libbpg/x265/source/common/primitives.h

415 lines
20 KiB
C
Raw Permalink Normal View History

2015-10-27 10:46:00 +00:00
/*****************************************************************************
* Copyright (C) 2013 x265 project
*
* Authors: Steve Borho <steve@borho.org>
* Mandar Gurav <mandar@multicorewareinc.com>
* Deepthi Devaki Akkoorath <deepthidevaki@multicorewareinc.com>
* Mahesh Pittala <mahesh@multicorewareinc.com>
* Rajesh Paulraj <rajesh@multicorewareinc.com>
* Praveen Kumar Tiwari <praveen@multicorewareinc.com>
* Min Chen <chenm003@163.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*
* This program is also available under a commercial proprietary license.
* For more information, contact us at license @ x265.com.
*****************************************************************************/
#ifndef X265_PRIMITIVES_H
#define X265_PRIMITIVES_H
#include "common.h"
#include "cpu.h"
namespace X265_NS {
// x265 private namespace
enum LumaPU
{
// Square (the first 5 PUs match the block sizes)
LUMA_4x4, LUMA_8x8, LUMA_16x16, LUMA_32x32, LUMA_64x64,
// Rectangular
LUMA_8x4, LUMA_4x8,
LUMA_16x8, LUMA_8x16,
LUMA_32x16, LUMA_16x32,
LUMA_64x32, LUMA_32x64,
// Asymmetrical (0.75, 0.25)
LUMA_16x12, LUMA_12x16, LUMA_16x4, LUMA_4x16,
LUMA_32x24, LUMA_24x32, LUMA_32x8, LUMA_8x32,
LUMA_64x48, LUMA_48x64, LUMA_64x16, LUMA_16x64,
NUM_PU_SIZES
};
enum LumaCU // can be indexed using log2n(width)-2
{
BLOCK_4x4,
BLOCK_8x8,
BLOCK_16x16,
BLOCK_32x32,
BLOCK_64x64,
NUM_CU_SIZES
};
enum { NUM_TR_SIZE = 4 }; // TU are 4x4, 8x8, 16x16, and 32x32
/* Chroma partition sizes. These enums are only a convenience for indexing into
* the chroma primitive arrays when instantiating macros or templates. The
* chroma function tables should always be indexed by a LumaPU enum when used. */
enum ChromaPU420
{
CHROMA_420_2x2, CHROMA_420_4x4, CHROMA_420_8x8, CHROMA_420_16x16, CHROMA_420_32x32,
CHROMA_420_4x2, CHROMA_420_2x4,
CHROMA_420_8x4, CHROMA_420_4x8,
CHROMA_420_16x8, CHROMA_420_8x16,
CHROMA_420_32x16, CHROMA_420_16x32,
CHROMA_420_8x6, CHROMA_420_6x8, CHROMA_420_8x2, CHROMA_420_2x8,
CHROMA_420_16x12, CHROMA_420_12x16, CHROMA_420_16x4, CHROMA_420_4x16,
CHROMA_420_32x24, CHROMA_420_24x32, CHROMA_420_32x8, CHROMA_420_8x32,
};
enum ChromaCU420
{
BLOCK_420_2x2,
BLOCK_420_4x4,
BLOCK_420_8x8,
BLOCK_420_16x16,
BLOCK_420_32x32
};
enum ChromaPU422
{
CHROMA_422_2x4, CHROMA_422_4x8, CHROMA_422_8x16, CHROMA_422_16x32, CHROMA_422_32x64,
CHROMA_422_4x4, CHROMA_422_2x8,
CHROMA_422_8x8, CHROMA_422_4x16,
CHROMA_422_16x16, CHROMA_422_8x32,
CHROMA_422_32x32, CHROMA_422_16x64,
CHROMA_422_8x12, CHROMA_422_6x16, CHROMA_422_8x4, CHROMA_422_2x16,
CHROMA_422_16x24, CHROMA_422_12x32, CHROMA_422_16x8, CHROMA_422_4x32,
CHROMA_422_32x48, CHROMA_422_24x64, CHROMA_422_32x16, CHROMA_422_8x64,
};
enum ChromaCU422
{
BLOCK_422_2x4,
BLOCK_422_4x8,
BLOCK_422_8x16,
BLOCK_422_16x32,
BLOCK_422_32x64
};
typedef int (*pixelcmp_t)(const pixel* fenc, intptr_t fencstride, const pixel* fref, intptr_t frefstride); // fenc is aligned
typedef int (*pixelcmp_ss_t)(const int16_t* fenc, intptr_t fencstride, const int16_t* fref, intptr_t frefstride);
typedef sse_ret_t (*pixel_sse_t)(const pixel* fenc, intptr_t fencstride, const pixel* fref, intptr_t frefstride); // fenc is aligned
