mirror of
https://github.com/galaxyhaxz/devilution
synced 2025-02-23 12:44:54 +00:00
359 lines
8.1 KiB
C++
359 lines
8.1 KiB
C++
#include "diablo.h"
|
|
|
|
// preallocated nodes, search is terminated after 300 nodes are visited
|
|
PATHNODE path_nodes[300];
|
|
// size of the pnode_tblptr stack
|
|
int gdwCurPathStep;
|
|
// the number of in-use nodes in path_nodes
|
|
int gdwCurNodes;
|
|
/* for reconstructing the path after the A* search is done. The longest
|
|
* possible path is actually 24 steps, even though we can fit 25
|
|
*/
|
|
int pnode_vals[25];
|
|
// a linked list of all visited nodes
|
|
PATHNODE *pnode_ptr;
|
|
// a stack for recursively searching nodes
|
|
PATHNODE *pnode_tblptr[300];
|
|
// a linked list of the A* frontier, sorted by distance
|
|
PATHNODE *path_2_nodes;
|
|
PATHNODE path_unusednodes[300];
|
|
|
|
// for iterating over the 8 possible movement directions
|
|
const char pathxdir[8] = { -1, -1, 1, 1, -1, 0, 1, 0 };
|
|
const char pathydir[8] = { -1, 1, -1, 1, 0, -1, 0, 1 };
|
|
|
|
/* data */
|
|
|
|
/* each step direction is assigned a number like this:
|
|
* dx
|
|
* -1 0 1
|
|
* +-----
|
|
* -1|5 1 6
|
|
* dy 0|2 0 3
|
|
* 1|8 4 7
|
|
*/
|
|
char path_directions[9] = { 5, 1, 6, 2, 0, 3, 8, 4, 7 };
|
|
|
|
/* find the shortest path from (sx,sy) to (dx,dy), using PosOk(PosOkArg,x,y) to
|
|
* check that each step is a valid position. Store the step directions (see
|
|
* path_directions) in path, which must have room for 24 steps
|
|
*/
|
|
int FindPath(BOOL (*PosOk)(int, int, int), int PosOkArg, int sx, int sy, int dx, int dy, char *path)
|
|
{
|
|
int i, steps;
|
|
PATHNODE *pNext, *pPath;
|
|
|
|
gdwCurNodes = 0;
|
|
path_2_nodes = path_new_step();
|
|
pnode_ptr = path_new_step();
|
|
gdwCurPathStep = 0;
|
|
|
|
pNext = path_new_step();
|
|
pNext->g = 0;
|
|
pNext->h = path_get_h_cost(sx, sy, dx, dy);
|
|
pNext->f = pNext->h + pNext->g;
|
|
pNext->x = sx;
|
|
pNext->y = sy;
|
|
path_2_nodes->NextNode = pNext;
|
|
|
|
while(pPath = GetNextPath()) {
|
|
if(pPath->x == dx && pPath->y == dy) {
|
|
pNext = pPath;
|
|
steps = 0;
|
|
while(pNext->Parent != NULL && steps < 25) {
|
|
pnode_vals[steps] = path_directions[3 * (pNext->y - pNext->Parent->y) + 3 - pNext->Parent->x + 1 + pNext->x];
|
|
steps++;
|
|
pNext = pNext->Parent;
|
|
}
|
|
if(steps == 25) {
|
|
return 0;
|
|
}
|
|
for(i = 0; i < steps; i++) {
|
|
path[i] = pnode_vals[steps - i - 1];
|
|
}
|
|
return i;
|
|
}
|
|
if(!path_get_path(PosOk, PosOkArg, pPath, dx, dy)) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* heuristic, estimated cost from (sx,sy) to (dx,dy) */
|
|
int path_get_h_cost(int x1, int y1, int x2, int y2)
|
|
{
|
|
int dx, dy, minc, maxc;
|
|
|
|
dx = abs(x1 - x2);
|
|
dy = abs(y1 - y2);
|
|
|
|
minc = dx < dy ? dx : dy;
|
|
maxc = dx > dy ? dx : dy;
|
|
|
|
return 2 * (minc + maxc);
|
|
}
|
|
|
|
/* return 2 if pPath is horizontally/vertically aligned with (dx,dy), else 3
|
|
*
|
|
* This approximates that diagonal movement on a square grid should have a cost
|
|
* of sqrt(2). That's approximately 1.5, so they multiply all step costs by 2,
|
|
* except diagonal steps which are times 3
