 1]); // beyond right end? should have been caught by caller
|
|
|
|
// skip endpoints
|
|
return degree + findKnotIndexOffs(val, knots + degree, numknots - (degree * 2u));
|
|
}
|
|
|
|
template<typename K>
|
|
static void genKnotsUniform(K *knots, size_t nn, K mink, K maxk)
|
|
{
|
|
const K m = (maxk - mink) / K(nn + 1);
|
|
for(size_t i = 0; i < nn; ++i)
|
|
knots[i] = mink + K(i+1) * m;
|
|
}
|
|
|
|
template<typename T, typename P>
|
|
static P deBoor(P * TBSP_RESTRICT work, const P * TBSP_RESTRICT src, const T * TBSP_RESTRICT knots, const size_t r, const size_t k, const T t, size_t inputStride)
|
|
{
|
|
P last = src[0]; // init so that it works correctly even with degree == 0
|
|
for(size_t worksize = k; worksize > 1; --worksize)
|
|
{
|
|
const size_t j = k - worksize + 1; // iteration number, starting with 1, going up to k
|
|
const size_t tmp = r - k + 1 + j;
|
|
for(size_t w = 0, wr = 0; w < worksize - 1; ++w, wr += inputStride)
|
|
{
|
|
const size_t i = w + tmp;
|
|
const T ki = knots[i];
|
|
TBSP_ASSERT(ki <= t);
|
|
const T div = knots[i+k-j] - ki;
|
|
TBSP_ASSERT(div > 0);
|
|
const T a = (t - ki) / div;
|
|
const T a1 = T(1) - a;
|
|
work[w] = last = (src[wr] * a1) + (src[wr + inputStride] * a); // lerp
|
|
}
|
|
src = work; // done writing the initial data to work, now use that as input for further iterations
|
|
inputStride = 1;
|
|
}
|
|
return last;
|
|
}
|
|
|
|
} // end namespace detail
|
|
//--------------------------------------
|
|
|
|
template<typename T>
|
|
static size_t fillKnotVector(T *knots, size_t numcp, size_t degree, T mink, T maxk)
|
|
{
|
|
TBSP_ASSERT(mink < maxk);
|
|
|
|
const size_t n = numcp - 1;
|
|
if(n < degree) // lower degree if not enough control points
|
|
degree = n;
|
|
TBSP_ASSERT(n >= degree);
|
|
|
|
const size_t ep = degree + 1; // ep knots on each end
|
|
const size_t ne = n - degree; // non-endpoint knots in the middle
|
|
|
|
// endpoint interpolation, beginning
|
|
for(size_t i = 0; i < ep; ++i)
|
|
*knots++ = mink;
|
|
|
|
// TODO: allow more parametrizations
|
|
detail::genKnotsUniform(knots, ne, mink, maxk);
|
|
knots += ne;
|
|
|
|
// endpoint interpolation, end
|
|
for(size_t i = 0; i < ep; ++i)
|
|
*knots++ = maxk;
|
|
|
|
return degree;
|
|
}
|
|
|
|
// evaluate single point at t
|
|
template<typename T, typename P>
|
|
static P evalOne(P * TBSP_RESTRICT work, const T * TBSP_RESTRICT knots, const P * TBSP_RESTRICT controlpoints, size_t numcp, size_t degree, T t, size_t inputStride = 1)
|
|
{
|
|
if(t < knots[0])
|
|
return controlpoints[0]; // left out-of-bounds
|
|
|
|
if(numcp - 1 < degree)
|
|
degree = numcp - 1;
|
|
|
|
const size_t numknots = tbsp__getNumKnots(numcp, degree);
|
|
const T maxknot = knots[numknots - 1];
|
|
if(t < maxknot)
|
|
{
|
|
const size_t r = detail::findKnotIndex(t, knots, numknots, degree);
|
|
TBSP_ASSERT(r >= degree);
|
|
const size_t k = degree + 1;
|
|
TBSP_ASSERT(r + k < numknots); // check that the copy below stays in bounds
|
|
|
|
const P* const src = &controlpoints[r - degree];
|
|
return detail::deBoor(work, src, knots, r, k, t, inputStride);
|
|
}
|
|
|
|
return controlpoints[numcp - 1]; // right out-of-bounds
|
|
}
|
|
|
|
// evaluate numdst points in range [tmin..tmax], equally spaced
|
|
template<typename T, typename P>
|
|
