libbpg/x265/source/encoder/analysis.cpp

2169 lines
88 KiB
C++
Raw Permalink Normal View History

2015-10-27 10:46:00 +00:00
/*****************************************************************************
* Copyright (C) 2013 x265 project
*
* Authors: Deepthi Nandakumar <deepthi@multicorewareinc.com>
* Steve Borho <steve@borho.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*
* This program is also available under a commercial proprietary license.
* For more information, contact us at license @ x265.com.
*****************************************************************************/
#include "common.h"
#include "frame.h"
#include "framedata.h"
#include "picyuv.h"
#include "primitives.h"
#include "threading.h"
#include "analysis.h"
#include "rdcost.h"
#include "encoder.h"
using namespace X265_NS;
/* An explanation of rate distortion levels (--rd-level)
*
* rd-level 0 generates no recon per CU (NO RDO or Quant)
*
* sa8d selection between merge / skip / inter / intra and split
* no recon pixels generated until CTU analysis is complete, requiring
* intra predictions to use source pixels
*
* rd-level 1 uses RDO for merge and skip, sa8d for all else
*
* RDO selection between merge and skip
* sa8d selection between (merge/skip) / inter modes / intra and split
* intra prediction uses reconstructed pixels
*
* rd-level 2 uses RDO for merge/skip and split
*
* RDO selection between merge and skip
* sa8d selection between (merge/skip) / inter modes / intra
* RDO split decisions
*
* rd-level 3 uses RDO for merge/skip/best inter/intra
*
* RDO selection between merge and skip
* sa8d selection of best inter mode
* sa8d decisions include chroma residual cost
* RDO selection between (merge/skip) / best inter mode / intra / split
*
* rd-level 4 enables RDOQuant
* chroma residual cost included in satd decisions, including subpel refine
* (as a result of --subme 3 being used by preset slow)
*
* rd-level 5,6 does RDO for each inter mode
*/
Analysis::Analysis()
{
m_reuseIntraDataCTU = NULL;
m_reuseInterDataCTU = NULL;
m_reuseRef = NULL;
m_reuseBestMergeCand = NULL;
}
bool Analysis::create(ThreadLocalData *tld)
{
m_tld = tld;
m_bTryLossless = m_param->bCULossless && !m_param->bLossless && m_param->rdLevel >= 2;
m_bChromaSa8d = m_param->rdLevel >= 3;
int csp = m_param->internalCsp;
uint32_t cuSize = g_maxCUSize;
bool ok = true;
for (uint32_t depth = 0; depth <= g_maxCUDepth; depth++, cuSize >>= 1)
{
ModeDepth &md = m_modeDepth[depth];
md.cuMemPool.create(depth, csp, MAX_PRED_TYPES);
ok &= md.fencYuv.create(cuSize, csp);
for (int j = 0; j < MAX_PRED_TYPES; j++)
{
md.pred[j].cu.initialize(md.cuMemPool, depth, csp, j);
ok &= md.pred[j].predYuv.create(cuSize, csp);
ok &= md.pred[j].reconYuv.create(cuSize, csp);
md.pred[j].fencYuv = &md.fencYuv;
}
}
return ok;
}
void Analysis::destroy()
{
for (uint32_t i = 0; i <= g_maxCUDepth; i++)
{
m_modeDepth[i].cuMemPool.destroy();
m_modeDepth[i].fencYuv.destroy();
