libbpg/jctvc/TLibCommon/TComSlice.cpp

2418 lines
77 KiB
C++
Raw Permalink Normal View History

2015-01-16 12:46:18 +00:00
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2014, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file TComSlice.cpp
\brief slice header and SPS class
*/
#include "CommonDef.h"
#include "TComSlice.h"
#include "TComPic.h"
#include "TLibEncoder/TEncSbac.h"
//#include "TLibDecoder/TDecSbac.h"
//! \ingroup TLibCommon
//! \{
TComSlice::TComSlice()
: m_iPPSId ( -1 )
, m_PicOutputFlag ( true )
, m_iPOC ( 0 )
, m_iLastIDR ( 0 )
, m_iAssociatedIRAP ( 0 )
, m_iAssociatedIRAPType ( NAL_UNIT_INVALID )
, m_pcRPS ( 0 )
, m_LocalRPS ( )
, m_iBDidx ( 0 )
, m_RefPicListModification ( )
, m_eNalUnitType ( NAL_UNIT_CODED_SLICE_IDR_W_RADL )
, m_eSliceType ( I_SLICE )
, m_iSliceQp ( 0 )
, m_dependentSliceSegmentFlag ( false )
#if ADAPTIVE_QP_SELECTION
, m_iSliceQpBase ( 0 )
#endif
, m_ChromaQpAdjEnabled ( false )
, m_deblockingFilterDisable ( false )
, m_deblockingFilterOverrideFlag ( false )
, m_deblockingFilterBetaOffsetDiv2( 0 )
, m_deblockingFilterTcOffsetDiv2 ( 0 )
, m_bCheckLDC ( false )
, m_iSliceQpDelta ( 0 )
, m_iDepth ( 0 )
, m_bRefenced ( false )
, m_pcVPS ( NULL )
, m_pcSPS ( NULL )
, m_pcPPS ( NULL )
, m_pcPic ( NULL )
#if ADAPTIVE_QP_SELECTION
, m_pcTrQuant ( NULL )
#endif
, m_colFromL0Flag ( 1 )
, m_noOutputPriorPicsFlag ( false )
, m_noRaslOutputFlag ( false )
, m_handleCraAsBlaFlag ( false )
, m_colRefIdx ( 0 )
, m_maxNumMergeCand ( 0 )
, m_uiTLayer ( 0 )
, m_bTLayerSwitchingFlag ( false )
, m_sliceMode ( NO_SLICES )
, m_sliceArgument ( 0 )
, m_sliceCurStartCtuTsAddr ( 0 )
, m_sliceCurEndCtuTsAddr ( 0 )
, m_sliceIdx ( 0 )
, m_sliceSegmentMode ( NO_SLICES )
, m_sliceSegmentArgument ( 0 )
, m_sliceSegmentCurStartCtuTsAddr ( 0 )
, m_sliceSegmentCurEndCtuTsAddr ( 0 )
, m_nextSlice ( false )
, m_nextSliceSegment ( false )
, m_sliceBits ( 0 )
, m_sliceSegmentBits ( 0 )
, m_bFinalized ( false )
, m_substreamSizes ( )
, m_scalingList ( NULL )
, m_cabacInitFlag ( false )
, m_bLMvdL1Zero ( false )
, m_temporalLayerNonReferenceFlag ( false )
, m_LFCrossSliceBoundaryFlag ( false )
, m_enableTMVPFlag ( true )
{
for(UInt i=0; i<NUM_REF_PIC_LIST_01; i++)
{
m_aiNumRefIdx[i] = 0;
}
for (UInt component = 0; component < MAX_NUM_COMPONENT; component++)
{
m_lambdas [component] = 0.0;
m_iSliceChromaQpDelta[component] = 0;
}
initEqualRef();
for ( Int idx = 0; idx < MAX_NUM_REF; idx++ )
{
m_list1IdxToList0Idx[idx] = -1;
}
for(Int iNumCount = 0; iNumCount < MAX_NUM_REF; iNumCount++)
{
for(UInt i=0; i<NUM_REF_PIC_LIST_01; i++)
{
m_apcRefPicList [i][iNumCount] = NULL;
m_aiRefPOCList [i][iNumCount] = 0;
}
}
resetWpScaling();
initWpAcDcParam();
for(Int ch=0; ch < MAX_NUM_CHANNEL_TYPE; ch++)
{
m_saoEnabledFlag[ch] = false;
}
}
TComSlice::~TComSlice()
{
}
Void TComSlice::initSlice()
{
for(UInt i=0; i<NUM_REF_PIC_LIST_01; i++)
{
m_aiNumRefIdx[i] = 0;
}
m_colFromL0Flag = 1;
m_colRefIdx = 0;
initEqualRef();
m_bCheckLDC = false;
for (UInt component = 0; component < MAX_NUM_COMPONENT; component++) m_iSliceChromaQpDelta[component] = 0;
m_maxNumMergeCand = MRG_MAX_NUM_CANDS;
m_bFinalized=false;
m_substreamSizes.clear();
m_cabacInitFlag = false;
m_enableTMVPFlag = true;
}
Bool TComSlice::getRapPicFlag()
{
return getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_W_RADL
|| getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_N_LP
|| getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_N_LP
|| getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_RADL
|| getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_LP
|| getNalUnitType() == NAL_UNIT_CODED_SLICE_CRA;
}
Void TComSlice::sortPicList (TComList<TComPic*>& rcListPic)
{
TComPic* pcPicExtract;
TComPic* pcPicInsert;
TComList<TComPic*>::iterator iterPicExtract;
TComList<TComPic*>::iterator iterPicExtract_1;
TComList<TComPic*>::iterator iterPicInsert;
for (Int i = 1; i < (Int)(rcListPic.size()); i++)
{
iterPicExtract = rcListPic.begin();
for (Int j = 0; j < i; j++) iterPicExtract++;
pcPicExtract = *(iterPicExtract);
pcPicExtract->setCurrSliceIdx(0);
iterPicInsert = rcListPic.begin();
while (iterPicInsert != iterPicExtract)
{
pcPicInsert = *(iterPicInsert);
pcPicInsert->setCurrSliceIdx(0);
if (pcPicInsert->getPOC() >= pcPicExtract->getPOC())
{
break;
}
iterPicInsert++;
}
iterPicExtract_1 = iterPicExtract; iterPicExtract_1++;
// swap iterPicExtract and iterPicInsert, iterPicExtract = curr. / iterPicInsert = insertion position
rcListPic.insert (iterPicInsert, iterPicExtract, iterPicExtract_1);
rcListPic.erase (iterPicExtract);
}
}
TComPic* TComSlice::xGetRefPic (TComList<TComPic*>& rcListPic, Int poc)
{
TComList<TComPic*>::iterator iterPic = rcListPic.begin();
TComPic* pcPic = *(iterPic);
while ( iterPic != rcListPic.end() )
{
if(pcPic->getPOC() == poc)
{
break;
}
iterPic++;
pcPic = *(iterPic);
}
return pcPic;
}
TComPic* TComSlice::xGetLongTermRefPic(TComList<TComPic*>& rcListPic, Int poc, Bool pocHasMsb)
{
TComList<TComPic*>::iterator iterPic = rcListPic.begin();
TComPic* pcPic = *(iterPic);
TComPic* pcStPic = pcPic;
Int pocCycle = 1 << getSPS()->getBitsForPOC();
if (!pocHasMsb)
{
poc = poc & (pocCycle - 1);
}
while ( iterPic != rcListPic.end() )
{
pcPic = *(iterPic);
if (pcPic && pcPic->getPOC()!=this->getPOC() && pcPic->getSlice( 0 )->isReferenced())
{
Int picPoc = pcPic->getPOC();
if (!pocHasMsb)
{
picPoc = picPoc & (pocCycle - 1);
}
if (poc == picPoc)
{
if(pcPic->getIsLongTerm())
{
return pcPic;
}
else
{
pcStPic = pcPic;
}
break;
}
}
iterPic++;
}
return pcStPic;
}
Void TComSlice::setRefPOCList ()
{
for (Int iDir = 0; iDir < NUM_REF_PIC_LIST_01; iDir++)
{
for (Int iNumRefIdx = 0; iNumRefIdx < m_aiNumRefIdx[iDir]; iNumRefIdx++)
{
m_aiRefPOCList[iDir][iNumRefIdx] = m_apcRefPicList[iDir][iNumRefIdx]->getPOC();
}
}
}
Void TComSlice::setList1IdxToList0Idx()
{
Int idxL0, idxL1;
for ( idxL1 = 0; idxL1 < getNumRefIdx( REF_PIC_LIST_1 ); idxL1++ )
{
m_list1IdxToList0Idx[idxL1] = -1;
for ( idxL0 = 0; idxL0 < getNumRefIdx( REF_PIC_LIST_0 ); idxL0++ )
{
if ( m_apcRefPicList[REF_PIC_LIST_0][idxL0]->getPOC() == m_apcRefPicList[REF_PIC_LIST_1][idxL1]->getPOC() )
{
m_list1IdxToList0Idx[idxL1] = idxL0;
break;
}
}
}
}
Void TComSlice::setRefPicList( TComList<TComPic*>& rcListPic, Bool checkNumPocTotalCurr )
{
if (!checkNumPocTotalCurr)
{
if (m_eSliceType == I_SLICE)
{
::memset( m_apcRefPicList, 0, sizeof (m_apcRefPicList));
::memset( m_aiNumRefIdx, 0, sizeof ( m_aiNumRefIdx ));
return;
}
m_aiNumRefIdx[REF_PIC_LIST_0] = getNumRefIdx(REF_PIC_LIST_0);
m_aiNumRefIdx[REF_PIC_LIST_1] = getNumRefIdx(REF_PIC_LIST_1);
}
TComPic* pcRefPic= NULL;
static const UInt MAX_NUM_NEGATIVE_PICTURES=16;
TComPic* RefPicSetStCurr0[MAX_NUM_NEGATIVE_PICTURES];
TComPic* RefPicSetStCurr1[MAX_NUM_NEGATIVE_PICTURES];
TComPic* RefPicSetLtCurr[MAX_NUM_NEGATIVE_PICTURES];
UInt NumPocStCurr0 = 0;
UInt NumPocStCurr1 = 0;
UInt NumPocLtCurr = 0;
Int i;
for(i=0; i < m_pcRPS->getNumberOfNegativePictures(); i++)
{
if(m_pcRPS->getUsed(i))
{
pcRefPic = xGetRefPic(rcListPic, getPOC()+m_pcRPS->getDeltaPOC(i));
pcRefPic->setIsLongTerm(0);
pcRefPic->getPicYuvRec()->extendPicBorder();
RefPicSetStCurr0[NumPocStCurr0] = pcRefPic;
NumPocStCurr0++;
pcRefPic->setCheckLTMSBPresent(false);
}
}
for(; i < m_pcRPS->getNumberOfNegativePictures()+m_pcRPS->getNumberOfPositivePictures(); i++)
{
if(m_pcRPS->getUsed(i))
{
pcRefPic = xGetRefPic(rcListPic, getPOC()+m_pcRPS->getDeltaPOC(i));
pcRefPic->setIsLongTerm(0);
pcRefPic->getPicYuvRec()->extendPicBorder();
RefPicSetStCurr1[NumPocStCurr1] = pcRefPic;
NumPocStCurr1++;
pcRefPic->setCheckLTMSBPresent(false);
}
}
for(i = m_pcRPS->getNumberOfNegativePictures()+m_pcRPS->getNumberOfPositivePictures()+m_pcRPS->getNumberOfLongtermPictures()-1; i > m_pcRPS->getNumberOfNegativePictures()+m_pcRPS->getNumberOfPositivePictures()-1 ; i--)
{
if(m_pcRPS->getUsed(i))
{
pcRefPic = xGetLongTermRefPic(rcListPic, m_pcRPS->getPOC(i), m_pcRPS->getCheckLTMSBPresent(i));
pcRefPic->setIsLongTerm(1);
pcRefPic->getPicYuvRec()->extendPicBorder();
RefPicSetLtCurr[NumPocLtCurr] = pcRefPic;
NumPocLtCurr++;
}
if(pcRefPic==NULL)
{
pcRefPic = xGetLongTermRefPic(rcListPic, m_pcRPS->getPOC(i), m_pcRPS->getCheckLTMSBPresent(i));
}
pcRefPic->setCheckLTMSBPresent(m_pcRPS->getCheckLTMSBPresent(i));
}
// ref_pic_list_init
TComPic* rpsCurrList0[MAX_NUM_REF+1];
TComPic* rpsCurrList1[MAX_NUM_REF+1];
Int numPocTotalCurr = NumPocStCurr0 + NumPocStCurr1 + NumPocLtCurr;
if (checkNumPocTotalCurr)
{
// The variable NumPocTotalCurr is derived as specified in subclause 7.4.7.2. It is a requirement of bitstream conformance that the following applies to the value of NumPocTotalCurr:
// - If the current picture is a BLA or CRA picture, the value of NumPocTotalCurr shall be equal to 0.