static void evalRange(P * TBSP_RESTRICT dst, size_t numdst, P * TBSP_RESTRICT work, const T * TBSP_RESTRICT knots, const P * TBSP_RESTRICT controlpoints, size_t numcp, size_t degree, T tmin, T tmax, size_t inputStride = 1, size_t outputStride = 1)
|
|
{
|
|
TBSP_ASSERT(tmin <= tmax);
|
|
if(numcp - 1 < degree)
|
|
degree = numcp - 1;
|
|
|
|
const size_t numknots = tbsp__getNumKnots(numcp, degree);
|
|
size_t r = detail::findKnotIndex(tmin, knots, numknots, degree);
|
|
TBSP_ASSERT(r >= degree);
|
|
const size_t k = degree + 1;
|
|
TBSP_ASSERT(r + k < numknots); // check that the copy below stays in bounds
|
|
|
|
const T step = (tmax - tmin) / T(numdst - 1);
|
|
T t = tmin;
|
|
const size_t maxidx = numknots - k;
|
|
|
|
|
|
size_t i = 0;
|
|
|
|
// left out-of-bounds
|
|
for( ; i < numdst && t < knots[0]; ++i, t += step)
|
|
{
|
|
*dst = controlpoints[0];
|
|
dst += outputStride;
|
|
}
|
|
|
|
// actually interpolated points
|
|
const T maxknot = knots[numknots - 1];
|
|
for( ; i < numdst && t < maxknot; ++i, t += step)
|
|
{
|
|
while(r < maxidx && knots[r+1] < t) // find new index; don't need to do binary search again
|
|
++r;
|
|
|
|
const P * const src = &controlpoints[(r - degree) * inputStride];
|
|
*dst = detail::deBoor(work, src, knots, r, k, t, inputStride);
|
|
dst += outputStride;
|
|
}
|
|
|
|
// right out-of-bounds
|
|
if(i < numdst)
|
|
{
|
|
const P p = controlpoints[(numcp - 1) * inputStride];
|
|
do
|
|
{
|
|
*dst = p;
|
|
dst += outputStride;
|
|
++i;
|
|
}
|
|
while(i < numdst);
|
|
}
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// --- Part (2) begin: B-spline interpolation ----
|
|
// Given some points that should lie on a spline, calculate its control points
|
|
// -----------------------------------------------------------------------------------
|
|
|
|
namespace detail {
|
|
|
|
struct Size2d
|
|
{
|
|
size_t w, h;
|
|
|
|
inline bool operator==(const Size2d& o) const { return w == o.w && h == o.h; }
|
|
};
|
|
|
|
// Wrap any pointer to access it like a vector (with proper bounds checking)
|
|
template<typename T>
|
|
class VecAcc
|
|
{
|
|
public:
|
|
typedef T value_type;
|
|
VecAcc(T *p, const size_t n)
|
|
: p(p), n(n) {}
|
|
|
|
inline T& operator[](size_t i)
|
|
{
|
|
TBSP_ASSERT(i < n);
|
|
return p[i];
|
|
}
|
|
inline const T& operator[](size_t i) const
|
|
{
|
|
TBSP_ASSERT(i < n);
|
|
return p[i];
|
|
}
|
|
template<typename V>
|
|
VecAcc& operator=(const V& o)
|
|
{
|
|
TBSP_ASSERT(n == o.size());
|
|
for(size_t i = 0; i < n; ++i)
|
|
p[i] = o[i];
|
|
return *this;
|
|
}
|
|
VecAcc& operator=(const VecAcc<T>& o) // Required for C++11
|
|
{
|
|
TBSP_ASSERT(n == o.size());
|
|
for(size_t i = 0; i < n; ++i)
|
|
p[i] = o[i];
|
|
return *this;
|
|
}
|
|
template<typename V>
|
|
VecAcc& operator+=(const V& o)
|
|
{
|
|
TBSP_ASSERT(n == o.size());
|
|
for(size_t i = 0; i < n; ++i)
|
|
p[i] += o[i];
|
|
return *this;
|
|
}
|
|
template<typename V>
|
|
VecAcc& operator-=(const V& o)
|
|
{
|
|
TBSP_ASSERT(n == o.size());
|
|
for(size_t i = 0; i < n; ++i)
|
|
p[i] -= o[i];
|
|
return *this;
|
|
}
|
|
|
|
T dot(VecAcc<T>& o) const // vector dot product
|
|
{
|
|
T s = 0;
|
|
const size_t n = this->n;
|
|
tbsp__ASSERT(n == o.n);
|
|
for(size_t i = 0; i < n; ++i)
|
|
s += p[i] * o.p[i];
|
|
return s;
|
|
}
|
|
|
|
inline size_t size() const { return n; }
|
|
inline T *data() { return p; }
|
|
inline const T *data() const { return p; }
|
|
|
|
T *p;
|
|
size_t n;
|
|
};
|
|
|
|
// Wraps any pointer to access it like a row matrix.