|
|
*/
|
|
int path_check_equal(PATHNODE *pPath, int dx, int dy)
|
|
{
|
|
if(pPath->x == dx || pPath->y == dy) {
|
|
return 2;
|
|
}
|
|
|
|
return 3;
|
|
}
|
|
|
|
/* get the next node on the A* frontier to explore (estimated to be closest to
|
|
* the goal), mark it as visited, and return it
|
|
*/
|
|
PATHNODE *GetNextPath()
|
|
{
|
|
PATHNODE *pNext;
|
|
|
|
if(path_2_nodes->NextNode == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
pNext = path_2_nodes->NextNode;
|
|
path_2_nodes->NextNode = pNext->NextNode;
|
|
pNext->NextNode = pnode_ptr->NextNode;
|
|
pnode_ptr->NextNode = pNext;
|
|
return pNext;
|
|
}
|
|
|
|
/* check if stepping from pPath to (dx,dy) cuts a corner. If you step from A to
|
|
* B, both Xs need to be clear:
|
|
*
|
|
* AX
|
|
* XB
|
|
*
|
|
* return true if step is allowed
|
|
*/
|
|
BOOL path_solid_pieces(PATHNODE *pPath, int dx, int dy)
|
|
{
|
|
BOOL rv;
|
|
|
|
rv = TRUE;
|
|
|
|
switch(path_directions[3 * (dy - pPath->y) + 3 - pPath->x + 1 + dx]) {
|
|
case 5:
|
|
rv = !nSolidTable[dPiece[dx][dy + 1]] && !nSolidTable[dPiece[dx + 1][dy]];
|
|
break;
|
|
case 6:
|
|
rv = !nSolidTable[dPiece[dx][dy + 1]] && !nSolidTable[dPiece[dx - 1][dy]];
|
|
break;
|
|
case 7:
|
|
rv = !nSolidTable[dPiece[dx][dy - 1]] && !nSolidTable[dPiece[dx - 1][dy]];
|
|
break;
|
|
case 8:
|
|
rv = !nSolidTable[dPiece[dx + 1][dy]] && !nSolidTable[dPiece[dx][dy - 1]];
|
|
break;
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
/* perform a single step of A* bread-first search by trying to step in every
|
|
* possible direction from pPath with goal (x,y). Check each step with PosOk
|
|
*
|
|
* return 0 if we ran out of preallocated nodes to use, else 1
|
|
*/
|
|
BOOL path_get_path(BOOL (*PosOk)(int, int, int), int PosOkArg, PATHNODE *pPath, int x, int y)
|
|
{
|
|
int i, dx, dy;
|
|
BOOL ok;
|
|
|
|
for(i = 0; i < 8; i++) {
|
|
dx = pPath->x + pathxdir[i];
|
|
dy = pPath->y + pathydir[i];
|
|
ok = PosOk(PosOkArg, dx, dy);
|
|
if(ok && path_solid_pieces(pPath, dx, dy) || !ok && dx == x && dy == y) {
|
|
if(!path_parent_path(pPath, dx, dy, x, y)) {
|
|
return FALSE;
|
|
}
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* add a step from pPath to (dx,dy), return 1 if successful, and update the
|
|
* frontier/visited nodes accordingly
|
|
*
|
|
* return 1 if step successfully added, 0 if we ran out of nodes to use
|
|
*/
|
|
BOOL path_parent_path(PATHNODE *pPath, int dx, int dy, int sx, int sy)
|
|
{
|
|
int i, steps;
|
|
PATHNODE *pNext, *pNew;
|
|
|
|
steps = pPath->g + path_check_equal(pPath, dx, dy);
|
|
|
|
if(pNext = path_get_node1(dx, dy)) {
|
|
for(i = 0; i < 8; i++) {
|
|
if(pPath->Child[i] == NULL) {
|
|
break;
|
|
}
|
|
}
|
|
pPath->Child[i] = pNext;
|
|
if(steps < pNext->g && path_solid_pieces(pPath, dx, dy)) {
|
|
pNext->Parent = pPath;
|
|
pNext->g = steps;
|
|
pNext->f = steps + pNext->h;
|
|
}
|
|
} else if(pNext = path_get_node2(dx, dy)) {
|
|
for(i = 0; i < 8; i++) {
|
|
if(pPath->Child[i] == NULL) {
|
|
break;
|
|
}
|
|
}
|
|
pPath->Child[i] = pNext;
|
|
if(steps < pNext->g && path_solid_pieces(pPath, dx, dy)) {
|
|
pNext->Parent = pPath;
|
|
pNext->g = steps;