for (int j = 0; j < MAX_PRED_TYPES; j++)
{
m_modeDepth[i].pred[j].predYuv.destroy();
m_modeDepth[i].pred[j].reconYuv.destroy();
}
}
}
Mode& Analysis::compressCTU(CUData& ctu, Frame& frame, const CUGeom& cuGeom, const Entropy& initialContext)
{
m_slice = ctu.m_slice;
m_frame = &frame;
#if _DEBUG || CHECKED_BUILD
for (uint32_t i = 0; i <= g_maxCUDepth; i++)
for (uint32_t j = 0; j < MAX_PRED_TYPES; j++)
m_modeDepth[i].pred[j].invalidate();
invalidateContexts(0);
#endif
int qp = setLambdaFromQP(ctu, m_slice->m_pps->bUseDQP ? calculateQpforCuSize(ctu, cuGeom) : m_slice->m_sliceQp);
ctu.setQPSubParts((int8_t)qp, 0, 0);
m_rqt[0].cur.load(initialContext);
m_modeDepth[0].fencYuv.copyFromPicYuv(*m_frame->m_fencPic, ctu.m_cuAddr, 0);
uint32_t numPartition = ctu.m_numPartitions;
if (m_param->analysisMode)
{
if (m_slice->m_sliceType == I_SLICE)
m_reuseIntraDataCTU = (analysis_intra_data*)m_frame->m_analysisData.intraData;
else
{
int numPredDir = m_slice->isInterP() ? 1 : 2;
m_reuseInterDataCTU = (analysis_inter_data*)m_frame->m_analysisData.interData;
m_reuseRef = &m_reuseInterDataCTU->ref[ctu.m_cuAddr * X265_MAX_PRED_MODE_PER_CTU * numPredDir];
m_reuseBestMergeCand = &m_reuseInterDataCTU->bestMergeCand[ctu.m_cuAddr * CUGeom::MAX_GEOMS];
}
}
ProfileCUScope(ctu, totalCTUTime, totalCTUs);
uint32_t zOrder = 0;
if (m_slice->m_sliceType == I_SLICE)
{
compressIntraCU(ctu, cuGeom, zOrder, qp);
if (m_param->analysisMode == X265_ANALYSIS_SAVE && m_frame->m_analysisData.intraData)
{
CUData* bestCU = &m_modeDepth[0].bestMode->cu;
memcpy(&m_reuseIntraDataCTU->depth[ctu.m_cuAddr * numPartition], bestCU->m_cuDepth, sizeof(uint8_t) * numPartition);
memcpy(&m_reuseIntraDataCTU->modes[ctu.m_cuAddr * numPartition], bestCU->m_lumaIntraDir, sizeof(uint8_t) * numPartition);
memcpy(&m_reuseIntraDataCTU->partSizes[ctu.m_cuAddr * numPartition], bestCU->m_partSize, sizeof(uint8_t) * numPartition);
memcpy(&m_reuseIntraDataCTU->chromaModes[ctu.m_cuAddr * numPartition], bestCU->m_chromaIntraDir, sizeof(uint8_t) * numPartition);
}
}
else
{
if (!m_param->rdLevel)
{
/* In RD Level 0/1, copy source pixels into the reconstructed block so
* they are available for intra predictions */
m_modeDepth[0].fencYuv.copyToPicYuv(*m_frame->m_reconPic, ctu.m_cuAddr, 0);
compressInterCU_rd0_4(ctu, cuGeom, qp);
/* generate residual for entire CTU at once and copy to reconPic */
encodeResidue(ctu, cuGeom);
}
else if (m_param->bDistributeModeAnalysis && m_param->rdLevel >= 2)
compressInterCU_dist(ctu, cuGeom, qp);
else if (m_param->rdLevel <= 4)
compressInterCU_rd0_4(ctu, cuGeom, qp);
else
{
compressInterCU_rd5_6(ctu, cuGeom, zOrder, qp);
if (m_param->analysisMode == X265_ANALYSIS_SAVE && m_frame->m_analysisData.interData)
{
CUData* bestCU = &m_modeDepth[0].bestMode->cu;
memcpy(&m_reuseInterDataCTU->depth[ctu.m_cuAddr * numPartition], bestCU->m_cuDepth, sizeof(uint8_t) * numPartition);
memcpy(&m_reuseInterDataCTU->modes[ctu.m_cuAddr * numPartition], bestCU->m_predMode, sizeof(uint8_t) * numPartition);