|
|
// Intentionally a dumb POD struct, do NOT put ctors!
|
|
template<typename T>
|
|
struct MatrixAcc
|
|
{
|
|
typedef T value_type;
|
|
typedef VecAcc<T> RowAcc;
|
|
|
|
inline T& operator()(size_t x, size_t y)
|
|
{
|
|
TBSP_ASSERT(x < size.w);
|
|
TBSP_ASSERT(y < size.h);
|
|
return p[y * size.w + x];
|
|
}
|
|
inline const T& operator()(size_t x, size_t y) const
|
|
{
|
|
TBSP_ASSERT(x < size.w);
|
|
TBSP_ASSERT(y < size.h);
|
|
return p[y * size.w + x];
|
|
}
|
|
|
|
inline T *rowPtr(size_t y) const
|
|
{
|
|
return p + (y * size.w);
|
|
}
|
|
|
|
// w,h of (this * o)
|
|
inline Size2d multSize(const MatrixAcc<T>& o) const
|
|
{
|
|
// in math notation: (n x m) * (m x p) -> (n x p)
|
|
// and because math is backwards:
|
|
// (h x w) * (H x W) -> (h x W)
|
|
TBSP_ASSERT(size.w == o.size.h);
|
|
Size2d wh;
|
|
wh.w = o.size.w;
|
|
wh.h = size.h;
|
|
return wh;
|
|
}
|
|
|
|
inline RowAcc row(size_t y) const
|
|
{
|
|
TBSP_ASSERT(y < size.h);
|
|
return RowAcc(p + (y * size.w), size.w);
|
|
}
|
|
|
|
T *p;
|
|
Size2d size;
|
|
};
|
|
|
|
// Cut away the borders from A, so that the new matrix A' size is (A.size.w - 2, A.size.h - 2):
|
|
// ( xxxxx ) (where x means cut and any other letter means keep)
|
|
// ( xabcx ) ( abc )
|
|
// A = ( xdefx ), A' = ( def )
|
|
// ( xxxxx )
|
|
// then compute T(A') x A', ie.
|
|
// ( ad ) ( abc )
|
|
// R = ( be ) X ( def )
|
|
// ( cf )
|
|
// R must be already the correct size, ie. (A.size.w - 2, A.size.w - 2)!
|
|
template<typename T>
|
|
static void matMultCenterCutTransposeWithSelf(MatrixAcc<T>& TBSP_RESTRICT R, const MatrixAcc<T>& TBSP_RESTRICT A)
|
|
{
|
|
TBSP_ASSERT(A.size.w > 2 && A.size.h > 2);
|
|
|
|
const size_t w = A.size.w - 2; // also the final size of R: (w x w);
|
|
const size_t h = A.size.h - 2; // when iterating over w/h it stops before the last element in that row/col
|
|
TBSP_ASSERT(R.size.w == w && R.size.h == w);
|
|
|
|
T *out = R.p;
|
|
for (size_t y = 0; y < w; ++y)
|
|
{
|
|
for (size_t x = 0; x < w; ++x)
|
|
{
|
|
const T *row = A.p + y + 1; // skip first elem (+1)
|
|
const T *col = A.p + x + w; // skip first row (+w)
|
|
T temp = 0;
|
|
for (size_t k = 0; k < h; ++k, row += w, col += w)
|
|
temp += *row * *col;
|
|
*out++ = temp;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Linear system solver via Cholesky decomposition
|
|
template<typename T>
|
|
struct Cholesky
|
|
{
|
|
typedef T value_type;
|
|
typedef MatrixAcc<T> Mat;
|
|
|
|
// Initializes a solver in the given memory.