// - Otherwise, when the current picture contains a P or B slice, the value of NumPocTotalCurr shall not be equal to 0.
if (getRapPicFlag())
{
assert(numPocTotalCurr == 0);
}
if (m_eSliceType == I_SLICE)
{
::memset( m_apcRefPicList, 0, sizeof (m_apcRefPicList));
::memset( m_aiNumRefIdx, 0, sizeof ( m_aiNumRefIdx ));
return;
}
assert(numPocTotalCurr > 0);
m_aiNumRefIdx[0] = getNumRefIdx(REF_PIC_LIST_0);
m_aiNumRefIdx[1] = getNumRefIdx(REF_PIC_LIST_1);
}
Int cIdx = 0;
for ( i=0; i<NumPocStCurr0; i++, cIdx++)
{
rpsCurrList0[cIdx] = RefPicSetStCurr0[i];
}
for ( i=0; i<NumPocStCurr1; i++, cIdx++)
{
rpsCurrList0[cIdx] = RefPicSetStCurr1[i];
}
for ( i=0; i<NumPocLtCurr; i++, cIdx++)
{
rpsCurrList0[cIdx] = RefPicSetLtCurr[i];
}
assert(cIdx == numPocTotalCurr);
if (m_eSliceType==B_SLICE)
{
cIdx = 0;
for ( i=0; i<NumPocStCurr1; i++, cIdx++)
{
rpsCurrList1[cIdx] = RefPicSetStCurr1[i];
}
for ( i=0; i<NumPocStCurr0; i++, cIdx++)
{
rpsCurrList1[cIdx] = RefPicSetStCurr0[i];
}
for ( i=0; i<NumPocLtCurr; i++, cIdx++)
{
rpsCurrList1[cIdx] = RefPicSetLtCurr[i];
}
assert(cIdx == numPocTotalCurr);
}
::memset(m_bIsUsedAsLongTerm, 0, sizeof(m_bIsUsedAsLongTerm));
for (Int rIdx = 0; rIdx < m_aiNumRefIdx[REF_PIC_LIST_0]; rIdx ++)
{
cIdx = m_RefPicListModification.getRefPicListModificationFlagL0() ? m_RefPicListModification.getRefPicSetIdxL0(rIdx) : rIdx % numPocTotalCurr;
assert(cIdx >= 0 && cIdx < numPocTotalCurr);
m_apcRefPicList[REF_PIC_LIST_0][rIdx] = rpsCurrList0[ cIdx ];
m_bIsUsedAsLongTerm[REF_PIC_LIST_0][rIdx] = ( cIdx >= NumPocStCurr0 + NumPocStCurr1 );
}
if ( m_eSliceType != B_SLICE )
{
m_aiNumRefIdx[REF_PIC_LIST_1] = 0;
::memset( m_apcRefPicList[REF_PIC_LIST_1], 0, sizeof(m_apcRefPicList[REF_PIC_LIST_1]));
}
else
{
for (Int rIdx = 0; rIdx < m_aiNumRefIdx[REF_PIC_LIST_1]; rIdx ++)
{
cIdx = m_RefPicListModification.getRefPicListModificationFlagL1() ? m_RefPicListModification.getRefPicSetIdxL1(rIdx) : rIdx % numPocTotalCurr;
assert(cIdx >= 0 && cIdx < numPocTotalCurr);
m_apcRefPicList[REF_PIC_LIST_1][rIdx] = rpsCurrList1[ cIdx ];
m_bIsUsedAsLongTerm[REF_PIC_LIST_1][rIdx] = ( cIdx >= NumPocStCurr0 + NumPocStCurr1 );
}
}
}
Int TComSlice::getNumRpsCurrTempList()
{
Int numRpsCurrTempList = 0;
if (m_eSliceType == I_SLICE)
{
return 0;
}
for(UInt i=0; i < m_pcRPS->getNumberOfNegativePictures()+ m_pcRPS->getNumberOfPositivePictures() + m_pcRPS->getNumberOfLongtermPictures(); i++)
{
if(m_pcRPS->getUsed(i))
{
numRpsCurrTempList++;
}
}
return numRpsCurrTempList;
}
Void TComSlice::initEqualRef()
{
for (Int iDir = 0; iDir < NUM_REF_PIC_LIST_01; iDir++)
{
for (Int iRefIdx1 = 0; iRefIdx1 < MAX_NUM_REF; iRefIdx1++)
{
for (Int iRefIdx2 = iRefIdx1; iRefIdx2 < MAX_NUM_REF; iRefIdx2++)
{
m_abEqualRef[iDir][iRefIdx1][iRefIdx2] = m_abEqualRef[iDir][iRefIdx2][iRefIdx1] = (iRefIdx1 == iRefIdx2? true : false);
}
}
}
}
Void TComSlice::checkColRefIdx(UInt curSliceIdx, TComPic* pic)
{
Int i;
TComSlice* curSlice = pic->getSlice(curSliceIdx);
Int currColRefPOC = curSlice->getRefPOC( RefPicList(1 - curSlice->getColFromL0Flag()), curSlice->getColRefIdx());
TComSlice* preSlice;
Int preColRefPOC;
for(i=curSliceIdx-1; i>=0; i--)
{
preSlice = pic->getSlice(i);
if(preSlice->getSliceType() != I_SLICE)
{
preColRefPOC = preSlice->getRefPOC( RefPicList(1 - preSlice->getColFromL0Flag()), preSlice->getColRefIdx());
if(currColRefPOC != preColRefPOC)
{
printf("Collocated_ref_idx shall always be the same for all slices of a coded picture!\n");
exit(EXIT_FAILURE);
}
else
{
break;
}
}
}
}
Void TComSlice::checkCRA(TComReferencePictureSet *pReferencePictureSet, Int& pocCRA, NalUnitType& associatedIRAPType, TComList<TComPic *>& rcListPic)
{
for(Int i = 0; i < pReferencePictureSet->getNumberOfNegativePictures()+pReferencePictureSet->getNumberOfPositivePictures(); i++)
{
if(pocCRA < MAX_UINT && getPOC() > pocCRA)
{
assert(getPOC()+pReferencePictureSet->getDeltaPOC(i) >= pocCRA);
}
}
for(Int i = pReferencePictureSet->getNumberOfNegativePictures()+pReferencePictureSet->getNumberOfPositivePictures(); i < pReferencePictureSet->getNumberOfPictures(); i++)
{
if(pocCRA < MAX_UINT && getPOC() > pocCRA)
{
if (!pReferencePictureSet->getCheckLTMSBPresent(i))
{
assert(xGetLongTermRefPic(rcListPic, pReferencePictureSet->getPOC(i), false)->getPOC() >= pocCRA);
}
else
{
assert(pReferencePictureSet->getPOC(i) >= pocCRA);
}
}
}
if ( getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_W_RADL || getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_N_LP ) // IDR picture found
{
pocCRA = getPOC();
associatedIRAPType = getNalUnitType();
}
else if ( getNalUnitType() == NAL_UNIT_CODED_SLICE_CRA ) // CRA picture found
{
pocCRA = getPOC();
associatedIRAPType = getNalUnitType();
}
else if ( getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_LP
|| getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_RADL
|| getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_N_LP ) // BLA picture found
{
pocCRA = getPOC();
associatedIRAPType = getNalUnitType();
}
}
/** Function for marking the reference pictures when an IDR/CRA/CRANT/BLA/BLANT is encountered.
* \param pocCRA POC of the CRA/CRANT/BLA/BLANT picture
* \param bRefreshPending flag indicating if a deferred decoding refresh is pending
* \param rcListPic reference to the reference picture list
* This function marks the reference pictures as "unused for reference" in the following conditions.
* If the nal_unit_type is IDR/BLA/BLANT, all pictures in the reference picture list
* are marked as "unused for reference"
* If the nal_unit_type is BLA/BLANT, set the pocCRA to the temporal reference of the current picture.
* Otherwise
* If the bRefreshPending flag is true (a deferred decoding refresh is pending) and the current
* temporal reference is greater than the temporal reference of the latest CRA/CRANT/BLA/BLANT picture (pocCRA),
* mark all reference pictures except the latest CRA/CRANT/BLA/BLANT picture as "unused for reference" and set
* the bRefreshPending flag to false.
* If the nal_unit_type is CRA/CRANT, set the bRefreshPending flag to true and pocCRA to the temporal
* reference of the current picture.
* Note that the current picture is already placed in the reference list and its marking is not changed.
* If the current picture has a nal_ref_idc that is not 0, it will remain marked as "used for reference".