}
}
}
return *m_modeDepth[0].bestMode;
}
void Analysis::tryLossless(const CUGeom& cuGeom)
{
ModeDepth& md = m_modeDepth[cuGeom.depth];
if (!md.bestMode->distortion)
/* already lossless */
return;
else if (md.bestMode->cu.isIntra(0))
{
md.pred[PRED_LOSSLESS].initCosts();
md.pred[PRED_LOSSLESS].cu.initLosslessCU(md.bestMode->cu, cuGeom);
PartSize size = (PartSize)md.pred[PRED_LOSSLESS].cu.m_partSize[0];
uint8_t* modes = md.pred[PRED_LOSSLESS].cu.m_lumaIntraDir;
checkIntra(md.pred[PRED_LOSSLESS], cuGeom, size, modes, NULL);
checkBestMode(md.pred[PRED_LOSSLESS], cuGeom.depth);
}
else
{
md.pred[PRED_LOSSLESS].initCosts();
md.pred[PRED_LOSSLESS].cu.initLosslessCU(md.bestMode->cu, cuGeom);
md.pred[PRED_LOSSLESS].predYuv.copyFromYuv(md.bestMode->predYuv);
encodeResAndCalcRdInterCU(md.pred[PRED_LOSSLESS], cuGeom);
checkBestMode(md.pred[PRED_LOSSLESS], cuGeom.depth);
}
}
void Analysis::compressIntraCU(const CUData& parentCTU, const CUGeom& cuGeom, uint32_t& zOrder, int32_t qp)
{
uint32_t depth = cuGeom.depth;
ModeDepth& md = m_modeDepth[depth];
md.bestMode = NULL;
bool mightSplit = !(cuGeom.flags & CUGeom::LEAF);
bool mightNotSplit = !(cuGeom.flags & CUGeom::SPLIT_MANDATORY);
if (m_param->analysisMode == X265_ANALYSIS_LOAD)
{
uint8_t* reuseDepth = &m_reuseIntraDataCTU->depth[parentCTU.m_cuAddr * parentCTU.m_numPartitions];
uint8_t* reuseModes = &m_reuseIntraDataCTU->modes[parentCTU.m_cuAddr * parentCTU.m_numPartitions];
char* reusePartSizes = &m_reuseIntraDataCTU->partSizes[parentCTU.m_cuAddr * parentCTU.m_numPartitions];
uint8_t* reuseChromaModes = &m_reuseIntraDataCTU->chromaModes[parentCTU.m_cuAddr * parentCTU.m_numPartitions];
if (mightNotSplit && depth == reuseDepth[zOrder] && zOrder == cuGeom.absPartIdx)
{
PartSize size = (PartSize)reusePartSizes[zOrder];
Mode& mode = size == SIZE_2Nx2N ? md.pred[PRED_INTRA] : md.pred[PRED_INTRA_NxN];
mode.cu.initSubCU(parentCTU, cuGeom, qp);
checkIntra(mode, cuGeom, size, &reuseModes[zOrder], &reuseChromaModes[zOrder]);
checkBestMode(mode, depth);
if (m_bTryLossless)
tryLossless(cuGeom);
if (mightSplit)
addSplitFlagCost(*md.bestMode, cuGeom.depth);
// increment zOrder offset to point to next best depth in sharedDepth buffer
zOrder += g_depthInc[g_maxCUDepth - 1][reuseDepth[zOrder]];
mightSplit = false;
}
}
else if (mightNotSplit)
{
md.pred[PRED_INTRA].cu.initSubCU(parentCTU, cuGeom, qp);
checkIntra(md.pred[PRED_INTRA], cuGeom, SIZE_2Nx2N, NULL, NULL);
checkBestMode(md.pred[PRED_INTRA], depth);
if (cuGeom.log2CUSize == 3 && m_slice->m_sps->quadtreeTULog2MinSize < 3)
{
md.pred[PRED_INTRA_NxN].cu.initSubCU(parentCTU, cuGeom, qp);
checkIntra(md.pred[PRED_INTRA_NxN], cuGeom, SIZE_NxN, NULL, NULL);
checkBestMode(md.pred[PRED_INTRA_NxN], depth);
}
if (m_bTryLossless)
tryLossless(cuGeom);
if (mightSplit)
addSplitFlagCost(*md.bestMode, cuGeom.depth);
}
if (mightSplit)
{
Mode* splitPred = &md.pred[PRED_SPLIT];
splitPred->initCosts();