|
|
// On success, bumps ptr forward by the memory it needs;
|
|
// on failure, returns NULL.
|
|
// Memory needed: (sizeof(T) * ((A.size.w + 1) * A.size.h))
|
|
T *init(T *mem, Size2d size)
|
|
{
|
|
T * const pdiag = mem + (size.w * size.h);
|
|
T * const myend = pdiag + size.w;
|
|
|
|
L.p = mem;
|
|
L.size = size;
|
|
idiag = pdiag; // T[n]
|
|
return myend;
|
|
}
|
|
|
|
// Sets the matrix A used for solving later. The solver is preconditioned
|
|
// for that matrix so that in (A * x + b) b is the only variable.
|
|
// May fail if A is not well formed.
|
|
bool refresh(const Mat& A)
|
|
{
|
|
TBSP_ASSERT(A.size == L.size);
|
|
TBSP_ASSERT(A.size.w >= A.size.h);
|
|
|
|
const size_t n = L.size.w;
|
|
|
|
// Fill the lower left triangle, storing the diagonal separately
|
|
for(size_t y = 0; y < n; ++y)
|
|
{
|
|
const typename Mat::RowAcc rrow = A.row(y);
|
|
typename Mat::RowAcc wrow = L.row(y);
|
|
for(size_t x = y; x < n; ++x)
|
|
{
|
|
T s = rrow[x];
|
|
for(size_t k = 0; k < y; ++k)
|
|
s -= wrow[k] * L(k,x);
|
|
if(x != y)
|
|
L(y,x) = s * idiag[y];
|
|
else if(s > 0)
|
|
idiag[y] = T(1) / (wrow[y] = TBSP_SQRT(s));
|
|
else
|
|
{
|
|
TBSP_ASSERT(0 && "Cholesky decomposition failed");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Fill the upper right triangle with zeros
|
|
const T zero = T(0);
|
|
for(size_t y = 0; y < n; ++y)
|
|
{
|
|
typename Mat::RowAcc row = L.row(y);
|
|
for(size_t x = y+1; x < n; ++x)
|
|
row[x] = zero;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Solves x for A * x + b. Both b and x must have length n.
|
|
// Can solve in-place, ie. you may pass xv == bv.
|
|
template<typename P>
|
|
void solve(P * const xv, const P * const bv) const
|
|
{
|
|
const size_t n = L.size.w;
|
|
|
|
for(size_t y = 0; y < n; ++y)
|
|
{
|
|
const typename Mat::RowAcc Lrow = L.row(y);
|
|
P p = bv[y];
|
|
for(size_t x = 0; x < y; ++x)
|
|
p -= xv[x] * Lrow[x];
|
|
xv[y] = p * idiag[y];
|
|
}
|
|
for(size_t y = n; y--; )
|
|
{
|
|
P p = xv[y];
|
|
for(size_t x = y+1; x < n; ++x)
|
|
p -= xv[x] * L(y,x);
|
|
xv[y] = p * idiag[y];
|
|
}
|
|
}
|
|
|
|
Mat L; // lower left triangle matrix
|
|
T *idiag; // 1 / diag; length is L.size.w
|
|
};
|
|
|
|
// Linear system solver via LU decomposition
|
|
// (Slower than Cholesky, but a bit more general ie. applicable to more cases)
|
|
template<typename T>
|
|
struct LUDecomp
|
|
{
|
|
typedef T value_type;
|
|
typedef MatrixAcc<T> Mat;
|
|
|
|
// Initializes a solver in the given memory.
|
|
// On success, bumps ptr forward by the memory it needs;
|
|
// on failure, returns NULL.
|
|
// Memory needed: (sizeof(T) * ((A.size.w + 1) * A.size.h))
|
|
T *init(T *mem, Size2d size)
|
|
{
|
|
T * const pdiag = mem + (size.w * size.h);
|
|
T * const myend = pdiag + size.w;
|
|
|
|
TBSP_ASSERT(size.w == size.h);
|
|
|
|
LU.p = mem;
|
|
LU.size = size;
|
|
idiag = pdiag;
|
|
return myend;
|
|
}
|
|
|
|
// Sets the matrix A used for solving later. The solver is preconditioned
|
|
// for that matrix so that in (A * x + b) b is the only variable.