*/
Void TComSlice::decodingRefreshMarking(Int& pocCRA, Bool& bRefreshPending, TComList<TComPic*>& rcListPic)
{
TComPic* rpcPic;
Int pocCurr = getPOC();
if ( getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_LP
|| getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_RADL
|| getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_N_LP
|| getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_W_RADL
|| getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_N_LP ) // IDR or BLA picture
{
// mark all pictures as not used for reference
TComList<TComPic*>::iterator iterPic = rcListPic.begin();
while (iterPic != rcListPic.end())
{
rpcPic = *(iterPic);
rpcPic->setCurrSliceIdx(0);
if (rpcPic->getPOC() != pocCurr) rpcPic->getSlice(0)->setReferenced(false);
iterPic++;
}
if ( getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_LP
|| getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_RADL
|| getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_N_LP )
{
pocCRA = pocCurr;
}
#if EFFICIENT_FIELD_IRAP
bRefreshPending = true;
#endif
}
else // CRA or No DR
{
#if EFFICIENT_FIELD_IRAP
if(getAssociatedIRAPType() == NAL_UNIT_CODED_SLICE_IDR_N_LP || getAssociatedIRAPType() == NAL_UNIT_CODED_SLICE_IDR_W_RADL)
{
if (bRefreshPending==true && pocCurr > m_iLastIDR) // IDR reference marking pending
{
TComList<TComPic*>::iterator iterPic = rcListPic.begin();
while (iterPic != rcListPic.end())
{
rpcPic = *(iterPic);
if (rpcPic->getPOC() != pocCurr && rpcPic->getPOC() != m_iLastIDR)
{
rpcPic->getSlice(0)->setReferenced(false);
}
iterPic++;
}
bRefreshPending = false;
}
}
else
{
#endif
if (bRefreshPending==true && pocCurr > pocCRA) // CRA reference marking pending
{
TComList<TComPic*>::iterator iterPic = rcListPic.begin();
while (iterPic != rcListPic.end())
{
rpcPic = *(iterPic);
if (rpcPic->getPOC() != pocCurr && rpcPic->getPOC() != pocCRA)
{
rpcPic->getSlice(0)->setReferenced(false);
}
iterPic++;
}
bRefreshPending = false;
}
#if EFFICIENT_FIELD_IRAP
}
#endif
if ( getNalUnitType() == NAL_UNIT_CODED_SLICE_CRA ) // CRA picture found
{
bRefreshPending = true;
pocCRA = pocCurr;
}
}
}
Void TComSlice::copySliceInfo(TComSlice *pSrc)
{
assert( pSrc != NULL );
Int i, j, k;
m_iPOC = pSrc->m_iPOC;
m_eNalUnitType = pSrc->m_eNalUnitType;
m_eSliceType = pSrc->m_eSliceType;
m_iSliceQp = pSrc->m_iSliceQp;
#if ADAPTIVE_QP_SELECTION
m_iSliceQpBase = pSrc->m_iSliceQpBase;
#endif
m_ChromaQpAdjEnabled = pSrc->m_ChromaQpAdjEnabled;
m_deblockingFilterDisable = pSrc->m_deblockingFilterDisable;
m_deblockingFilterOverrideFlag = pSrc->m_deblockingFilterOverrideFlag;
m_deblockingFilterBetaOffsetDiv2 = pSrc->m_deblockingFilterBetaOffsetDiv2;
m_deblockingFilterTcOffsetDiv2 = pSrc->m_deblockingFilterTcOffsetDiv2;
for (i = 0; i < NUM_REF_PIC_LIST_01; i++)
{
m_aiNumRefIdx[i] = pSrc->m_aiNumRefIdx[i];
}
for (i = 0; i < MAX_NUM_REF; i++)
{
m_list1IdxToList0Idx[i] = pSrc->m_list1IdxToList0Idx[i];
}
m_bCheckLDC = pSrc->m_bCheckLDC;
m_iSliceQpDelta = pSrc->m_iSliceQpDelta;
for (UInt component = 0; component < MAX_NUM_COMPONENT; component++) m_iSliceChromaQpDelta[component] = pSrc->m_iSliceChromaQpDelta[component];
for (i = 0; i < NUM_REF_PIC_LIST_01; i++)
{
for (j = 0; j < MAX_NUM_REF; j++)
{
m_apcRefPicList[i][j] = pSrc->m_apcRefPicList[i][j];
m_aiRefPOCList[i][j] = pSrc->m_aiRefPOCList[i][j];
m_bIsUsedAsLongTerm[i][j] = pSrc->m_bIsUsedAsLongTerm[i][j];
}
m_bIsUsedAsLongTerm[i][MAX_NUM_REF] = pSrc->m_bIsUsedAsLongTerm[i][MAX_NUM_REF];
}
m_iDepth = pSrc->m_iDepth;
// referenced slice
m_bRefenced = pSrc->m_bRefenced;
// access channel
m_pcSPS = pSrc->m_pcSPS;
m_pcPPS = pSrc->m_pcPPS;
m_pcRPS = pSrc->m_pcRPS;
m_iLastIDR = pSrc->m_iLastIDR;
m_pcPic = pSrc->m_pcPic;
m_colFromL0Flag = pSrc->m_colFromL0Flag;
m_colRefIdx = pSrc->m_colRefIdx;
setLambdas(pSrc->getLambdas());
for (i = 0; i < NUM_REF_PIC_LIST_01; i++)
{
for (j = 0; j < MAX_NUM_REF; j++)
{
for (k =0; k < MAX_NUM_REF; k++)
{
m_abEqualRef[i][j][k] = pSrc->m_abEqualRef[i][j][k];
}
}
}
m_uiTLayer = pSrc->m_uiTLayer;
m_bTLayerSwitchingFlag = pSrc->m_bTLayerSwitchingFlag;
m_sliceMode = pSrc->m_sliceMode;
m_sliceArgument = pSrc->m_sliceArgument;
m_sliceCurStartCtuTsAddr = pSrc->m_sliceCurStartCtuTsAddr;
m_sliceCurEndCtuTsAddr = pSrc->m_sliceCurEndCtuTsAddr;
m_sliceIdx = pSrc->m_sliceIdx;
m_sliceSegmentMode = pSrc->m_sliceSegmentMode;
m_sliceSegmentArgument = pSrc->m_sliceSegmentArgument;
m_sliceSegmentCurStartCtuTsAddr = pSrc->m_sliceSegmentCurStartCtuTsAddr;
m_sliceSegmentCurEndCtuTsAddr = pSrc->m_sliceSegmentCurEndCtuTsAddr;
m_nextSlice = pSrc->m_nextSlice;
m_nextSliceSegment = pSrc->m_nextSliceSegment;
for ( UInt e=0 ; e<NUM_REF_PIC_LIST_01 ; e++ )
{
for ( UInt n=0 ; n<MAX_NUM_REF ; n++ )
{
memcpy(m_weightPredTable[e][n], pSrc->m_weightPredTable[e][n], sizeof(WPScalingParam)*MAX_NUM_COMPONENT );
}
}
for( UInt ch = 0 ; ch < MAX_NUM_CHANNEL_TYPE; ch++)
{
m_saoEnabledFlag[ch] = pSrc->m_saoEnabledFlag[ch];
}
m_cabacInitFlag = pSrc->m_cabacInitFlag;
m_bLMvdL1Zero = pSrc->m_bLMvdL1Zero;
m_LFCrossSliceBoundaryFlag = pSrc->m_LFCrossSliceBoundaryFlag;
m_enableTMVPFlag = pSrc->m_enableTMVPFlag;
m_maxNumMergeCand = pSrc->m_maxNumMergeCand;
}
Int TComSlice::m_prevTid0POC = 0;
/** Function for setting the slice's temporal layer ID and corresponding temporal_layer_switching_point_flag.
* \param uiTLayer Temporal layer ID of the current slice
* The decoder calls this function to set temporal_layer_switching_point_flag for each temporal layer based on
* the SPS's temporal_id_nesting_flag and the parsed PPS. Then, current slice's temporal layer ID and
* temporal_layer_switching_point_flag is set accordingly.
*/
Void TComSlice::setTLayerInfo( UInt uiTLayer )
{
m_uiTLayer = uiTLayer;
}
/** Function for checking if this is a switching-point
*/
Bool TComSlice::isTemporalLayerSwitchingPoint(TComList<TComPic*>& rcListPic)
{
TComPic* rpcPic;
// loop through all pictures in the reference picture buffer
TComList<TComPic*>::iterator iterPic = rcListPic.begin();
while ( iterPic != rcListPic.end())
{
rpcPic = *(iterPic++);
if(rpcPic->getSlice(0)->isReferenced() && rpcPic->getPOC() != getPOC())
{
if(rpcPic->getTLayer() >= getTLayer())
{
return false;
}
}
}
return true;
}
/** Function for checking if this is a STSA candidate
*/
Bool TComSlice::isStepwiseTemporalLayerSwitchingPointCandidate(TComList<TComPic*>& rcListPic)
{
TComPic* rpcPic;
TComList<TComPic*>::iterator iterPic = rcListPic.begin();
while ( iterPic != rcListPic.end())
{
rpcPic = *(iterPic++);
if(rpcPic->getSlice(0)->isReferenced() && (rpcPic->getUsedByCurr()==true) && rpcPic->getPOC() != getPOC())
{
if(rpcPic->getTLayer() >= getTLayer())
{
return false;
}
}
}
return true;
}
Void TComSlice::checkLeadingPictureRestrictions(TComList<TComPic*>& rcListPic)
{
TComPic* rpcPic;
Int nalUnitType = this->getNalUnitType();
// When a picture is a leading picture, it shall be a RADL or RASL picture.
if(this->getAssociatedIRAPPOC() > this->getPOC())
{
// Do not check IRAP pictures since they may get a POC lower than their associated IRAP
if(nalUnitType < NAL_UNIT_CODED_SLICE_BLA_W_LP ||
nalUnitType > NAL_UNIT_RESERVED_IRAP_VCL23)
{
assert(nalUnitType == NAL_UNIT_CODED_SLICE_RASL_N ||
nalUnitType == NAL_UNIT_CODED_SLICE_RASL_R ||
nalUnitType == NAL_UNIT_CODED_SLICE_RADL_N ||
nalUnitType == NAL_UNIT_CODED_SLICE_RADL_R);
}
}
// When a picture is a trailing picture, it shall not be a RADL or RASL picture.
if(this->getAssociatedIRAPPOC() < this->getPOC())
{
assert(nalUnitType != NAL_UNIT_CODED_SLICE_RASL_N &&
nalUnitType != NAL_UNIT_CODED_SLICE_RASL_R &&
nalUnitType != NAL_UNIT_CODED_SLICE_RADL_N &&
nalUnitType != NAL_UNIT_CODED_SLICE_RADL_R);
}
// No RASL pictures shall be present in the bitstream that are associated
// with a BLA picture having nal_unit_type equal to BLA_W_RADL or BLA_N_LP.
if(nalUnitType == NAL_UNIT_CODED_SLICE_RASL_N ||
nalUnitType == NAL_UNIT_CODED_SLICE_RASL_R)
{
assert(this->getAssociatedIRAPType() != NAL_UNIT_CODED_SLICE_BLA_W_RADL &&
this->getAssociatedIRAPType() != NAL_UNIT_CODED_SLICE_BLA_N_LP);
}
// No RASL pictures shall be present in the bitstream that are associated with
// an IDR picture.
if(nalUnitType == NAL_UNIT_CODED_SLICE_RASL_N ||
nalUnitType == NAL_UNIT_CODED_SLICE_RASL_R)
{
assert(this->getAssociatedIRAPType() != NAL_UNIT_CODED_SLICE_IDR_N_LP &&
this->getAssociatedIRAPType() != NAL_UNIT_CODED_SLICE_IDR_W_RADL);
}
// No RADL pictures shall be present in the bitstream that are associated with
// a BLA picture having nal_unit_type equal to BLA_N_LP or that are associated
// with an IDR picture having nal_unit_type equal to IDR_N_LP.
if(nalUnitType == NAL_UNIT_CODED_SLICE_RADL_N ||
nalUnitType == NAL_UNIT_CODED_SLICE_RADL_R)
{
assert(this->getAssociatedIRAPType() != NAL_UNIT_CODED_SLICE_BLA_N_LP &&
this->getAssociatedIRAPType() != NAL_UNIT_CODED_SLICE_IDR_N_LP);
}
// loop through all pictures in the reference picture buffer
TComList<TComPic*>::iterator iterPic = rcListPic.begin();
while ( iterPic != rcListPic.end())
{
rpcPic = *(iterPic++);
#if BUGFIX_INTRAPERIOD
if(!rpcPic->getReconMark())
{
continue;
}
#endif
if (rpcPic->getPOC() == this->getPOC())
{
continue;
}
// Any picture that has PicOutputFlag equal to 1 that precedes an IRAP picture
// in decoding order shall precede the IRAP picture in output order.