typedef sse_ret_t (*pixel_sse_ss_t)(const int16_t* fenc, intptr_t fencstride, const int16_t* fref, intptr_t frefstride);
typedef int (*pixel_ssd_s_t)(const int16_t* fenc, intptr_t fencstride);
typedef void (*pixelcmp_x4_t)(const pixel* fenc, const pixel* fref0, const pixel* fref1, const pixel* fref2, const pixel* fref3, intptr_t frefstride, int32_t* res);
typedef void (*pixelcmp_x3_t)(const pixel* fenc, const pixel* fref0, const pixel* fref1, const pixel* fref2, intptr_t frefstride, int32_t* res);
typedef void (*blockfill_s_t)(int16_t* dst, intptr_t dstride, int16_t val);
typedef void (*intra_pred_t)(pixel* dst, intptr_t dstStride, const pixel *srcPix, int dirMode, int bFilter);
typedef void (*intra_allangs_t)(pixel *dst, pixel *refPix, pixel *filtPix, int bLuma);
typedef void (*intra_filter_t)(const pixel* references, pixel* filtered);
typedef void (*cpy2Dto1D_shl_t)(int16_t* dst, const int16_t* src, intptr_t srcStride, int shift);
typedef void (*cpy2Dto1D_shr_t)(int16_t* dst, const int16_t* src, intptr_t srcStride, int shift);
typedef void (*cpy1Dto2D_shl_t)(int16_t* dst, const int16_t* src, intptr_t dstStride, int shift);
typedef void (*cpy1Dto2D_shr_t)(int16_t* dst, const int16_t* src, intptr_t dstStride, int shift);
typedef uint32_t (*copy_cnt_t)(int16_t* coeff, const int16_t* residual, intptr_t resiStride);
typedef void (*dct_t)(const int16_t* src, int16_t* dst, intptr_t srcStride);
typedef void (*idct_t)(const int16_t* src, int16_t* dst, intptr_t dstStride);
typedef void (*denoiseDct_t)(int16_t* dctCoef, uint32_t* resSum, const uint16_t* offset, int numCoeff);
typedef void (*calcresidual_t)(const pixel* fenc, const pixel* pred, int16_t* residual, intptr_t stride);
typedef void (*transpose_t)(pixel* dst, const pixel* src, intptr_t stride);
typedef uint32_t (*quant_t)(const int16_t* coef, const int32_t* quantCoeff, int32_t* deltaU, int16_t* qCoef, int qBits, int add, int numCoeff);
typedef uint32_t (*nquant_t)(const int16_t* coef, const int32_t* quantCoeff, int16_t* qCoef, int qBits, int add, int numCoeff);
typedef void (*dequant_scaling_t)(const int16_t* src, const int32_t* dequantCoef, int16_t* dst, int num, int mcqp_miper, int shift);
typedef void (*dequant_normal_t)(const int16_t* quantCoef, int16_t* coef, int num, int scale, int shift);
typedef int(*count_nonzero_t)(const int16_t* quantCoeff);
typedef void (*weightp_pp_t)(const pixel* src, pixel* dst, intptr_t stride, int width, int height, int w0, int round, int shift, int offset);
typedef void (*weightp_sp_t)(const int16_t* src, pixel* dst, intptr_t srcStride, intptr_t dstStride, int width, int height, int w0, int round, int shift, int offset);
typedef void (*scale1D_t)(pixel* dst, const pixel* src);
typedef void (*scale2D_t)(pixel* dst, const pixel* src, intptr_t stride);
typedef void (*downscale_t)(const pixel* src0, pixel* dstf, pixel* dsth, pixel* dstv, pixel* dstc,
intptr_t src_stride, intptr_t dst_stride, int width, int height);
typedef void (*extendCURowBorder_t)(pixel* txt, intptr_t stride, int width, int height, int marginX);
typedef void (*ssim_4x4x2_core_t)(const pixel* pix1, intptr_t stride1, const pixel* pix2, intptr_t stride2, int sums[2][4]);