|
|
void refresh(const Mat& A)
|
|
{
|
|
TBSP_ASSERT(A.size == LU.size);
|
|
|
|
const size_t n = LU.size.w;
|
|
|
|
// Note: This doesn't do pivoting.
|
|
for (size_t y = 0; y < n; ++y)
|
|
{
|
|
for (size_t x = y; x < n; ++x)
|
|
{
|
|
T e = A(x, y);
|
|
for (size_t k = 0; k < y; ++k)
|
|
e -= LU(k, y) * LU(x, k);
|
|
LU(x, y) = e;
|
|
}
|
|
const T idiagval = T(1) / LU(y,y);
|
|
idiag[y] = idiagval;
|
|
for (size_t x = y + 1; x < n; ++x)
|
|
{
|
|
T e = A(y,x);
|
|
for (size_t k = 0; k < y; ++k)
|
|
e -= LU(k, x) * LU(y, k);
|
|
LU(y, x) = idiagval * e;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Solves x for A * x + b. Both b and x must have length n.
|
|
// Can solve in-place, ie. you may pass xv == bv.
|
|
template<typename P>
|
|
void solve(P * const xv, const P * const bv) const
|
|
{
|
|
const size_t n = LU.size.w;
|
|
|
|
for (size_t y = 0; y < n; ++y)
|
|
{
|
|
P p = bv[y];
|
|
const typename Mat::RowAcc LUrow = LU.row(y);
|
|
for (size_t x = 0; x < y; ++x)
|
|
p -= xv[x] * LUrow[x];
|
|
xv[y] = p;
|
|
}
|
|
for (size_t y = n; y--; )
|
|
{
|
|
P p = xv[y];
|
|
const typename Mat::RowAcc LUrow = LU.row(y);
|
|
for (size_t x = y + 1; x < n; ++x)
|
|
p -= xv[x] * LUrow[x];
|
|
xv[y] = p * idiag[y];
|
|
}
|
|
}
|
|
|
|
Mat LU; // combined both lower right & upper left triangles matrix
|
|
T *idiag; // 1 / diag; length is L.size.w
|
|
};
|
|
|
|
// The coeff vector for a given position u on the spline describes the influence of each control point
|
|
// towards the final result, ie.:
|
|
// resultPoint(u) = SUM(Nrow[i] * controlpoint[i]) for i in [0..Nrow),
|
|
// where Nrow[] are the coefficients for u.
|
|
// And to keep the parametrization simple, u is computed from t=0..1
|
|
template<typename T>
|
|
void computeCoeffVector(T * TBSP_RESTRICT Nrow, size_t numcp, T t01, const T * TBSP_RESTRICT knots, size_t degree)
|
|
{
|
|
for(size_t i = 0; i < numcp; ++i)
|
|
Nrow[i] = T(0);
|
|
|
|
const size_t n = numcp - 1;
|
|
|
|
// special cases
|
|
if(t01 <= T(0))
|
|
{
|
|
Nrow[0] = T(1);
|
|
return;
|
|
}
|
|
else if(t01 >= T(1))
|
|
{
|
|
Nrow[n] = T(1);
|
|
return;
|
|
}
|
|
|
|
const size_t numknots = tbsp__getNumKnots(numcp, degree);
|
|
const size_t m = numknots - 1;
|
|
const T mink = knots[0];
|
|
const T maxk = knots[m];
|
|
|
|
// Position on the knot vector aka transform t=0..1 into knot vector space
|
|
const T u = mink + t01 * (maxk - mink);
|
|
|
|
// find index k, so that u is in [knots[k], knots[k+1])
|
|
const size_t k = detail::findKnotIndex(u, knots, numknots, degree);
|
|
Nrow[k] = T(1);
|
|
|
|
// Coefficient computation
|
|
// See also: https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-curve-coef.html
|
|
for(size_t d = 1; d <= degree; ++d)
|
|
{
|
|
TBSP_ASSERT(d <= k);
|
|
const T q = (knots[k+1] - u) / (knots[k+1] - knots[k-d+1]);
|
|
Nrow[k-d] = q * Nrow[k-d+1];
|
|
|
|
for(size_t i = k-d+1; i < k; ++i)
|
|
{
|
|
const T a = (u - knots[i]) / (knots[i+d] - knots[i]);
|
|
const T b = (knots[i+d+1] - u) / (knots[i+d+1] - knots[i+1]);
|
|
Nrow[i] = a * Nrow[i] + b * Nrow[i+1];
|
|
}
|
|
|
|
Nrow[k] *= ((u - knots[k]) / (knots[k+d] - knots[k]));
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
T *allocateCoeffMatrix(MatrixAcc<T>& N, T *mem, size_t nump, size_t numcp)
|
|
{
|
|
N.size.w = numcp;
|
|
N.size.h = nump;
|
|
N.p = mem;
|
|
return mem + (nump * numcp);
|
|
}
|
|
|
|
template<typename T>
|
|
void computeCoeffMatrix(MatrixAcc<T>& N, const T *knots, size_t degree)
|
|
{
|
|
const size_t numcp = N.size.w;
|
|
const size_t nump = N.size.h;
|
|
|
|
const T invsz = T(1) / T(nump - 1);
|
|
|
|
for(size_t i = 0; i < nump; ++i) // rows
|
|
{
|
|
// TODO: this is the parametrization. currently, this is equidistant. allow more.