// (Note that any picture following in output order would be present in the DPB)
if(rpcPic->getSlice(0)->getPicOutputFlag() == 1 && !this->getNoOutputPriorPicsFlag())
{
if(nalUnitType == NAL_UNIT_CODED_SLICE_BLA_N_LP ||
nalUnitType == NAL_UNIT_CODED_SLICE_BLA_W_LP ||
nalUnitType == NAL_UNIT_CODED_SLICE_BLA_W_RADL ||
nalUnitType == NAL_UNIT_CODED_SLICE_CRA ||
nalUnitType == NAL_UNIT_CODED_SLICE_IDR_N_LP ||
nalUnitType == NAL_UNIT_CODED_SLICE_IDR_W_RADL)
{
assert(rpcPic->getPOC() < this->getPOC());
}
}
// Any picture that has PicOutputFlag equal to 1 that precedes an IRAP picture
// in decoding order shall precede any RADL picture associated with the IRAP
// picture in output order.
if(rpcPic->getSlice(0)->getPicOutputFlag() == 1)
{
if((nalUnitType == NAL_UNIT_CODED_SLICE_RADL_N ||
nalUnitType == NAL_UNIT_CODED_SLICE_RADL_R))
{
// rpcPic precedes the IRAP in decoding order
if(this->getAssociatedIRAPPOC() > rpcPic->getSlice(0)->getAssociatedIRAPPOC())
{
// rpcPic must not be the IRAP picture
if(this->getAssociatedIRAPPOC() != rpcPic->getPOC())
{
assert(rpcPic->getPOC() < this->getPOC());
}
}
}
}
// When a picture is a leading picture, it shall precede, in decoding order,
// all trailing pictures that are associated with the same IRAP picture.
if(nalUnitType == NAL_UNIT_CODED_SLICE_RASL_N ||
nalUnitType == NAL_UNIT_CODED_SLICE_RASL_R ||
nalUnitType == NAL_UNIT_CODED_SLICE_RADL_N ||
nalUnitType == NAL_UNIT_CODED_SLICE_RADL_R)
{
if(rpcPic->getSlice(0)->getAssociatedIRAPPOC() == this->getAssociatedIRAPPOC())
{
// rpcPic is a picture that preceded the leading in decoding order since it exist in the DPB
// rpcPic would violate the constraint if it was a trailing picture
assert(rpcPic->getPOC() <= this->getAssociatedIRAPPOC());
}
}
// Any RASL picture associated with a CRA or BLA picture shall precede any
// RADL picture associated with the CRA or BLA picture in output order
if(nalUnitType == NAL_UNIT_CODED_SLICE_RASL_N ||
nalUnitType == NAL_UNIT_CODED_SLICE_RASL_R)
{
if((this->getAssociatedIRAPType() == NAL_UNIT_CODED_SLICE_BLA_N_LP ||
this->getAssociatedIRAPType() == NAL_UNIT_CODED_SLICE_BLA_W_LP ||
this->getAssociatedIRAPType() == NAL_UNIT_CODED_SLICE_BLA_W_RADL ||
this->getAssociatedIRAPType() == NAL_UNIT_CODED_SLICE_CRA) &&
this->getAssociatedIRAPPOC() == rpcPic->getSlice(0)->getAssociatedIRAPPOC())
{
if(rpcPic->getSlice(0)->getNalUnitType() == NAL_UNIT_CODED_SLICE_RADL_N ||
rpcPic->getSlice(0)->getNalUnitType() == NAL_UNIT_CODED_SLICE_RADL_R)
{
assert(rpcPic->getPOC() > this->getPOC());
}
}
}
// Any RASL picture associated with a CRA picture shall follow, in output
// order, any IRAP picture that precedes the CRA picture in decoding order.
if(nalUnitType == NAL_UNIT_CODED_SLICE_RASL_N ||
nalUnitType == NAL_UNIT_CODED_SLICE_RASL_R)
{
if(this->getAssociatedIRAPType() == NAL_UNIT_CODED_SLICE_CRA)
{
if(rpcPic->getSlice(0)->getPOC() < this->getAssociatedIRAPPOC() &&
(rpcPic->getSlice(0)->getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_N_LP ||
rpcPic->getSlice(0)->getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_LP ||
rpcPic->getSlice(0)->getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_RADL ||
rpcPic->getSlice(0)->getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_N_LP ||
rpcPic->getSlice(0)->getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_W_RADL ||
rpcPic->getSlice(0)->getNalUnitType() == NAL_UNIT_CODED_SLICE_CRA))
{
assert(this->getPOC() > rpcPic->getSlice(0)->getPOC());
}
}
}
}
}
/** Function for applying picture marking based on the Reference Picture Set in pReferencePictureSet.
*/
Void TComSlice::applyReferencePictureSet( TComList<TComPic*>& rcListPic, TComReferencePictureSet *pReferencePictureSet)
{
TComPic* rpcPic;
Int i, isReference;
checkLeadingPictureRestrictions(rcListPic);
// loop through all pictures in the reference picture buffer
TComList<TComPic*>::iterator iterPic = rcListPic.begin();
while ( iterPic != rcListPic.end())
{
rpcPic = *(iterPic++);
if(!rpcPic->getSlice( 0 )->isReferenced())
{
continue;
}
isReference = 0;
// loop through all pictures in the Reference Picture Set
// to see if the picture should be kept as reference picture
for(i=0;i<pReferencePictureSet->getNumberOfPositivePictures()+pReferencePictureSet->getNumberOfNegativePictures();i++)
{
if(!rpcPic->getIsLongTerm() && rpcPic->getPicSym()->getSlice(0)->getPOC() == this->getPOC() + pReferencePictureSet->getDeltaPOC(i))
{
isReference = 1;
rpcPic->setUsedByCurr(pReferencePictureSet->getUsed(i));
rpcPic->setIsLongTerm(0);
}
}
for(;i<pReferencePictureSet->getNumberOfPictures();i++)
{
if(pReferencePictureSet->getCheckLTMSBPresent(i)==true)
{
if(rpcPic->getIsLongTerm() && (rpcPic->getPicSym()->getSlice(0)->getPOC()) == pReferencePictureSet->getPOC(i))
{
isReference = 1;
rpcPic->setUsedByCurr(pReferencePictureSet->getUsed(i));
}
}
else
{
Int pocCycle = 1<<rpcPic->getPicSym()->getSlice(0)->getSPS()->getBitsForPOC();
Int curPoc = rpcPic->getPicSym()->getSlice(0)->getPOC() & (pocCycle-1);
Int refPoc = pReferencePictureSet->getPOC(i) & (pocCycle-1);
if(rpcPic->getIsLongTerm() && curPoc == refPoc)
{
isReference = 1;
rpcPic->setUsedByCurr(pReferencePictureSet->getUsed(i));
}
}
}
// mark the picture as "unused for reference" if it is not in
// the Reference Picture Set
if(rpcPic->getPicSym()->getSlice(0)->getPOC() != this->getPOC() && isReference == 0)
{
rpcPic->getSlice( 0 )->setReferenced( false );
rpcPic->setUsedByCurr(0);
rpcPic->setIsLongTerm(0);
}
//check that pictures of higher temporal layers are not used
assert(rpcPic->getSlice( 0 )->isReferenced()==0||rpcPic->getUsedByCurr()==0||rpcPic->getTLayer()<=this->getTLayer());
//check that pictures of higher or equal temporal layer are not in the RPS if the current picture is a TSA picture
if(this->getNalUnitType() == NAL_UNIT_CODED_SLICE_TSA_R || this->getNalUnitType() == NAL_UNIT_CODED_SLICE_TSA_N)
{
assert(rpcPic->getSlice( 0 )->isReferenced()==0||rpcPic->getTLayer()<this->getTLayer());
}
//check that pictures marked as temporal layer non-reference pictures are not used for reference
if(rpcPic->getPicSym()->getSlice(0)->getPOC() != this->getPOC() && rpcPic->getTLayer()==this->getTLayer())
{
assert(rpcPic->getSlice( 0 )->isReferenced()==0||rpcPic->getUsedByCurr()==0||rpcPic->getSlice( 0 )->getTemporalLayerNonReferenceFlag()==false);
}
}
}
/** Function for applying picture marking based on the Reference Picture Set in pReferencePictureSet.
