mirror of
https://github.com/bolero-MURAKAMI/Sprout.git
synced 2025-01-13 19:56:43 +00:00
71 lines
3.3 KiB
C++
71 lines
3.3 KiB
C++
/*=============================================================================
|
||
Copyright (c) 2011-2017 Bolero MURAKAMI
|
||
https://github.com/bolero-MURAKAMI/Sprout
|
||
|
||
Distributed under the Boost Software License, Version 1.0. (See accompanying
|
||
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||
=============================================================================*/
|
||
#ifndef SPROUT_COMPLEX_ACOS_HPP
|
||
#define SPROUT_COMPLEX_ACOS_HPP
|
||
|
||
#include <sprout/config.hpp>
|
||
#include <sprout/limits.hpp>
|
||
#include <sprout/math/constants.hpp>
|
||
#include <sprout/math/isnan.hpp>
|
||
#include <sprout/math/isinf.hpp>
|
||
#include <sprout/math/copysign.hpp>
|
||
#include <sprout/complex/complex.hpp>
|
||
#include <sprout/complex/asin.hpp>
|
||
|
||
namespace sprout {
|
||
//
|
||
// acos
|
||
//
|
||
// G.6.1.1 The cacos functions
|
||
// cacos(conj(z)) = conj(cacos(z)).
|
||
// cacos(<28>}0 + i0) returns p /2 - i0.
|
||
// cacos(<28>}0 + iNaN) returns p /2 + iNaN.
|
||
// cacos(x + i<>‡) returns p /2 - i<>‡, for finite x.
|
||
// cacos(x + iNaN) returns NaN + iNaN and optionally raises the <20>e<EFBFBD>einvalid<69>f<EFBFBD>f floating-point exception, for nonzero finite x.
|
||
// cacos(-<2D>‡+ iy) returns p - i<>‡, for positive-signed finite y.
|
||
// cacos(+<2B>‡+ iy) returns +0 - i<>‡, for positive-signed finite y.
|
||
// cacos(-<2D>‡+ i<>‡) returns 3p /4 - i<>‡.
|
||
// cacos(+<2B>‡+ i<>‡) returns p /4 - i<>‡.
|
||
// cacos(<28>}<7D>‡+ iNaN) returns NaN <20>} i<>‡ (where the sign of the imaginary part of the result is unspecified).
|
||
// cacos(NaN + iy) returns NaN + iNaN and optionally raises the <20>e<EFBFBD>einvalid<69>f<EFBFBD>f floating-point exception, for finite y.
|
||
// cacos(NaN + i<>‡) returns NaN - i<>‡.
|
||
// cacos(NaN + iNaN) returns NaN + iNaN.
|
||
//
|
||
namespace detail {
|
||
template<typename T>
|
||
inline SPROUT_CONSTEXPR sprout::complex<T>
|
||
acos_impl(sprout::complex<T> const& t) {
|
||
return sprout::complex<T>(sprout::math::half_pi<T>() - t.real(), -t.imag());
|
||
}
|
||
} // namespace detail
|
||
template<typename T>
|
||
inline SPROUT_CONSTEXPR sprout::complex<T>
|
||
acos(sprout::complex<T> const& x) {
|
||
typedef sprout::complex<T> type;
|
||
return sprout::math::isnan(x.real())
|
||
? sprout::math::isnan(x.imag()) ? x
|
||
: sprout::math::isinf(x.imag()) ? type(x.real(), -x.imag())
|
||
: type(x.real(), sprout::numeric_limits<T>::quiet_NaN())
|
||
: sprout::math::isnan(x.imag())
|
||
? sprout::math::isinf(x.real()) ? type(sprout::numeric_limits<T>::quiet_NaN(), x.real())
|
||
: x.real() == 0 ? type(sprout::math::half_pi<T>(), x.imag())
|
||
: type(sprout::numeric_limits<T>::quiet_NaN(), sprout::numeric_limits<T>::quiet_NaN())
|
||
: x.real() == sprout::numeric_limits<T>::infinity()
|
||
? sprout::math::isinf(x.imag()) ? type(sprout::math::quarter_pi<T>(), -x.imag())
|
||
: type(T(0), sprout::math::copysign(sprout::numeric_limits<T>::infinity(), -x.imag()))
|
||
: x.real() == -sprout::numeric_limits<T>::infinity()
|
||
? sprout::math::isinf(x.imag()) ? type(sprout::math::three_quarters_pi<T>(), -x.imag())
|
||
: type(sprout::math::pi<T>(), sprout::math::copysign(sprout::numeric_limits<T>::infinity(), -x.imag()))
|
||
: sprout::math::isinf(x.imag()) ? type(sprout::math::half_pi<T>(), sprout::math::copysign(sprout::numeric_limits<T>::infinity(), -x.imag()))
|
||
: x.real() == 0 && x.imag() == 0 ? type(sprout::math::half_pi<T>(), -x.imag())
|
||
: sprout::detail::acos_impl(sprout::asin(x))
|
||
;
|
||
}
|
||
} // namespace sprout
|
||
|
||
#endif // #ifndef SPROUT_COMPLEX_ACOS_HPP
|