|
|
const T t01 = float(i) * invsz; // position of point assuming uniform parametrization
|
|
|
|
typename MatrixAcc<T>::RowAcc row = N.row(i);
|
|
computeCoeffVector(&row[0], numcp, t01, knots, degree); // row 0 stores all coefficients for _t[0], etc
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
Size2d getLeastSquaresSize(const MatrixAcc<T>& N)
|
|
{
|
|
Size2d sz;
|
|
sz.w = N.size.w - 2;
|
|
sz.h = N.size.w - 2; // (h = w) is intended, M is a square matrix!
|
|
return sz;
|
|
}
|
|
|
|
// Generate least-squares approximator for spline approximation
|
|
template<typename T>
|
|
MatrixAcc<T> generateLeastSquares(T *mem, const MatrixAcc<T>& N)
|
|
{
|
|
MatrixAcc<T> M;
|
|
M.p = mem;
|
|
M.size = getLeastSquaresSize(N);
|
|
|
|
T * const pend = M.p + (M.size.w * M.size.h);
|
|
|
|
matMultCenterCutTransposeWithSelf(M, N);
|
|
|
|
return M;
|
|
}
|
|
|
|
} // end namespace detail
|
|
// --------------------------------------------------
|
|
|
|
// Calculate how many elements of type T are needed as storage for the interpolator
|
|
// These should ideally be constexpr, but we want C++98 compatibility.
|
|
|
|
// For Interpolator::init()
|
|
#define tbsp__getInterpolatorStorageSize(numControlPoints, numPoints) \
|
|
( ((numControlPoints) == (numControlPoints)) \
|
|
? (((numControlPoints)+1) * (numPoints)) /* solver(N) */ \
|
|
: ( \
|
|
((numControlPoints) * (numPoints)) /* N */ \
|
|
+ (((numControlPoints)-1) * ((numControlPoints)-2)) /* solver(M) */ \
|
|
) \
|
|
)
|
|
|
|
// For Interpolator::refresh()
|
|
#define tbsp__getInterpolatorRefreshTempSize(numControlPoints, numPoints) \
|
|
( (numControlPoints) == (numControlPoints) \
|
|
? ((numControlPoints) * (numPoints)) /* N */ \
|
|
: (((numControlPoints)-2) * ((numControlPoints)-2)) /* M */ \
|
|
)
|
|
|
|
// For Interpolator::generateControlPoints()
|
|
#define tbsp_getInterpolatorWorkTempSize(numControlPoints, numPoints) \
|
|
( ((numControlPoints) == (numPoints)) ? 0 : ((numControlPoints) - 2) )
|
|
|
|
// --------------------------------------------------
|
|
|
|
|
|
// One interpolator is precomputed for a specific number of input points and output control points
|
|
template<typename T>
|
|
struct Interpolator
|
|
{
|
|
inline Interpolator() : numcp(0), nump(0) {}
|
|
|
|
// Inits an Interpolator in the passed mem[]. This memory must outlive the Interpolator
|
|
// and be at least tbsp__getInterpolatorStorageSize() elements.
|
|
// You may move or copy the memory elsewhere and then call init() again to update internal
|
|
// pointers to point to the new location.
|
|
// This does not access mem at all, it only stores pointers.