typedef float (*ssim_end4_t)(int sum0[5][4], int sum1[5][4], int width);
typedef uint64_t (*var_t)(const pixel* pix, intptr_t stride);
typedef void (*plane_copy_deinterleave_t)(pixel* dstu, intptr_t dstuStride, pixel* dstv, intptr_t dstvStride, const pixel* src, intptr_t srcStride, int w, int h);
typedef void (*filter_pp_t) (const pixel* src, intptr_t srcStride, pixel* dst, intptr_t dstStride, int coeffIdx);
typedef void (*filter_hps_t) (const pixel* src, intptr_t srcStride, int16_t* dst, intptr_t dstStride, int coeffIdx, int isRowExt);
typedef void (*filter_ps_t) (const pixel* src, intptr_t srcStride, int16_t* dst, intptr_t dstStride, int coeffIdx);
typedef void (*filter_sp_t) (const int16_t* src, intptr_t srcStride, pixel* dst, intptr_t dstStride, int coeffIdx);
typedef void (*filter_ss_t) (const int16_t* src, intptr_t srcStride, int16_t* dst, intptr_t dstStride, int coeffIdx);
typedef void (*filter_hv_pp_t) (const pixel* src, intptr_t srcStride, pixel* dst, intptr_t dstStride, int idxX, int idxY);
typedef void (*filter_p2s_t)(const pixel* src, intptr_t srcStride, int16_t* dst, intptr_t dstStride);
typedef void (*copy_pp_t)(pixel* dst, intptr_t dstStride, const pixel* src, intptr_t srcStride); // dst is aligned
typedef void (*copy_sp_t)(pixel* dst, intptr_t dstStride, const int16_t* src, intptr_t srcStride);
typedef void (*copy_ps_t)(int16_t* dst, intptr_t dstStride, const pixel* src, intptr_t srcStride);
typedef void (*copy_ss_t)(int16_t* dst, intptr_t dstStride, const int16_t* src, intptr_t srcStride);
typedef void (*pixel_sub_ps_t)(int16_t* dst, intptr_t dstride, const pixel* src0, const pixel* src1, intptr_t sstride0, intptr_t sstride1);
typedef void (*pixel_add_ps_t)(pixel* a, intptr_t dstride, const pixel* b0, const int16_t* b1, intptr_t sstride0, intptr_t sstride1);
typedef void (*pixelavg_pp_t)(pixel* dst, intptr_t dstride, const pixel* src0, intptr_t sstride0, const pixel* src1, intptr_t sstride1, int weight);
typedef void (*addAvg_t)(const int16_t* src0, const int16_t* src1, pixel* dst, intptr_t src0Stride, intptr_t src1Stride, intptr_t dstStride);
typedef void (*saoCuOrgE0_t)(pixel* rec, int8_t* offsetEo, int width, int8_t* signLeft, intptr_t stride);
typedef void (*saoCuOrgE1_t)(pixel* rec, int8_t* upBuff1, int8_t* offsetEo, intptr_t stride, int width);
typedef void (*saoCuOrgE2_t)(pixel* rec, int8_t* pBufft, int8_t* pBuff1, int8_t* offsetEo, int lcuWidth, intptr_t stride);
typedef void (*saoCuOrgE3_t)(pixel* rec, int8_t* upBuff1, int8_t* m_offsetEo, intptr_t stride, int startX, int endX);
typedef void (*saoCuOrgB0_t)(pixel* rec, const int8_t* offsetBo, int ctuWidth, int ctuHeight, intptr_t stride);
typedef void (*saoCuStatsBO_t)(const pixel *fenc, const pixel *rec, intptr_t stride, int endX, int endY, int32_t *stats, int32_t *count);
typedef void (*saoCuStatsE0_t)(const pixel *fenc, const pixel *rec, intptr_t stride, int endX, int endY, int32_t *stats, int32_t *count);
typedef void (*saoCuStatsE1_t)(const pixel *fenc, const pixel *rec, intptr_t stride, int8_t *upBuff1, int endX, int endY, int32_t *stats, int32_t *count);
typedef void (*saoCuStatsE2_t)(const pixel *fenc, const pixel *rec, intptr_t stride, int8_t *upBuff1, int8_t *upBuff, int endX, int endY, int32_t *stats, int32_t *count);