|
|
pNext->f = steps + pNext->h;
|
|
path_set_coords(pNext);
|
|
}
|
|
} else {
|
|
pNew = path_new_step();
|
|
if(pNew == NULL) {
|
|
return FALSE;
|
|
}
|
|
pNew->Parent = pPath;
|
|
pNew->g = steps;
|
|
pNew->h = path_get_h_cost(dx, dy, sx, sy);
|
|
pNew->f = steps + pNew->h;
|
|
pNew->x = dx;
|
|
pNew->y = dy;
|
|
path_next_node(pNew);
|
|
for(i = 0; i < 8; i++) {
|
|
if(pPath->Child[i] == NULL) {
|
|
break;
|
|
}
|
|
}
|
|
pPath->Child[i] = pNew;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* return a node for (dx,dy) on the frontier, or NULL if not found */
|
|
PATHNODE *path_get_node1(int dx, int dy)
|
|
{
|
|
PATHNODE *pPath;
|
|
|
|
pPath = path_2_nodes->NextNode;
|
|
while(pPath != NULL) {
|
|
if(pPath->x == dx && pPath->y == dy) {
|
|
return pPath;
|
|
}
|
|
pPath = pPath->NextNode;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* return a node for (dx,dy) if it was visited, or NULL if not found */
|
|
PATHNODE *path_get_node2(int dx, int dy)
|
|
{
|
|
PATHNODE *pPath;
|
|
|
|
pPath = pnode_ptr->NextNode;
|
|
while(pPath != NULL) {
|
|
if(pPath->x == dx && pPath->y == dy) {
|
|
return pPath;
|
|
}
|
|
pPath = pPath->NextNode;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* insert pPath into the frontier (keeping the frontier sorted by total
|
|
* distance) */
|
|
void path_next_node(PATHNODE *pPath)
|
|
{
|
|
int f;
|
|
PATHNODE *pOld, *pNext;
|
|
|
|
if(path_2_nodes->NextNode == NULL) {
|
|
path_2_nodes->NextNode = pPath;
|
|
return;
|
|
}
|
|
|
|
f = pPath->f;
|
|
pOld = path_2_nodes;
|
|
pNext = path_2_nodes->NextNode;
|
|
|
|
while(pNext != NULL && pNext->f < f) {
|
|
pOld = pNext;
|
|
pNext = pNext->NextNode;
|
|
}
|
|
|
|
pPath->NextNode = pNext;
|
|
pOld->NextNode = pPath;
|
|
}
|
|
|
|
/* update all path costs using depth-first search starting at pPath */
|
|
void path_set_coords(PATHNODE *pPath)
|
|
{
|
|
int i;
|
|
PATHNODE *pOld, *pCur;
|
|
|
|
path_push_active_step(pPath);
|
|
|
|
while(gdwCurPathStep != 0) {
|
|
pOld = path_pop_active_step();
|
|
for(i = 0; i < 8; i++) {
|
|
pCur = pOld->Child[i];
|
|
if(pCur == NULL) {
|
|
break;
|
|
}
|
|
if(pOld->g + path_check_equal(pOld, pCur->x, pCur->y) < pCur->g) {
|
|
if(path_solid_pieces(pOld, pCur->x, pCur->y)) {
|
|
pCur->Parent = pOld;
|
|
pCur->g = pOld->g + path_check_equal(pOld, pCur->x, pCur->y);
|
|
pCur->f = pCur->h + pCur->g;
|
|
path_push_active_step(pCur);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* push pPath onto the pnode_tblptr stack */
|
|
void path_push_active_step(PATHNODE *pPath)
|
|
{
|
|
pnode_tblptr[gdwCurPathStep] = pPath;
|
|
gdwCurPathStep++;
|
|
}
|
|
|
|
/* pop and return a node from the pnode_tblptr stack */
|
|
PATHNODE *path_pop_active_step()
|
|
{
|
|
gdwCurPathStep--;
|
|
return pnode_tblptr[gdwCurPathStep];
|
|
}
|
|
|
|
/* zero one of the preallocated nodes and return a pointer to it, or NULL if
|
|
* none are available */
|
|
PATHNODE *path_new_step()
|
|
{
|
|
PATHNODE *pPath;
|
|
|
|
if(gdwCurNodes == 300) {
|
|
return NULL;
|
|
}
|
|
|
|
pPath = &path_nodes[gdwCurNodes];
|
|
gdwCurNodes++;
|
|
memset(pPath, 0, sizeof(*pPath));
|
|
return pPath;
|
|
}
|