|
|
// When the number of points or control points change, the memory requirements change too;
|
|
// in this case you must re-init(), generate a new knot vector, and refresh().
|
|
T *init(T *mem, size_t nump, size_t numcp);
|
|
|
|
// When the knot vector or degree changes, call this to update the internal matrix solver.
|
|
// Must be called before generateControlPoints() can be used.
|
|
// tmp[] must have space for at least tbsp__getInterpolatorRefreshTempSize() elements
|
|
// and can be discarded after the call returns.
|
|
bool refresh(T * TBSP_RESTRICT const tmp, const T * TBSP_RESTRICT knots, unsigned degree);
|
|
|
|
// Given a set of points P[nump], generate set of control points cp[numcp].
|
|
// nump, numcp are defined by the numbers passed to init().
|
|
// workmem can be NULL if only interpolation is used (#controlpoints == #points).
|
|
// Approximation (#controlpoints < #points) needs extra working memory though,
|
|
// so you must pass at least tbsp_getInterpolatorWorkTempSize() elements of P.
|
|
// Returns how many control points were generated, for convenience.
|
|
// The working memory can be discarded after the call returns.
|
|
template<typename P>
|
|
size_t generateControlPoints(P * cp, P * TBSP_RESTRICT workmem, const P *points) const;
|
|
|
|
inline size_t getNumGeneratedControlPoints() { return numcp; }
|
|
inline size_t getNumInputPoints() { return nump; }
|
|
|
|
// ------------------------
|
|
protected:
|
|
size_t numcp, nump;
|
|
union
|
|
{
|
|
detail::Cholesky<T> cholesky;
|
|
detail::LUDecomp<T> ludecomp;
|
|
} solver;
|
|
detail::MatrixAcc<T> N;
|
|
|
|
// To make it checkable in if()
|
|
#if TBSP_HAS_CPP11
|
|
explicit inline operator bool() const { return !!numcp; }
|
|
#else // Explicit conversion operator is not supported in C++98
|
|
inline operator const void*() const { return numcp ? this : NULL; }
|
|
#endif
|
|
};
|
|
|
|
|
|
|
|
template<typename T>
|
|
T *Interpolator<T>::init(T * TBSP_RESTRICT const mem, size_t nump, size_t numcp)
|
|
{
|
|
TBSP_ASSERT(mem);
|
|
|
|
// Calling this with 2 points is pointless, < 2 is mathematically impossible
|
|
if(nump < 2 || numcp < 2 || !mem)
|
|
return NULL;
|
|
|
|
// Can only generate less or equal control points than points
|
|
TBSP_ASSERT(numcp <= nump);
|
|
if(!(numcp <= nump))
|
|
return NULL;
|
|
|
|
T *p = mem;
|
|
|
|
if(nump == numcp)
|
|
{
|
|
detail::allocateCoeffMatrix<T>(N, NULL, nump, numcp); // just to get the size
|
|
p = solver.ludecomp.init(p, N.size);
|
|
}
|
|
else
|
|
{
|
|
p = detail::allocateCoeffMatrix<T>(N, p, nump, numcp);
|
|
p = solver.cholesky.init(p, detail::getLeastSquaresSize(N));
|
|
}
|
|
|
|
if(p)
|
|
{
|
|
TBSP_ASSERT(p <= mem + tbsp__getInterpolatorStorageSize(numcp, nump));
|
|
|
|
this->numcp = numcp;
|
|
this->nump = nump;
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
template<typename T>
|
|
bool Interpolator<T>::refresh(T * TBSP_RESTRICT const tmp, const T * TBSP_RESTRICT knots, unsigned degree)
|
|
{
|
|
// Need temporary memory
|
|
TBSP_ASSERT(tmp);
|
|
|
|
const size_t numcp = N.size.w;
|
|
const size_t nump = N.size.h;
|
|
TBSP_ASSERT(numcp && nump);
|
|
|
|
bool ret = false;
|
|
|
|
if(nump == numcp)
|
|
{
|
|
// N allocated in tmp, solver(N) in mem
|
|
T *p = detail::allocateCoeffMatrix(N, tmp, nump, numcp);
|
|
TBSP_ASSERT(p <= tmp + tbsp__getInterpolatorRefreshTempSize(numcp, nump));
|
|
detail::computeCoeffMatrix(N, knots, degree);
|
|
|
|
// N is point-symmetric, ie. NOT diagonally symmetric.