CUData* splitCU = &splitPred->cu;
splitCU->initSubCU(parentCTU, cuGeom, qp);
uint32_t nextDepth = depth + 1;
ModeDepth& nd = m_modeDepth[nextDepth];
invalidateContexts(nextDepth);
Entropy* nextContext = &m_rqt[depth].cur;
int32_t nextQP = qp;
for (uint32_t subPartIdx = 0; subPartIdx < 4; subPartIdx++)
{
const CUGeom& childGeom = *(&cuGeom + cuGeom.childOffset + subPartIdx);
if (childGeom.flags & CUGeom::PRESENT)
{
m_modeDepth[0].fencYuv.copyPartToYuv(nd.fencYuv, childGeom.absPartIdx);
m_rqt[nextDepth].cur.load(*nextContext);
if (m_slice->m_pps->bUseDQP && nextDepth <= m_slice->m_pps->maxCuDQPDepth)
nextQP = setLambdaFromQP(parentCTU, calculateQpforCuSize(parentCTU, childGeom));
compressIntraCU(parentCTU, childGeom, zOrder, nextQP);
// Save best CU and pred data for this sub CU
splitCU->copyPartFrom(nd.bestMode->cu, childGeom, subPartIdx);
splitPred->addSubCosts(*nd.bestMode);
nd.bestMode->reconYuv.copyToPartYuv(splitPred->reconYuv, childGeom.numPartitions * subPartIdx);
nextContext = &nd.bestMode->contexts;
}
else
{
/* record the depth of this non-present sub-CU */
splitCU->setEmptyPart(childGeom, subPartIdx);
zOrder += g_depthInc[g_maxCUDepth - 1][nextDepth];
}
}
nextContext->store(splitPred->contexts);
if (mightNotSplit)
addSplitFlagCost(*splitPred, cuGeom.depth);
else
updateModeCost(*splitPred);
checkDQPForSplitPred(*splitPred, cuGeom);
checkBestMode(*splitPred, depth);
}
/* Copy best data to encData CTU and recon */
md.bestMode->cu.copyToPic(depth);
if (md.bestMode != &md.pred[PRED_SPLIT])
md.bestMode->reconYuv.copyToPicYuv(*m_frame->m_reconPic, parentCTU.m_cuAddr, cuGeom.absPartIdx);
}
void Analysis::PMODE::processTasks(int workerThreadId)
{
#if DETAILED_CU_STATS
int fe = master.m_modeDepth[cuGeom.depth].pred[PRED_2Nx2N].cu.m_encData->m_frameEncoderID;
master.m_stats[fe].countPModeTasks++;
ScopedElapsedTime pmodeTime(master.m_stats[fe].pmodeTime);
#endif
ProfileScopeEvent(pmode);
master.processPmode(*this, master.m_tld[workerThreadId].analysis);
}
/* process pmode jobs until none remain; may be called by the master thread or by
* a bonded peer (slave) thread via pmodeTasks() */
void Analysis::processPmode(PMODE& pmode, Analysis& slave)
{
/* acquire a mode task, else exit early */
int task;
pmode.m_lock.acquire();
if (pmode.m_jobTotal > pmode.m_jobAcquired)
{
task = pmode.m_jobAcquired++;
pmode.m_lock.release();
}
else
{
pmode.m_lock.release();
return;
}
ModeDepth& md = m_modeDepth[pmode.cuGeom.depth];
/* setup slave Analysis */
if (&slave != this)
{
slave.m_slice = m_slice;
slave.m_frame = m_frame;
slave.m_param = m_param;
slave.setLambdaFromQP(md.pred[PRED_2Nx2N].cu, m_rdCost.m_qp);
slave.invalidateContexts(0);
slave.m_rqt[pmode.cuGeom.depth].cur.load(m_rqt[pmode.cuGeom.depth].cur);
}
/* perform Mode task, repeat until no more work is available */
do
{
uint32_t refMasks[2] = { 0, 0 };
if (m_param->rdLevel <= 4)
{
switch (pmode.modes[task])
{
case PRED_INTRA:
slave.checkIntraInInter(md.pred[PRED_INTRA], pmode.cuGeom);