typedef void (*saoCuStatsE3_t)(const pixel *fenc, const pixel *rec, intptr_t stride, int8_t *upBuff1, int endX, int endY, int32_t *stats, int32_t *count);
typedef void (*sign_t)(int8_t *dst, const pixel *src1, const pixel *src2, const int endX);
typedef void (*planecopy_cp_t) (const uint8_t* src, intptr_t srcStride, pixel* dst, intptr_t dstStride, int width, int height, int shift);
typedef void (*planecopy_sp_t) (const uint16_t* src, intptr_t srcStride, pixel* dst, intptr_t dstStride, int width, int height, int shift, uint16_t mask);
typedef pixel (*planeClipAndMax_t)(pixel *src, intptr_t stride, int width, int height, uint64_t *outsum, const pixel minPix, const pixel maxPix);
typedef void (*cutree_propagate_cost) (int* dst, const uint16_t* propagateIn, const int32_t* intraCosts, const uint16_t* interCosts, const int32_t* invQscales, const double* fpsFactor, int len);
typedef int (*scanPosLast_t)(const uint16_t *scan, const coeff_t *coeff, uint16_t *coeffSign, uint16_t *coeffFlag, uint8_t *coeffNum, int numSig, const uint16_t* scanCG4x4, const int trSize);
typedef uint32_t (*findPosFirstLast_t)(const int16_t *dstCoeff, const intptr_t trSize, const uint16_t scanTbl[16]);
typedef uint32_t (*costCoeffNxN_t)(const uint16_t *scan, const coeff_t *coeff, intptr_t trSize, uint16_t *absCoeff, const uint8_t *tabSigCtx, uint32_t scanFlagMask, uint8_t *baseCtx, int offset, int scanPosSigOff, int subPosBase);
typedef uint32_t (*costCoeffRemain_t)(uint16_t *absCoeff, int numNonZero, int idx);
typedef uint32_t (*costC1C2Flag_t)(uint16_t *absCoeff, intptr_t numC1Flag, uint8_t *baseCtxMod, intptr_t ctxOffset);
/* Function pointers to optimized encoder primitives. Each pointer can reference
* either an assembly routine, a SIMD intrinsic primitive, or a C function */
struct EncoderPrimitives
{
/* These primitives can be used for any sized prediction unit (from 4x4 to
* 64x64, square, rectangular - 50/50 or asymmetrical - 25/75) and are
* generally restricted to motion estimation and motion compensation (inter
* prediction. Note that the 4x4 PU can only be used for intra, which is
* really a 4x4 TU, so at most copy_pp and satd will use 4x4. This array is
* indexed by LumaPU values, which can be retrieved by partitionFromSizes() */
struct PU
{
pixelcmp_t sad; // Sum of Absolute Differences
pixelcmp_x3_t sad_x3; // Sum of Absolute Differences, 3 mv offsets at once
pixelcmp_x4_t sad_x4; // Sum of Absolute Differences, 4 mv offsets at once
pixelcmp_t satd; // Sum of Absolute Transformed Differences (4x4 Hadamard)
filter_pp_t luma_hpp; // 8-tap luma motion compensation interpolation filters
filter_hps_t luma_hps;
filter_pp_t luma_vpp;
filter_ps_t luma_vps;
filter_sp_t luma_vsp;
filter_ss_t luma_vss;
filter_hv_pp_t luma_hvpp; // combines hps + vsp
pixelavg_pp_t pixelavg_pp; // quick bidir using pixels (borrowed from x264)
addAvg_t addAvg; // bidir motion compensation, uses 16bit values
copy_pp_t copy_pp;
filter_p2s_t convert_p2s;
}
pu[NUM_PU_SIZES];
/* These primitives can be used for square TU blocks (4x4 to 32x32) or
* possibly square CU blocks (8x8 to 64x64). Some primitives are used for
* both CU and TU so we merge them into one array that is indexed uniformly.