|
|
// This means we can't use Cholesky decomposition, but LU decomposition is fine.
|
|
// Note: Cholesky decomposition will at first appear to work,
|
|
// but the solutions calculated with it are wrong. Don't use this here.
|
|
solver.ludecomp.refresh(N);
|
|
|
|
// N is no longer needed
|
|
// solver(N) stays
|
|
N.p = NULL;
|
|
ret = true;
|
|
}
|
|
else
|
|
{
|
|
// N allocated in mem, solver(M) in mem, M in tmp
|
|
detail::computeCoeffMatrix(N, knots, degree);
|
|
|
|
// This calculates M = T(N') x N', where N' is N with its borders removed.
|
|
// A nice property is that M is diagonally symmetric,
|
|
// means it can be efficiently solved via cholesky decomposition.
|
|
const detail::MatrixAcc<T> M = detail::generateLeastSquares(tmp, N);
|
|
TBSP_ASSERT(M.p + (M.size.w * M.size.h) <= tmp + tbsp__getInterpolatorRefreshTempSize(numcp, nump));
|
|
|
|
ret = solver.cholesky.refresh(M);
|
|
|
|
// M is no longer needed
|
|
// solver(M) stays
|
|
// N stays
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
template<typename T> template<typename P>
|
|
size_t Interpolator<T>::generateControlPoints(P * cp, P * TBSP_RESTRICT workmem, const P *points) const
|
|
{
|
|
if(numcp == nump)
|
|
{
|
|
// This does not need extra working memory
|
|
solver.ludecomp.solve(cp, points);
|
|
}
|
|
else
|
|
{
|
|
// Approximate points with less control points, this is more costly
|
|
TBSP_ASSERT(workmem); // ... and needs extra memory
|
|
const size_t h = numcp - 1;
|
|
const size_t n = nump - 1;
|
|
const P p0 = points[0];
|
|
const P pn = points[n];
|
|
|
|
// Wrap the least squares estimator somehow together with the points to approximate...
|
|
// Unfortunately I forgot how this works, so no explanation of mathemagics here, sorry :<
|
|
const P initial = points[1] - (p0 * N(0,1)) - (pn * N(h,1));
|
|
for(size_t i = 1; i < h; ++i)
|
|
{
|
|
P tmp = initial * N(i,1);
|
|
for(size_t k = 2; k < n; ++k)
|
|
{
|
|
const typename detail::MatrixAcc<T>::RowAcc Nrow = N.row(k);
|
|
tmp += (points[k] - (p0 * Nrow[0]) - (pn * Nrow[h])) * Nrow[i];
|
|
}
|
|
workmem[i-1] = tmp;
|
|
}
|
|
|
|
// End points are not interpolated
|
|
cp[0] = p0;
|
|
cp[h] = pn;
|
|
|
|
// Solve for all points that are not endpoints
|
|
TBSP_ASSERT(solver.cholesky.L.size.w == h - 1);
|
|
solver.cholesky.solve(cp + 1, workmem);
|
|
}
|
|
return numcp;
|
|
}
|
|
|
|
|
|
// Helper functions for parametrization
|
|
|
|
template<typename T, typename P>
|
|
void chordal(T *parm, const P *points, size_t n)
|
|
{
|
|
// Start and end points are always 0 and 1, respectively
|
|
parm[0] = T(0);
|
|
parm[--n] = T(1);
|
|
|
|
T totaldist = 0;
|
|
for(size_t i = 1; i < n; ++i)
|
|
{
|
|
const T dist = distance(points[i-1], points[i]);
|
|
totaldist += dist;
|
|
parm[i] = totaldist;
|
|
}
|
|
|
|
// Normalize to 0..1
|
|
const T m = T(1) / totaldist;
|
|
for(size_t i = 1; i < n; ++i)
|
|
parm[i] *= m;
|
|
}
|
|
|
|
template<typename T, typename P>
|
|
void uniform(T *parm, const P *points, size_t n)
|
|
{
|
|
const T m = T(1) / T(n - 1);
|
|
for(size_t i = 0; i < n; ++i)
|
|
parm[i] = T(i) * m;
|
|
}
|
|
|
|
} // end namespace tbsp
|