*/
#if ALLOW_RECOVERY_POINT_AS_RAP
Int TComSlice::checkThatAllRefPicsAreAvailable( TComList<TComPic*>& rcListPic, TComReferencePictureSet *pReferencePictureSet, Bool printErrors, Int pocRandomAccess, Bool bUseRecoveryPoint)
#else
Int TComSlice::checkThatAllRefPicsAreAvailable( TComList<TComPic*>& rcListPic, TComReferencePictureSet *pReferencePictureSet, Bool printErrors, Int pocRandomAccess)
#endif
{
#if ALLOW_RECOVERY_POINT_AS_RAP
Int atLeastOneUnabledByRecoveryPoint = 0;
Int atLeastOneFlushedByPreviousIDR = 0;
#endif
TComPic* rpcPic;
Int i, isAvailable;
Int atLeastOneLost = 0;
Int atLeastOneRemoved = 0;
Int iPocLost = 0;
// loop through all long-term pictures in the Reference Picture Set
// to see if the picture should be kept as reference picture
for(i=pReferencePictureSet->getNumberOfNegativePictures()+pReferencePictureSet->getNumberOfPositivePictures();i<pReferencePictureSet->getNumberOfPictures();i++)
{
isAvailable = 0;
// loop through all pictures in the reference picture buffer
TComList<TComPic*>::iterator iterPic = rcListPic.begin();
while ( iterPic != rcListPic.end())
{
rpcPic = *(iterPic++);
if(pReferencePictureSet->getCheckLTMSBPresent(i)==true)
{
if(rpcPic->getIsLongTerm() && (rpcPic->getPicSym()->getSlice(0)->getPOC()) == pReferencePictureSet->getPOC(i) && rpcPic->getSlice(0)->isReferenced())
{
#if ALLOW_RECOVERY_POINT_AS_RAP
if(bUseRecoveryPoint && this->getPOC() > pocRandomAccess && this->getPOC() + pReferencePictureSet->getDeltaPOC(i) < pocRandomAccess)
{
isAvailable = 0;
}
else
{
isAvailable = 1;
}
#else
isAvailable = 1;
#endif
}
}
else
{
Int pocCycle = 1<<rpcPic->getPicSym()->getSlice(0)->getSPS()->getBitsForPOC();
Int curPoc = rpcPic->getPicSym()->getSlice(0)->getPOC() & (pocCycle-1);
Int refPoc = pReferencePictureSet->getPOC(i) & (pocCycle-1);
if(rpcPic->getIsLongTerm() && curPoc == refPoc && rpcPic->getSlice(0)->isReferenced())
{
#if ALLOW_RECOVERY_POINT_AS_RAP
if(bUseRecoveryPoint && this->getPOC() > pocRandomAccess && this->getPOC() + pReferencePictureSet->getDeltaPOC(i) < pocRandomAccess)
{
isAvailable = 0;
}
else
{
isAvailable = 1;
}
#else
isAvailable = 1;
#endif
}
}
}
// if there was no such long-term check the short terms
if(!isAvailable)
{
iterPic = rcListPic.begin();
while ( iterPic != rcListPic.end())
{
rpcPic = *(iterPic++);
Int pocCycle = 1 << rpcPic->getPicSym()->getSlice(0)->getSPS()->getBitsForPOC();
Int curPoc = rpcPic->getPicSym()->getSlice(0)->getPOC();
Int refPoc = pReferencePictureSet->getPOC(i);
if (!pReferencePictureSet->getCheckLTMSBPresent(i))
{
curPoc = curPoc & (pocCycle - 1);
refPoc = refPoc & (pocCycle - 1);
}
if (rpcPic->getSlice(0)->isReferenced() && curPoc == refPoc)
{
#if ALLOW_RECOVERY_POINT_AS_RAP
if(bUseRecoveryPoint && this->getPOC() > pocRandomAccess && this->getPOC() + pReferencePictureSet->getDeltaPOC(i) < pocRandomAccess)
{
isAvailable = 0;
}
else
{
isAvailable = 1;
rpcPic->setIsLongTerm(1);
break;
}
#else
isAvailable = 1;
rpcPic->setIsLongTerm(1);
break;
#endif
}
}
}
// report that a picture is lost if it is in the Reference Picture Set
// but not available as reference picture
if(isAvailable == 0)
{
if (this->getPOC() + pReferencePictureSet->getDeltaPOC(i) >= pocRandomAccess)
{
if(!pReferencePictureSet->getUsed(i) )
{
if(printErrors)
{
printf("\nLong-term reference picture with POC = %3d seems to have been removed or not correctly decoded.", this->getPOC() + pReferencePictureSet->getDeltaPOC(i));
}
atLeastOneRemoved = 1;
}
else
{
if(printErrors)
{
printf("\nLong-term reference picture with POC = %3d is lost or not correctly decoded!", this->getPOC() + pReferencePictureSet->getDeltaPOC(i));
}
atLeastOneLost = 1;
iPocLost=this->getPOC() + pReferencePictureSet->getDeltaPOC(i);
}
}
#if ALLOW_RECOVERY_POINT_AS_RAP
else if(bUseRecoveryPoint && this->getPOC() > pocRandomAccess)
{
atLeastOneUnabledByRecoveryPoint = 1;
}
else if(bUseRecoveryPoint && (this->getAssociatedIRAPType()==NAL_UNIT_CODED_SLICE_IDR_N_LP || this->getAssociatedIRAPType()==NAL_UNIT_CODED_SLICE_IDR_W_RADL))
{
atLeastOneFlushedByPreviousIDR = 1;
}
#endif
}
}
// loop through all short-term pictures in the Reference Picture Set
// to see if the picture should be kept as reference picture
for(i=0;i<pReferencePictureSet->getNumberOfNegativePictures()+pReferencePictureSet->getNumberOfPositivePictures();i++)
{
isAvailable = 0;
// loop through all pictures in the reference picture buffer
TComList<TComPic*>::iterator iterPic = rcListPic.begin();
while ( iterPic != rcListPic.end())
{
rpcPic = *(iterPic++);
if(!rpcPic->getIsLongTerm() && rpcPic->getPicSym()->getSlice(0)->getPOC() == this->getPOC() + pReferencePictureSet->getDeltaPOC(i) && rpcPic->getSlice(0)->isReferenced())
{
#if ALLOW_RECOVERY_POINT_AS_RAP
if(bUseRecoveryPoint && this->getPOC() > pocRandomAccess && this->getPOC() + pReferencePictureSet->getDeltaPOC(i) < pocRandomAccess)
{
isAvailable = 0;
}
else
{
isAvailable = 1;
}
#else
isAvailable = 1;
#endif
}
}
// report that a picture is lost if it is in the Reference Picture Set
// but not available as reference picture
if(isAvailable == 0)
{
if (this->getPOC() + pReferencePictureSet->getDeltaPOC(i) >= pocRandomAccess)
{
if(!pReferencePictureSet->getUsed(i) )
{
if(printErrors)
{
printf("\nShort-term reference picture with POC = %3d seems to have been removed or not correctly decoded.", this->getPOC() + pReferencePictureSet->getDeltaPOC(i));
}
atLeastOneRemoved = 1;
}
else
{
if(printErrors)
{
printf("\nShort-term reference picture with POC = %3d is lost or not correctly decoded!", this->getPOC() + pReferencePictureSet->getDeltaPOC(i));
}
atLeastOneLost = 1;
iPocLost=this->getPOC() + pReferencePictureSet->getDeltaPOC(i);
}
}
#if ALLOW_RECOVERY_POINT_AS_RAP
else if(bUseRecoveryPoint && this->getPOC() > pocRandomAccess)
{
atLeastOneUnabledByRecoveryPoint = 1;
}
else if(bUseRecoveryPoint && (this->getAssociatedIRAPType()==NAL_UNIT_CODED_SLICE_IDR_N_LP || this->getAssociatedIRAPType()==NAL_UNIT_CODED_SLICE_IDR_W_RADL))
{
atLeastOneFlushedByPreviousIDR = 1;
}
#endif
}
}
#if ALLOW_RECOVERY_POINT_AS_RAP
if(atLeastOneUnabledByRecoveryPoint || atLeastOneFlushedByPreviousIDR)
{
return -1;
}
#endif
if(atLeastOneLost)
{
return iPocLost+1;
}
if(atLeastOneRemoved)
{
return -2;
}
else
{
return 0;
}
}
/** Function for constructing an explicit Reference Picture Set out of the available pictures in a referenced Reference Picture Set
*/
#if ALLOW_RECOVERY_POINT_AS_RAP
Void TComSlice::createExplicitReferencePictureSetFromReference( TComList<TComPic*>& rcListPic, TComReferencePictureSet *pReferencePictureSet, Bool isRAP, Int pocRandomAccess, Bool bUseRecoveryPoint)
#else
Void TComSlice::createExplicitReferencePictureSetFromReference( TComList<TComPic*>& rcListPic, TComReferencePictureSet *pReferencePictureSet, Bool isRAP)
#endif
{
TComPic* rpcPic;
Int i, j;
Int k = 0;
Int nrOfNegativePictures = 0;
Int nrOfPositivePictures = 0;
TComReferencePictureSet* pcRPS = this->getLocalRPS();
#if EFFICIENT_FIELD_IRAP
Bool irapIsInRPS = false;
#endif
// loop through all pictures in the Reference Picture Set
for(i=0;i<pReferencePictureSet->getNumberOfPictures();i++)
{
j = 0;
// loop through all pictures in the reference picture buffer
TComList<TComPic*>::iterator iterPic = rcListPic.begin();
while ( iterPic != rcListPic.end())
{
j++;
rpcPic = *(iterPic++);
if(rpcPic->getPicSym()->getSlice(0)->getPOC() == this->getPOC() + pReferencePictureSet->getDeltaPOC(i) && rpcPic->getSlice(0)->isReferenced())
{
// This picture exists as a reference picture
// and should be added to the explicit Reference Picture Set
pcRPS->setDeltaPOC(k, pReferencePictureSet->getDeltaPOC(i));
pcRPS->setUsed(k, pReferencePictureSet->getUsed(i) && (!isRAP));
#if ALLOW_RECOVERY_POINT_AS_RAP
pcRPS->setUsed(k, pcRPS->getUsed(k) && !(bUseRecoveryPoint && this->getPOC() > pocRandomAccess && this->getPOC() + pReferencePictureSet->getDeltaPOC(i) < pocRandomAccess) );
#endif
if(pcRPS->getDeltaPOC(k) < 0)
{
nrOfNegativePictures++;
}
else
{
#if EFFICIENT_FIELD_IRAP
if(rpcPic->getPicSym()->getSlice(0)->getPOC() == this->getAssociatedIRAPPOC() && this->getAssociatedIRAPPOC() == this->getPOC()+1)
{
irapIsInRPS = true;
}
#endif
nrOfPositivePictures++;
}
k++;
}
}
}
#if EFFICIENT_FIELD_IRAP
Bool useNewRPS = false;
// if current picture is complimentary field associated to IRAP, add the IRAP to its RPS.
if(m_pcPic->isField() && !irapIsInRPS)
{
TComList<TComPic*>::iterator iterPic = rcListPic.begin();
while ( iterPic != rcListPic.end())
{
rpcPic = *(iterPic++);
if(rpcPic->getPicSym()->getSlice(0)->getPOC() == this->getAssociatedIRAPPOC() && this->getAssociatedIRAPPOC() == this->getPOC()+1)
{
pcRPS->setDeltaPOC(k, 1);
pcRPS->setUsed(k, true);
nrOfPositivePictures++;
k ++;
useNewRPS = true;
}
}
}
#endif
pcRPS->setNumberOfNegativePictures(nrOfNegativePictures);
pcRPS->setNumberOfPositivePictures(nrOfPositivePictures);
pcRPS->setNumberOfPictures(nrOfNegativePictures+nrOfPositivePictures);
// This is a simplistic inter rps example. A smarter encoder will look for a better reference RPS to do the
// inter RPS prediction with. Here we just use the reference used by pReferencePictureSet.
// If pReferencePictureSet is not inter_RPS_predicted, then inter_RPS_prediction is for the current RPS also disabled.
if (!pReferencePictureSet->getInterRPSPrediction()
#if EFFICIENT_FIELD_IRAP
|| useNewRPS
#endif
)
{
pcRPS->setInterRPSPrediction(false);
pcRPS->setNumRefIdc(0);
}
else
{
Int rIdx = this->getRPSidx() - pReferencePictureSet->getDeltaRIdxMinus1() - 1;
Int deltaRPS = pReferencePictureSet->getDeltaRPS();
TComReferencePictureSet* pcRefRPS = this->getSPS()->getRPSList()->getReferencePictureSet(rIdx);
Int iRefPics = pcRefRPS->getNumberOfPictures();
Int iNewIdc=0;
for(i=0; i<= iRefPics; i++)
{
Int deltaPOC = ((i != iRefPics)? pcRefRPS->getDeltaPOC(i) : 0); // check if the reference abs POC is >= 0
Int iRefIdc = 0;
for (j=0; j < pcRPS->getNumberOfPictures(); j++) // loop through the pictures in the new RPS
{
if ( (deltaPOC + deltaRPS) == pcRPS->getDeltaPOC(j))
{
if (pcRPS->getUsed(j))
{
iRefIdc = 1;
}
else
{
iRefIdc = 2;
}
}
}
pcRPS->setRefIdc(i, iRefIdc);
iNewIdc++;
}
pcRPS->setInterRPSPrediction(true);
pcRPS->setNumRefIdc(iNewIdc);
pcRPS->setDeltaRPS(deltaRPS);
pcRPS->setDeltaRIdxMinus1(pReferencePictureSet->getDeltaRIdxMinus1() + this->getSPS()->getRPSList()->getNumberOfReferencePictureSets() - this->getRPSidx());
}
this->setRPS(pcRPS);
this->setRPSidx(-1);
}
/** get AC and DC values for weighted pred
* \param *wp
* \returns Void
*/
Void TComSlice::getWpAcDcParam(WPACDCParam *&wp)
{
wp = m_weightACDCParam;
}
/** init AC and DC values for weighted pred
* \returns Void
*/
Void TComSlice::initWpAcDcParam()
{
for(Int iComp = 0; iComp < MAX_NUM_COMPONENT; iComp++ )
{
m_weightACDCParam[iComp].iAC = 0;
m_weightACDCParam[iComp].iDC = 0;
}
}
/** get WP tables for weighted pred
* \param RefPicList
* \param iRefIdx
* \param *&WPScalingParam
* \returns Void
*/
Void TComSlice::getWpScaling( RefPicList e, Int iRefIdx, WPScalingParam *&wp )
{
assert (e<NUM_REF_PIC_LIST_01);
wp = m_weightPredTable[e][iRefIdx];
}
/** reset Default WP tables settings : no weight.