* This keeps the index logic uniform and simple and improves cache
* coherency. CU only primitives will leave 4x4 pointers NULL while TU only
* primitives will leave 64x64 pointers NULL. Indexed by LumaCU */
struct CU
{
dct_t dct;
idct_t idct;
calcresidual_t calcresidual;
pixel_sub_ps_t sub_ps;
pixel_add_ps_t add_ps;
blockfill_s_t blockfill_s; // block fill, for DC transforms
copy_cnt_t copy_cnt; // copy coeff while counting non-zero
count_nonzero_t count_nonzero;
cpy2Dto1D_shl_t cpy2Dto1D_shl;
cpy2Dto1D_shr_t cpy2Dto1D_shr;
cpy1Dto2D_shl_t cpy1Dto2D_shl;
cpy1Dto2D_shr_t cpy1Dto2D_shr;
copy_sp_t copy_sp;
copy_ps_t copy_ps;
copy_ss_t copy_ss;
copy_pp_t copy_pp; // alias to pu[].copy_pp
var_t var; // block internal variance
pixel_sse_t sse_pp; // Sum of Square Error (pixel, pixel) fenc alignment not assumed
pixel_sse_ss_t sse_ss; // Sum of Square Error (short, short) fenc alignment not assumed
pixelcmp_t psy_cost_pp; // difference in AC energy between two pixel blocks
pixelcmp_ss_t psy_cost_ss; // difference in AC energy between two signed residual blocks
pixel_ssd_s_t ssd_s; // Sum of Square Error (residual coeff to self)
pixelcmp_t sa8d; // Sum of Transformed Differences (8x8 Hadamard), uses satd for 4x4 intra TU
transpose_t transpose; // transpose pixel block; for use with intra all-angs
intra_allangs_t intra_pred_allangs;
intra_filter_t intra_filter;
intra_pred_t intra_pred[NUM_INTRA_MODE];
}
cu[NUM_CU_SIZES];
/* These remaining primitives work on either fixed block sizes or take
* block dimensions as arguments and thus do not belong in either the PU or
* the CU arrays */
dct_t dst4x4;
idct_t idst4x4;
quant_t quant;
nquant_t nquant;
dequant_scaling_t dequant_scaling;
dequant_normal_t dequant_normal;
denoiseDct_t denoiseDct;
scale1D_t scale1D_128to64;
scale2D_t scale2D_64to32;
ssim_4x4x2_core_t ssim_4x4x2_core;
ssim_end4_t ssim_end_4;
sign_t sign;
saoCuOrgE0_t saoCuOrgE0;
/* To avoid the overhead in avx2 optimization in handling width=16, SAO_E0_1 is split
* into two parts: saoCuOrgE1, saoCuOrgE1_2Rows */
saoCuOrgE1_t saoCuOrgE1, saoCuOrgE1_2Rows;
// saoCuOrgE2[0] is used for width<=16 and saoCuOrgE2[1] is used for width > 16.
