Sprout/example/perceptron/g3.cpp
2017-07-29 14:20:01 +09:00

204 lines
6.3 KiB
C++

/*=============================================================================
Copyright (c) 2011-2017 Bolero MURAKAMI
https://github.com/bolero-MURAKAMI/Sprout
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
=============================================================================*/
#include <cstddef>
#include <sprout/config.hpp>
#include <sprout/array.hpp>
#include <sprout/algorithm/copy.hpp>
#include <sprout/iterator/operation.hpp>
#include <sprout/container/functions.hpp>
#include <sprout/math/sigmoid.hpp>
#include <sprout/random/uniform_01.hpp>
#include <sprout/random/generate_array.hpp>
#include <sprout/assert.hpp>
//
// perceptron
//
template<typename FloatType, std::size_t In, std::size_t Hid, std::size_t Out>
class perceptron {
public:
typedef FloatType value_type;
private:
struct worker {
public:
// in
sprout::array<value_type, In + 1> xi1;
sprout::array<value_type, Hid + 1> xi2;
sprout::array<value_type, Out> xi3;
// out
sprout::array<value_type, In + 1> o1;
sprout::array<value_type, Hid + 1> o2;
sprout::array<value_type, Out> o3;
};
private:
// error
sprout::array<value_type, Hid + 1> d2;
sprout::array<value_type, Out> d3;
// weight
sprout::array<value_type, (In + 1) * Hid> w1;
sprout::array<value_type, (Hid + 1) * Out> w2;
private:
// forward propagation
template<typename ForwardIterator>
SPROUT_CXX14_CONSTEXPR void
forward_propagation(ForwardIterator in_first, ForwardIterator in_last, worker& work) const {
// forward propagation with input layer
sprout::copy(in_first, in_last, sprout::begin(work.xi1));
work.xi1[In] = 1;
sprout::copy(sprout::begin(work.xi1), sprout::end(work.xi1), sprout::begin(work.o1));
// forward propagation with hidden layer
for (std::size_t i = 0; i != Hid; ++i) {
work.xi2[i] = 0;
for (std::size_t j = 0; j != In + 1; ++j) {
work.xi2[i] += w1[j * Hid + i] * work.o1[j];
}
work.o2[i] = sprout::math::sigmoid(work.xi2[i]);
}
work.o2[Hid] = 1;
// forward propagation with output layer
for (std::size_t i = 0; i != Hid; ++i) {
work.xi3[i] = 0;
for (std::size_t j = 0; j != In + 1; ++j) {
work.xi3[i] += w2[j * Out + i] * work.o2[j];
}
work.o3[i] = work.xi3[i];
}
}
public:
template<typename RandomNumberGenerator>
explicit SPROUT_CXX14_CONSTEXPR perceptron(RandomNumberGenerator& rng)
: d2{{}}, d3{{}}
, w1(sprout::random::generate_array<(In + 1) * Hid>(rng, sprout::random::uniform_01<value_type>()))
, w2(sprout::random::generate_array<(Hid + 1) * Out>(rng, sprout::random::uniform_01<value_type>()))
{}
// training of neural network
// [in_first, in_last) : training data (N*In elements)
// [t_first, t_last) : training data (N elements)
template<typename ForwardIterator1, typename ForwardIterator2>
SPROUT_CXX14_CONSTEXPR void
train(
ForwardIterator1 in_first, ForwardIterator1 in_last,
ForwardIterator2 t_first, ForwardIterator2 t_last,
std::size_t repeat = 1000, value_type eta = value_type(0.1)
)
{
SPROUT_ASSERT(sprout::distance(in_first, in_last) % In == 0);
SPROUT_ASSERT(sprout::distance(in_first, in_last) / In == sprout::distance(t_first, t_last));
worker work{};
for (std::size_t times = 0; times != repeat; ++times) {
ForwardIterator1 in_it = in_first;
ForwardIterator2 t_it = t_first;
for (; in_it != in_last; sprout::advance(in_it, In), ++t_it) {
// forward propagation
forward_propagation(in_it, sprout::next(in_it, In), work);
// error calculation of output layer
for (std::size_t i = 0; i != Out; ++i) {
d3[i] = *t_it == i ? work.o3[i] - 1
: work.o3[i]
;
}
// weight update of output layer
for (std::size_t i = 0; i != Hid + 1; ++i) {
for (std::size_t j = 0; j != Out; ++j) {
w2[i * Out + j] -= eta * d3[j] * work.o2[i];
}
}
// error calculation of hidden layer
for (std::size_t i = 0; i != Hid + 1; ++i) {
d2[i] = 0;
for (std::size_t j = 0; j != Out; ++j) {
d2[i] += w2[i * Out + j] * d3[j];
}
d2[i] *= sprout::math::d_sigmoid(work.xi2[i]);
}
// weight update of hidden layer
for (std::size_t i = 0; i != In + 1; ++i) {
for (std::size_t j = 0; j != Hid; ++j) {
w1[i * Hid + j] -= eta * d2[j] * work.o1[i];
}
}
}
}
}
// returns to predict the most likely class for a given data
template<typename ForwardIterator>
SPROUT_CXX14_CONSTEXPR std::size_t
predict(ForwardIterator in_first, ForwardIterator in_last) const {
SPROUT_ASSERT(sprout::distance(in_first, in_last) == In);
worker work{};
// prediction by forward propagation
forward_propagation(in_first, in_last, work);
// determining a class which output is maximum
return sprout::distance(
sprout::begin(work.o3),
sprout::max_element(sprout::begin(work.o3), sprout::end(work.o3))
);
}
};
#include <cstddef>
#include <iostream>
#include <sprout/config.hpp>
#include <sprout/random/default_random_engine.hpp>
#include <sprout/random/unique_seed.hpp>
#include <sprout/static_assert.hpp>
// training data
SPROUT_CONSTEXPR auto train_data = sprout::make_array<double>(
# include "g3_train.csv"
);
// teaching data
SPROUT_CONSTEXPR auto teach_data = sprout::make_array<std::size_t>(
# include "g3_teach.csv"
);
SPROUT_STATIC_ASSERT(train_data.size() % 2 == 0);
SPROUT_STATIC_ASSERT(train_data.size() / 2 == teach_data.size());
// generate a trained perceptron
template<typename FloatType, std::size_t In, std::size_t Hid, std::size_t Out>
SPROUT_CXX14_CONSTEXPR ::perceptron<FloatType, In, Hid, Out>
make_trained_perceptron() {
// random number generator
sprout::random::default_random_engine rng(SPROUT_UNIQUE_SEED);
// perceptron
::perceptron<FloatType, In, Hid, Out> per(rng);
// training
per.train(
train_data.begin(), train_data.end(),
teach_data.begin(), teach_data.end(),
500, 0.1
);
return per;
}
int main() {
// generate a Perceptron (input 2, hidden 3, output 3)
SPROUT_CXX14_CONSTEXPR auto per = ::make_trained_perceptron<double, 2, 3, 3>();
// print results
for (auto it = train_data.begin(), last = train_data.end(); it != last; it += 2) {
std::cout << per.predict(it, it + 2) << std::endl;
}
}