* \param WPScalingParam
* \returns Void
*/
Void TComSlice::resetWpScaling()
{
for ( Int e=0 ; e<NUM_REF_PIC_LIST_01 ; e++ )
{
for ( Int i=0 ; i<MAX_NUM_REF ; i++ )
{
for ( Int yuv=0 ; yuv<MAX_NUM_COMPONENT ; yuv++ )
{
WPScalingParam *pwp = &(m_weightPredTable[e][i][yuv]);
pwp->bPresentFlag = false;
pwp->uiLog2WeightDenom = 0;
pwp->uiLog2WeightDenom = 0;
pwp->iWeight = 1;
pwp->iOffset = 0;
}
}
}
}
/** init WP table
* \returns Void
*/
Void TComSlice::initWpScaling()
{
const Bool bUseHighPrecisionPredictionWeighting = getSPS()->getUseHighPrecisionPredictionWeighting();
for ( Int e=0 ; e<NUM_REF_PIC_LIST_01 ; e++ )
{
for ( Int i=0 ; i<MAX_NUM_REF ; i++ )
{
for ( Int yuv=0 ; yuv<MAX_NUM_COMPONENT ; yuv++ )
{
WPScalingParam *pwp = &(m_weightPredTable[e][i][yuv]);
if ( !pwp->bPresentFlag )
{
// Inferring values not present :
pwp->iWeight = (1 << pwp->uiLog2WeightDenom);
pwp->iOffset = 0;
}
const Int offsetScalingFactor = bUseHighPrecisionPredictionWeighting ? 1 : (1 << (g_bitDepth[toChannelType(ComponentID(yuv))]-8));
pwp->w = pwp->iWeight;
pwp->o = pwp->iOffset * offsetScalingFactor; //NOTE: This value of the ".o" variable is never used - .o is set immediately before it gets used
pwp->shift = pwp->uiLog2WeightDenom;
pwp->round = (pwp->uiLog2WeightDenom>=1) ? (1 << (pwp->uiLog2WeightDenom-1)) : (0);
}
}
}
}
// ------------------------------------------------------------------------------------------------
// Video parameter set (VPS)
// ------------------------------------------------------------------------------------------------
TComVPS::TComVPS()
: m_VPSId ( 0)
, m_uiMaxTLayers ( 1)
, m_uiMaxLayers ( 1)
, m_bTemporalIdNestingFlag (false)
, m_numHrdParameters ( 0)
, m_maxNuhReservedZeroLayerId ( 0)
, m_hrdParameters (NULL)
, m_hrdOpSetIdx (NULL)
, m_cprmsPresentFlag (NULL)
{
for( Int i = 0; i < MAX_TLAYER; i++)
{
m_numReorderPics[i] = 0;
m_uiMaxDecPicBuffering[i] = 1;
m_uiMaxLatencyIncrease[i] = 0;
}
}
TComVPS::~TComVPS()
{
if( m_hrdParameters != NULL ) delete[] m_hrdParameters;
if( m_hrdOpSetIdx != NULL ) delete[] m_hrdOpSetIdx;
if( m_cprmsPresentFlag != NULL ) delete[] m_cprmsPresentFlag;
}
// ------------------------------------------------------------------------------------------------
// Sequence parameter set (SPS)
// ------------------------------------------------------------------------------------------------
TComSPS::TComSPS()
: m_SPSId ( 0)
, m_VPSId ( 0)
, m_chromaFormatIdc (CHROMA_420)
, m_uiMaxTLayers ( 1)
// Structure
, m_picWidthInLumaSamples (352)
, m_picHeightInLumaSamples (288)
, m_log2MinCodingBlockSize ( 0)
, m_log2DiffMaxMinCodingBlockSize(0)
, m_uiMaxCUWidth ( 32)
, m_uiMaxCUHeight ( 32)
, m_uiMaxCUDepth ( 3)
, m_bLongTermRefsPresent (false)
, m_uiQuadtreeTULog2MaxSize ( 0)
, m_uiQuadtreeTULog2MinSize ( 0)
, m_uiQuadtreeTUMaxDepthInter ( 0)
, m_uiQuadtreeTUMaxDepthIntra ( 0)
// Tool list
, m_usePCM (false)
, m_pcmLog2MaxSize ( 5)
, m_uiPCMLog2MinSize ( 7)
, m_useExtendedPrecision (false)
, m_useHighPrecisionPredictionWeighting(false)
, m_useResidualRotation (false)
, m_useSingleSignificanceMapContext(false)
, m_useGolombRiceParameterAdaptation(false)
, m_alignCABACBeforeBypass (false)
, m_bPCMFilterDisableFlag (false)
, m_disableIntraReferenceSmoothing(false)
, m_uiBitsForPOC ( 8)
, m_numLongTermRefPicSPS ( 0)
, m_uiMaxTrSize ( 32)
, m_bUseSAO (false)
, m_bTemporalIdNestingFlag (false)
, m_scalingListEnabledFlag (false)
, m_useStrongIntraSmoothing (false)
, m_vuiParametersPresentFlag (false)
, m_vuiParameters ()
{
for(Int ch=0; ch<MAX_NUM_CHANNEL_TYPE; ch++)
{
m_uiBitDepth [ch] = 8;
m_uiPCMBitDepth[ch] = 8;
m_qpBDOffset [ch] = 0;
}
for ( Int i = 0; i < MAX_TLAYER; i++ )
{
m_uiMaxLatencyIncrease[i] = 0;
m_uiMaxDecPicBuffering[i] = 1;
m_numReorderPics[i] = 0;
}
for (UInt signallingModeIndex = 0; signallingModeIndex < NUMBER_OF_RDPCM_SIGNALLING_MODES; signallingModeIndex++)
{
m_useResidualDPCM[signallingModeIndex] = false;
}
m_scalingList = new TComScalingList;
::memset(m_ltRefPicPocLsbSps, 0, sizeof(m_ltRefPicPocLsbSps));
::memset(m_usedByCurrPicLtSPSFlag, 0, sizeof(m_usedByCurrPicLtSPSFlag));
}
TComSPS::~TComSPS()
{
delete m_scalingList;
m_RPSList.destroy();
}
Void TComSPS::createRPSList( Int numRPS )
{
m_RPSList.destroy();
m_RPSList.create(numRPS);
}
Void TComSPS::setHrdParameters( UInt frameRate, UInt numDU, UInt bitRate, Bool randomAccess )
{
if( !getVuiParametersPresentFlag() )
{
return;
}
TComVUI *vui = getVuiParameters();
TComHRD *hrd = vui->getHrdParameters();
TimingInfo *timingInfo = vui->getTimingInfo();
timingInfo->setTimingInfoPresentFlag( true );
switch( frameRate )
{
case 24:
timingInfo->setNumUnitsInTick( 1125000 ); timingInfo->setTimeScale ( 27000000 );
break;
case 25:
timingInfo->setNumUnitsInTick( 1080000 ); timingInfo->setTimeScale ( 27000000 );
break;
case 30:
timingInfo->setNumUnitsInTick( 900900 ); timingInfo->setTimeScale ( 27000000 );
break;
case 50:
timingInfo->setNumUnitsInTick( 540000 ); timingInfo->setTimeScale ( 27000000 );
break;
case 60:
timingInfo->setNumUnitsInTick( 450450 ); timingInfo->setTimeScale ( 27000000 );
break;
default:
timingInfo->setNumUnitsInTick( 1001 ); timingInfo->setTimeScale ( 60000 );
break;
}
Bool rateCnt = ( bitRate > 0 );
hrd->setNalHrdParametersPresentFlag( rateCnt );
hrd->setVclHrdParametersPresentFlag( rateCnt );
hrd->setSubPicCpbParamsPresentFlag( ( numDU > 1 ) );
if( hrd->getSubPicCpbParamsPresentFlag() )
{
hrd->setTickDivisorMinus2( 100 - 2 ); //
hrd->setDuCpbRemovalDelayLengthMinus1( 7 ); // 8-bit precision ( plus 1 for last DU in AU )
hrd->setSubPicCpbParamsInPicTimingSEIFlag( true );
hrd->setDpbOutputDelayDuLengthMinus1( 5 + 7 ); // With sub-clock tick factor of 100, at least 7 bits to have the same value as AU dpb delay
}
else
{
hrd->setSubPicCpbParamsInPicTimingSEIFlag( false );
}
hrd->setBitRateScale( 4 ); // in units of 2~( 6 + 4 ) = 1,024 bps
hrd->setCpbSizeScale( 6 ); // in units of 2~( 4 + 4 ) = 1,024 bit
hrd->setDuCpbSizeScale( 6 ); // in units of 2~( 4 + 4 ) = 1,024 bit
hrd->setInitialCpbRemovalDelayLengthMinus1(15); // assuming 0.5 sec, log2( 90,000 * 0.5 ) = 16-bit
if( randomAccess )
{
hrd->setCpbRemovalDelayLengthMinus1(5); // 32 = 2^5 (plus 1)
hrd->setDpbOutputDelayLengthMinus1 (5); // 32 + 3 = 2^6
}
else
{
hrd->setCpbRemovalDelayLengthMinus1(9); // max. 2^10
hrd->setDpbOutputDelayLengthMinus1 (9); // max. 2^10
}
/*
Note: only the case of "vps_max_temporal_layers_minus1 = 0" is supported.