saoCuOrgE2_t saoCuOrgE2[2];
/* In avx2 optimization, two rows cannot be handled simultaneously since it requires
* a pixel from the previous row. So, saoCuOrgE3[0] is used for width<=16 and
* saoCuOrgE3[1] is used for width > 16. */
saoCuOrgE3_t saoCuOrgE3[2];
saoCuOrgB0_t saoCuOrgB0;
saoCuStatsBO_t saoCuStatsBO;
saoCuStatsE0_t saoCuStatsE0;
saoCuStatsE1_t saoCuStatsE1;
saoCuStatsE2_t saoCuStatsE2;
saoCuStatsE3_t saoCuStatsE3;
downscale_t frameInitLowres;
cutree_propagate_cost propagateCost;
extendCURowBorder_t extendRowBorder;
planecopy_cp_t planecopy_cp;
planecopy_sp_t planecopy_sp;
planecopy_sp_t planecopy_sp_shl;
planeClipAndMax_t planeClipAndMax;
weightp_sp_t weight_sp;
weightp_pp_t weight_pp;
scanPosLast_t scanPosLast;
findPosFirstLast_t findPosFirstLast;
costCoeffNxN_t costCoeffNxN;
costCoeffRemain_t costCoeffRemain;
costC1C2Flag_t costC1C2Flag;
/* There is one set of chroma primitives per color space. An encoder will
* have just a single color space and thus it will only ever use one entry
* in this array. However we always fill all entries in the array in case
* multiple encoders with different color spaces share the primitive table
* in a single process. Note that 4:2:0 PU and CU are 1/2 width and 1/2
* height of their luma counterparts. 4:2:2 PU and CU are 1/2 width and full
* height, while 4:4:4 directly uses the luma block sizes and shares luma
* primitives for all cases except for the interpolation filters. 4:4:4
* interpolation filters have luma partition sizes but are only 4-tap. */
struct Chroma
{
/* Chroma prediction unit primitives. Indexed by LumaPU */
struct PUChroma
{
pixelcmp_t satd; // if chroma PU is not multiple of 4x4, will be NULL
filter_pp_t filter_vpp;
filter_ps_t filter_vps;
filter_sp_t filter_vsp;
filter_ss_t filter_vss;
filter_pp_t filter_hpp;
filter_hps_t filter_hps;
addAvg_t addAvg;
copy_pp_t copy_pp;
filter_p2s_t p2s;
}
pu[NUM_PU_SIZES];
/* Chroma transform and coding unit primitives. Indexed by LumaCU */
struct CUChroma
{
pixelcmp_t sa8d; // if chroma CU is not multiple of 8x8, will use satd
pixel_sse_t sse_pp;
pixel_sub_ps_t sub_ps;
pixel_add_ps_t add_ps;
copy_ps_t copy_ps;
copy_sp_t copy_sp;
copy_ss_t copy_ss;
copy_pp_t copy_pp;
}
cu[NUM_CU_SIZES];
}
chroma[X265_CSP_COUNT];
};
/* This copy of the table is what gets used by the encoder */
extern EncoderPrimitives primitives;
/* Returns a LumaPU enum for the given size, always expected to return a valid enum */
inline int partitionFromSizes(int width, int height)
{
X265_CHECK(((width | height) & ~(4 | 8 | 16 | 32 | 64)) == 0, "Invalid block width/height\n");
extern const uint8_t lumaPartitionMapTable[];
int w = (width >> 2) - 1;
int h = (height >> 2) - 1;
int part = (int)lumaPartitionMapTable[(w << 4) + h];
X265_CHECK(part != 255, "Invalid block width %d height %d\n", width, height);
return part;
}
inline int partitionFromLog2Size(int log2Size)
{
X265_CHECK(2 <= log2Size && log2Size <= 6, "Invalid block size\n");
return log2Size - 2;
}
void setupCPrimitives(EncoderPrimitives &p);
void setupInstrinsicPrimitives(EncoderPrimitives &p, int cpuMask);
void setupAssemblyPrimitives(EncoderPrimitives &p, int cpuMask);
void setupAliasPrimitives(EncoderPrimitives &p);
}
#if !EXPORT_C_API
extern const int PFX(max_bit_depth);
extern const char* PFX(version_str);
extern const char* PFX(build_info_str);
#endif
#endif // ifndef X265_PRIMITIVES_H