*/
Int i, j;
UInt bitrateValue, cpbSizeValue;
UInt duCpbSizeValue;
UInt duBitRateValue = 0;
for( i = 0; i < MAX_TLAYER; i ++ )
{
hrd->setFixedPicRateFlag( i, 1 );
hrd->setPicDurationInTcMinus1( i, 0 );
hrd->setLowDelayHrdFlag( i, 0 );
hrd->setCpbCntMinus1( i, 0 );
bitrateValue = bitRate;
cpbSizeValue = bitRate; // 1 second
duCpbSizeValue = bitRate/numDU;
duBitRateValue = bitRate;
for( j = 0; j < ( hrd->getCpbCntMinus1( i ) + 1 ); j ++ )
{
hrd->setBitRateValueMinus1( i, j, 0, ( bitrateValue - 1 ) );
hrd->setCpbSizeValueMinus1( i, j, 0, ( cpbSizeValue - 1 ) );
hrd->setDuCpbSizeValueMinus1( i, j, 0, ( duCpbSizeValue - 1 ) );
hrd->setCbrFlag( i, j, 0, ( j == 0 ) );
hrd->setBitRateValueMinus1( i, j, 1, ( bitrateValue - 1) );
hrd->setCpbSizeValueMinus1( i, j, 1, ( cpbSizeValue - 1 ) );
hrd->setDuCpbSizeValueMinus1( i, j, 1, ( duCpbSizeValue - 1 ) );
hrd->setDuBitRateValueMinus1( i, j, 1, ( duBitRateValue - 1 ) );
hrd->setCbrFlag( i, j, 1, ( j == 0 ) );
}
}
}
const Int TComSPS::m_winUnitX[]={1,2,2,1};
const Int TComSPS::m_winUnitY[]={1,2,1,1};
TComPPS::TComPPS()
: m_PPSId (0)
, m_SPSId (0)
, m_picInitQPMinus26 (0)
, m_useDQP (false)
, m_bConstrainedIntraPred (false)
, m_bSliceChromaQpFlag (false)
, m_pcSPS (NULL)
, m_uiMaxCuDQPDepth (0)
, m_uiMinCuDQPSize (0)
, m_MaxCuChromaQpAdjDepth (0)
, m_MinCuChromaQpAdjSize (0)
, m_ChromaQpAdjTableSize (0)
, m_chromaCbQpOffset (0)
, m_chromaCrQpOffset (0)
, m_numRefIdxL0DefaultActive (1)
, m_numRefIdxL1DefaultActive (1)
, m_useCrossComponentPrediction (false)
, m_TransquantBypassEnableFlag (false)
, m_useTransformSkip (false)
, m_transformSkipLog2MaxSize (2)
, m_dependentSliceSegmentsEnabledFlag(false)
, m_tilesEnabledFlag (false)
, m_entropyCodingSyncEnabledFlag (false)
, m_loopFilterAcrossTilesEnabledFlag (true)
, m_uniformSpacingFlag (false)
, m_numTileColumnsMinus1 (0)
, m_numTileRowsMinus1 (0)
, m_numSubstreams (1)
, m_signHideFlag (0)
, m_cabacInitPresentFlag (false)
, m_encCABACTableIdx (I_SLICE)
, m_sliceHeaderExtensionPresentFlag (false)
, m_loopFilterAcrossSlicesEnabledFlag(false)
, m_listsModificationPresentFlag (0)
, m_numExtraSliceHeaderBits (0)
{
m_scalingList = new TComScalingList;
for(Int ch=0; ch<MAX_NUM_CHANNEL_TYPE; ch++)
{
m_saoOffsetBitShift[ch] = 0;
}
m_ChromaQpAdjTable[0].u.comp.CbOffset = 0;
m_ChromaQpAdjTable[0].u.comp.CrOffset = 0;
}
TComPPS::~TComPPS()
{
delete m_scalingList;
}
TComReferencePictureSet::TComReferencePictureSet()
: m_numberOfPictures (0)
, m_numberOfNegativePictures (0)
, m_numberOfPositivePictures (0)
, m_numberOfLongtermPictures (0)
, m_interRPSPrediction (0)
, m_deltaRIdxMinus1 (0)
, m_deltaRPS (0)
, m_numRefIdc (0)
{
::memset( m_deltaPOC, 0, sizeof(m_deltaPOC) );
::memset( m_POC, 0, sizeof(m_POC) );
::memset( m_used, 0, sizeof(m_used) );
::memset( m_refIdc, 0, sizeof(m_refIdc) );
}
TComReferencePictureSet::~TComReferencePictureSet()
{
}
Void TComReferencePictureSet::setUsed(Int bufferNum, Bool used)
{
m_used[bufferNum] = used;
}
Void TComReferencePictureSet::setDeltaPOC(Int bufferNum, Int deltaPOC)
{
m_deltaPOC[bufferNum] = deltaPOC;
}
Void TComReferencePictureSet::setNumberOfPictures(Int numberOfPictures)
{
m_numberOfPictures = numberOfPictures;
}
Int TComReferencePictureSet::getUsed(Int bufferNum)
{
return m_used[bufferNum];
}
Int TComReferencePictureSet::getDeltaPOC(Int bufferNum)
{
return m_deltaPOC[bufferNum];
}
Int TComReferencePictureSet::getNumberOfPictures()
{
return m_numberOfPictures;
}
Int TComReferencePictureSet::getPOC(Int bufferNum)
{
return m_POC[bufferNum];
}
Void TComReferencePictureSet::setPOC(Int bufferNum, Int POC)
{
m_POC[bufferNum] = POC;
}
Bool TComReferencePictureSet::getCheckLTMSBPresent(Int bufferNum)
{
return m_bCheckLTMSB[bufferNum];
}
Void TComReferencePictureSet::setCheckLTMSBPresent(Int bufferNum, Bool b)
{
m_bCheckLTMSB[bufferNum] = b;
}
/** set the reference idc value at uiBufferNum entry to the value of iRefIdc
* \param uiBufferNum
* \param iRefIdc
* \returns Void
*/
Void TComReferencePictureSet::setRefIdc(Int bufferNum, Int refIdc)
{
m_refIdc[bufferNum] = refIdc;
}
/** get the reference idc value at uiBufferNum
* \param uiBufferNum
* \returns Int
*/
Int TComReferencePictureSet::getRefIdc(Int bufferNum)
{
return m_refIdc[bufferNum];
}
/** Sorts the deltaPOC and Used by current values in the RPS based on the deltaPOC values.
* deltaPOC values are sorted with -ve values before the +ve values. -ve values are in decreasing order.
* +ve values are in increasing order.
* \returns Void
*/
Void TComReferencePictureSet::sortDeltaPOC()
{
// sort in increasing order (smallest first)
for(Int j=1; j < getNumberOfPictures(); j++)
{
Int deltaPOC = getDeltaPOC(j);
Bool used = getUsed(j);
for (Int k=j-1; k >= 0; k--)
{
Int temp = getDeltaPOC(k);
if (deltaPOC < temp)
{
setDeltaPOC(k+1, temp);
setUsed(k+1, getUsed(k));
setDeltaPOC(k, deltaPOC);
setUsed(k, used);
}
}
}
// flip the negative values to largest first
Int numNegPics = getNumberOfNegativePictures();
for(Int j=0, k=numNegPics-1; j < numNegPics>>1; j++, k--)
{
Int deltaPOC = getDeltaPOC(j);
Bool used = getUsed(j);
setDeltaPOC(j, getDeltaPOC(k));
setUsed(j, getUsed(k));
setDeltaPOC(k, deltaPOC);
setUsed(k, used);
}
}
/** Prints the deltaPOC and RefIdc (if available) values in the RPS.
* A "*" is added to the deltaPOC value if it is Used bu current.
* \returns Void
*/
Void TComReferencePictureSet::printDeltaPOC()
{
printf("DeltaPOC = { ");
for(Int j=0; j < getNumberOfPictures(); j++)
{
printf("%d%s ", getDeltaPOC(j), (getUsed(j)==1)?"*":"");
}
if (getInterRPSPrediction())
{
printf("}, RefIdc = { ");
for(Int j=0; j < getNumRefIdc(); j++)
{
printf("%d ", getRefIdc(j));
}
}
printf("}\n");
}
TComRPSList::TComRPSList()
:m_referencePictureSets (NULL)
{
}
TComRPSList::~TComRPSList()
{
}
Void TComRPSList::create( Int numberOfReferencePictureSets)
{
m_numberOfReferencePictureSets = numberOfReferencePictureSets;
m_referencePictureSets = new TComReferencePictureSet[numberOfReferencePictureSets];
}
Void TComRPSList::destroy()
{
if (m_referencePictureSets)
{
delete [] m_referencePictureSets;
}
m_numberOfReferencePictureSets = 0;
m_referencePictureSets = NULL;
}
TComReferencePictureSet* TComRPSList::getReferencePictureSet(Int referencePictureSetNum)
{
return &m_referencePictureSets[referencePictureSetNum];
}
Int TComRPSList::getNumberOfReferencePictureSets()
{
return m_numberOfReferencePictureSets;
}
Void TComRPSList::setNumberOfReferencePictureSets(Int numberOfReferencePictureSets)
{
m_numberOfReferencePictureSets = numberOfReferencePictureSets;
}
TComRefPicListModification::TComRefPicListModification()
: m_bRefPicListModificationFlagL0 (false)
, m_bRefPicListModificationFlagL1 (false)
{
::memset( m_RefPicSetIdxL0, 0, sizeof(m_RefPicSetIdxL0) );
::memset( m_RefPicSetIdxL1, 0, sizeof(m_RefPicSetIdxL1) );
}
TComRefPicListModification::~TComRefPicListModification()
{
}
TComScalingList::TComScalingList()
{
init();
}
TComScalingList::~TComScalingList()
{
destroy();
}
/** set default quantization matrix to array
*/
Void TComSlice::setDefaultScalingList()
{
for(UInt sizeId = 0; sizeId < SCALING_LIST_SIZE_NUM; sizeId++)
{
for(UInt listId=0;listId<SCALING_LIST_NUM;listId++)
{
getScalingList()->processDefaultMatrix(sizeId, listId);
}
}
}
/** check if use default quantization matrix
* \returns true if use default quantization matrix in all size
*/
Bool TComSlice::checkDefaultScalingList()
{
UInt defaultCounter=0;
for(UInt sizeId = 0; sizeId < SCALING_LIST_SIZE_NUM; sizeId++)
{
for(UInt listId=0;listId<SCALING_LIST_NUM;listId++)
{
if( !memcmp(getScalingList()->getScalingListAddress(sizeId,listId), getScalingList()->getScalingListDefaultAddress(sizeId, listId),sizeof(Int)*min(MAX_MATRIX_COEF_NUM,(Int)g_scalingListSize[sizeId])) // check value of matrix
&& ((sizeId < SCALING_LIST_16x16) || (getScalingList()->getScalingListDC(sizeId,listId) == 16))) // check DC value
{
defaultCounter++;
}
}
}
return (defaultCounter == (SCALING_LIST_NUM * SCALING_LIST_SIZE_NUM )) ? false : true;
}
/** get scaling matrix from RefMatrixID
* \param sizeId size index
* \param Index of input matrix
* \param Index of reference matrix
*/
Void TComScalingList::processRefMatrix( UInt sizeId, UInt listId , UInt refListId )
{
::memcpy(getScalingListAddress(sizeId, listId),((listId == refListId)? getScalingListDefaultAddress(sizeId, refListId): getScalingListAddress(sizeId, refListId)),sizeof(Int)*min(MAX_MATRIX_COEF_NUM,(Int)g_scalingListSize[sizeId]));
}
/** parse syntax infomation
* \param pchFile syntax infomation
* \returns false if successful
*/
static Void outputScalingListHelp(std::ostream &os)
{
os << "The scaling list file specifies all matrices and their DC values; none can be missing,\n"
"but their order is arbitrary.\n\n"
"The matrices are specified by:\n"
"<matrix name><unchecked data>\n"
" <value>,<value>,<value>,....\n\n"
" Line-feeds can be added arbitrarily between values, and the number of values needs to be\n"
" at least the number of entries for the matrix (superfluous entries are ignored).\n"
" The <unchecked data> is text on the same line as the matrix that is not checked\n"
" except to ensure that the matrix name token is unique. It is recommended that it is ' ='\n"
" The values in the matrices are the absolute values (0-255), not the delta values as\n"
" exchanged between the encoder and decoder\n\n"
"The DC values (for matrix sizes larger than 8x8) are specified by:\n"
"<matrix name>_DC<unchecked data>\n"
" <value>\n";
os << "The permitted matrix names are:\n";
for(UInt sizeIdc = 0; sizeIdc < SCALING_LIST_SIZE_NUM; sizeIdc++)
{
for(UInt listIdc = 0; listIdc < SCALING_LIST_NUM; listIdc++)
{
if ((sizeIdc!=SCALING_LIST_32x32) || (listIdc%(SCALING_LIST_NUM/NUMBER_OF_PREDICTION_MODES) == 0))
{
os << " " << MatrixType[sizeIdc][listIdc] << '\n';
}
}
}
}
Void TComScalingList::outputScalingLists(std::ostream &os) const
{
for(UInt sizeIdc = 0; sizeIdc < SCALING_LIST_SIZE_NUM; sizeIdc++)
{
const UInt size = min(8,4<<(sizeIdc));
for(UInt listIdc = 0; listIdc < SCALING_LIST_NUM; listIdc++)
{
if ((sizeIdc!=SCALING_LIST_32x32) || (listIdc%(SCALING_LIST_NUM/NUMBER_OF_PREDICTION_MODES) == 0))
{
const Int *src = getScalingListAddress(sizeIdc, listIdc);
os << (MatrixType[sizeIdc][listIdc]) << " =\n ";
for(UInt y=0; y<size; y++)
{
for(UInt x=0; x<size; x++, src++)
{
os << std::setw(3) << (*src) << ", ";
}
os << (y+1<size?"\n ":"\n");
}
if(sizeIdc > SCALING_LIST_8x8)
{
os << MatrixType_DC[sizeIdc][listIdc] << " = \n " << std::setw(3) << getScalingListDC(sizeIdc, listIdc) << "\n";
}
os << "\n";
}
}
}
}
Bool TComScalingList::xParseScalingList(Char* pchFile)
{
static const Int LINE_SIZE=1024;
FILE *fp = NULL;
Char line[LINE_SIZE];
if (pchFile == NULL)
{
fprintf(stderr, "Error: no scaling list file specified. Help on scaling lists being output\n");
outputScalingListHelp(std::cout);
std::cout << "\n\nExample scaling list file using default values:\n\n";
outputScalingLists(std::cout);
exit (1);
return true;
}
else if ((fp = fopen(pchFile,"r")) == (FILE*)NULL)
{
fprintf(stderr, "Error: cannot open scaling list file %s for reading\n",pchFile);
return true;
}
for(UInt sizeIdc = 0; sizeIdc < SCALING_LIST_SIZE_NUM; sizeIdc++)
{
const UInt size = min(MAX_MATRIX_COEF_NUM,(Int)g_scalingListSize[sizeIdc]);
for(UInt listIdc = 0; listIdc < SCALING_LIST_NUM; listIdc++)
{
Int * const src = getScalingListAddress(sizeIdc, listIdc);
if ((sizeIdc==SCALING_LIST_32x32) && (listIdc%(SCALING_LIST_NUM/NUMBER_OF_PREDICTION_MODES) != 0)) // derive chroma32x32 from chroma16x16
{
const Int *srcNextSmallerSize = getScalingListAddress(sizeIdc-1, listIdc);
for(UInt i=0; i<size; i++)
{
src[i] = srcNextSmallerSize[i];
}
setScalingListDC(sizeIdc,listIdc,(sizeIdc > SCALING_LIST_8x8) ? getScalingListDC(sizeIdc-1, listIdc) : src[0]);
}
else
{
{
fseek(fp, 0, SEEK_SET);
Bool bFound=false;
while ((!feof(fp)) && (!bFound))
{
Char *ret = fgets(line, LINE_SIZE, fp);
Char *findNamePosition= ret==NULL ? NULL : strstr(line, MatrixType[sizeIdc][listIdc]);
// This could be a match against the DC string as well, so verify it isn't
if (findNamePosition!= NULL && (MatrixType_DC[sizeIdc][listIdc]==NULL || strstr(line, MatrixType_DC[sizeIdc][listIdc])==NULL))
{
bFound=true;
}
}
if (!bFound)
{
fprintf(stderr, "Error: cannot find Matrix %s from scaling list file %s\n", MatrixType[sizeIdc][listIdc], pchFile);
return true;
}
}
for (UInt i=0; i<size; i++)
{
Int data;
if (fscanf(fp, "%d,", &data)!=1)
{
fprintf(stderr, "Error: cannot read value #%d for Matrix %s from scaling list file %s at file position %ld\n", i, MatrixType[sizeIdc][listIdc], pchFile, ftell(fp));
return true;
}
if (data<0 || data>255)
{
fprintf(stderr, "Error: QMatrix entry #%d of value %d for Matrix %s from scaling list file %s at file position %ld is out of range (0 to 255)\n", i, data, MatrixType[sizeIdc][listIdc], pchFile, ftell(fp));
return true;
}
src[i] = data;
}
//set DC value for default matrix check
setScalingListDC(sizeIdc,listIdc,src[0]);
if(sizeIdc > SCALING_LIST_8x8)
{
{
fseek(fp, 0, SEEK_SET);
Bool bFound=false;
while ((!feof(fp)) && (!bFound))
{
Char *ret = fgets(line, LINE_SIZE, fp);
Char *findNamePosition= ret==NULL ? NULL : strstr(line, MatrixType_DC[sizeIdc][listIdc]);
if (findNamePosition!= NULL)
{
// This won't be a match against the non-DC string.
bFound=true;
}
}
if (!bFound)
{
fprintf(stderr, "Error: cannot find DC Matrix %s from scaling list file %s\n", MatrixType_DC[sizeIdc][listIdc], pchFile);
return true;
}
}
Int data;
if (fscanf(fp, "%d,", &data)!=1)
{
fprintf(stderr, "Error: cannot read DC %s from scaling list file %s at file position %ld\n", MatrixType_DC[sizeIdc][listIdc], pchFile, ftell(fp));
return true;
}
if (data<0 || data>255)
{
fprintf(stderr, "Error: DC value %d for Matrix %s from scaling list file %s at file position %ld is out of range (0 to 255)\n", data, MatrixType[sizeIdc][listIdc], pchFile, ftell(fp));
return true;
}
//overwrite DC value when size of matrix is larger than 16x16
setScalingListDC(sizeIdc,listIdc,data);
}
}
}
}
// std::cout << "\n\nRead scaling lists of:\n\n";
// outputScalingLists(std::cout);
fclose(fp);
return false;
}
/** initialization process of quantization matrix array
*/
Void TComScalingList::init()
{
for(UInt sizeId = 0; sizeId < SCALING_LIST_SIZE_NUM; sizeId++)
{
for(UInt listId = 0; listId < SCALING_LIST_NUM; listId++)
{
m_scalingListCoef[sizeId][listId] = new Int [min(MAX_MATRIX_COEF_NUM,(Int)g_scalingListSize[sizeId])];
}
}
}
/** destroy quantization matrix array
*/
Void TComScalingList::destroy()
{
for(UInt sizeId = 0; sizeId < SCALING_LIST_SIZE_NUM; sizeId++)
{
for(UInt listId = 0; listId < SCALING_LIST_NUM; listId++)
{
if(m_scalingListCoef[sizeId][listId]) delete [] m_scalingListCoef[sizeId][listId];
}
}
}
/** get default address of quantization matrix
* \param sizeId size index
* \param listId list index
* \returns pointer of quantization matrix
*/
Int* TComScalingList::getScalingListDefaultAddress(UInt sizeId, UInt listId)
{
Int *src = 0;
switch(sizeId)
{
case SCALING_LIST_4x4:
src = g_quantTSDefault4x4;
break;
case SCALING_LIST_8x8:
case SCALING_LIST_16x16:
case SCALING_LIST_32x32:
src = (listId < (SCALING_LIST_NUM/NUMBER_OF_PREDICTION_MODES) ) ? g_quantIntraDefault8x8 : g_quantInterDefault8x8;
break;
default:
assert(0);
src = NULL;
break;
}
return src;
}
/** process of default matrix
* \param sizeId size index
* \param Index of input matrix
*/
Void TComScalingList::processDefaultMatrix(UInt sizeId, UInt listId)
{
::memcpy(getScalingListAddress(sizeId, listId),getScalingListDefaultAddress(sizeId,listId),sizeof(Int)*min(MAX_MATRIX_COEF_NUM,(Int)g_scalingListSize[sizeId]));
setScalingListDC(sizeId,listId,SCALING_LIST_DC);
}
/** check DC value of matrix for default matrix signaling
*/
Void TComScalingList::checkDcOfMatrix()
{
for(UInt sizeId = 0; sizeId < SCALING_LIST_SIZE_NUM; sizeId++)
{
for(UInt listId = 0; listId < SCALING_LIST_NUM; listId++)
{
//check default matrix?
if(getScalingListDC(sizeId,listId) == 0)
{
processDefaultMatrix(sizeId, listId);
}
}
}
}
ParameterSetManager::ParameterSetManager()
: m_vpsMap(MAX_NUM_VPS)
, m_spsMap(MAX_NUM_SPS)
, m_ppsMap(MAX_NUM_PPS)
, m_activeVPSId(-1)
, m_activeSPSId(-1)
, m_activePPSId(-1)
{
}
ParameterSetManager::~ParameterSetManager()
{
}
//! activate a SPS from a active parameter sets SEI message
//! \returns true, if activation is successful
Bool ParameterSetManager::activateSPSWithSEI(Int spsId)
{
TComSPS *sps = m_spsMap.getPS(spsId);
if (sps)
{
Int vpsId = sps->getVPSId();
if (m_vpsMap.getPS(vpsId))
{
m_activeVPSId = vpsId;
m_activeSPSId = spsId;
return true;
}
else
{
printf("Warning: tried to activate SPS using an Active parameter sets SEI message. Referenced VPS does not exist.");
}
}
else
{
printf("Warning: tried to activate non-existing SPS using an Active parameter sets SEI message.");
}
return false;
}
//! activate a PPS and depending on isIDR parameter also SPS and VPS
//! \returns true, if activation is successful
Bool ParameterSetManager::activatePPS(Int ppsId, Bool isIRAP)
{
TComPPS *pps = m_ppsMap.getPS(ppsId);
if (pps)
{
Int spsId = pps->getSPSId();
if (!isIRAP && (spsId != m_activeSPSId))
{
printf("Warning: tried to activate PPS referring to a inactive SPS at non-IDR.");
return false;
}
TComSPS *sps = m_spsMap.getPS(spsId);
if (sps)
{
Int vpsId = sps->getVPSId();
if (!isIRAP && (vpsId != m_activeVPSId))
{
printf("Warning: tried to activate PPS referring to a inactive VPS at non-IDR.");
return false;
}
if (m_vpsMap.getPS(vpsId))
{
m_activePPSId = ppsId;
m_activeVPSId = vpsId;
m_activeSPSId = spsId;
return true;
}
else
{
printf("Warning: tried to activate PPS that refers to a non-existing VPS.");
}
}
else
{
printf("Warning: tried to activate a PPS that refers to a non-existing SPS.");
}
}
else
{
printf("Warning: tried to activate non-existing PPS.");
}
return false;
}
ProfileTierLevel::ProfileTierLevel()
: m_profileSpace (0)
, m_tierFlag (Level::MAIN)
, m_profileIdc (Profile::NONE)
, m_levelIdc (Level::NONE)
, m_progressiveSourceFlag (false)
, m_interlacedSourceFlag (false)
, m_nonPackedConstraintFlag(false)
, m_frameOnlyConstraintFlag(false)
{
::memset(m_profileCompatibilityFlag, 0, sizeof(m_profileCompatibilityFlag));
}
TComPTL::TComPTL()
{
::memset(m_subLayerProfilePresentFlag, 0, sizeof(m_subLayerProfilePresentFlag));
::memset(m_subLayerLevelPresentFlag, 0, sizeof(m_subLayerLevelPresentFlag ));
}
//! \}