if (m_param->rdLevel > 2)
slave.encodeIntraInInter(md.pred[PRED_INTRA], pmode.cuGeom);
break;
case PRED_2Nx2N:
refMasks[0] = m_splitRefIdx[0] | m_splitRefIdx[1] | m_splitRefIdx[2] | m_splitRefIdx[3];
slave.checkInter_rd0_4(md.pred[PRED_2Nx2N], pmode.cuGeom, SIZE_2Nx2N, refMasks);
if (m_slice->m_sliceType == B_SLICE)
slave.checkBidir2Nx2N(md.pred[PRED_2Nx2N], md.pred[PRED_BIDIR], pmode.cuGeom);
break;
case PRED_Nx2N:
refMasks[0] = m_splitRefIdx[0] | m_splitRefIdx[2]; /* left */
refMasks[1] = m_splitRefIdx[1] | m_splitRefIdx[3]; /* right */
slave.checkInter_rd0_4(md.pred[PRED_Nx2N], pmode.cuGeom, SIZE_Nx2N, refMasks);
break;
case PRED_2NxN:
refMasks[0] = m_splitRefIdx[0] | m_splitRefIdx[1]; /* top */
refMasks[1] = m_splitRefIdx[2] | m_splitRefIdx[3]; /* bot */
slave.checkInter_rd0_4(md.pred[PRED_2NxN], pmode.cuGeom, SIZE_2NxN, refMasks);
break;
case PRED_2NxnU:
refMasks[0] = m_splitRefIdx[0] | m_splitRefIdx[1]; /* 25% top */
refMasks[1] = m_splitRefIdx[0] | m_splitRefIdx[1] | m_splitRefIdx[2] | m_splitRefIdx[3]; /* 75% bot */
slave.checkInter_rd0_4(md.pred[PRED_2NxnU], pmode.cuGeom, SIZE_2NxnU, refMasks);
break;
case PRED_2NxnD:
refMasks[0] = m_splitRefIdx[0] | m_splitRefIdx[1] | m_splitRefIdx[2] | m_splitRefIdx[3]; /* 75% top */
refMasks[1] = m_splitRefIdx[2] | m_splitRefIdx[3]; /* 25% bot */
slave.checkInter_rd0_4(md.pred[PRED_2NxnD], pmode.cuGeom, SIZE_2NxnD, refMasks);
break;
case PRED_nLx2N:
refMasks[0] = m_splitRefIdx[0] | m_splitRefIdx[2]; /* 25% left */
refMasks[1] = m_splitRefIdx[0] | m_splitRefIdx[1] | m_splitRefIdx[2] | m_splitRefIdx[3]; /* 75% right */
slave.checkInter_rd0_4(md.pred[PRED_nLx2N], pmode.cuGeom, SIZE_nLx2N, refMasks);
break;
case PRED_nRx2N:
refMasks[0] = m_splitRefIdx[0] | m_splitRefIdx[1] | m_splitRefIdx[2] | m_splitRefIdx[3]; /* 75% left */
refMasks[1] = m_splitRefIdx[1] | m_splitRefIdx[3]; /* 25% right */
slave.checkInter_rd0_4(md.pred[PRED_nRx2N], pmode.cuGeom, SIZE_nRx2N, refMasks);
break;
default:
X265_CHECK(0, "invalid job ID for parallel mode analysis\n");
break;
}
}
else
{
switch (pmode.modes[task])
{
case PRED_INTRA:
slave.checkIntra(md.pred[PRED_INTRA], pmode.cuGeom, SIZE_2Nx2N, NULL, NULL);
if (pmode.cuGeom.log2CUSize == 3 && m_slice->m_sps->quadtreeTULog2MinSize < 3)
slave.checkIntra(md.pred[PRED_INTRA_NxN], pmode.cuGeom, SIZE_NxN, NULL, NULL);
break;
case PRED_2Nx2N:
refMasks[0] = m_splitRefIdx[0] | m_splitRefIdx[1] | m_splitRefIdx[2] | m_splitRefIdx[3];
slave.checkInter_rd5_6(md.pred[PRED_2Nx2N], pmode.cuGeom, SIZE_2Nx2N, refMasks);
md.pred[PRED_BIDIR].rdCost = MAX_INT64;
if (m_slice->m_sliceType == B_SLICE)
{
slave.checkBidir2Nx2N(md.pred[PRED_2Nx2N], md.pred[PRED_BIDIR], pmode.cuGeom);
if (md.pred[PRED_BIDIR].sa8dCost < MAX_INT64)
slave.encodeResAndCalcRdInterCU(md.pred[PRED_BIDIR], pmode.cuGeom);
}
break;
case PRED_Nx2N:
refMasks[0] = m_splitRefIdx[0] | m_splitRefIdx[2]; /* left */
refMasks[1] = m_splitRefIdx[1] | m_splitRefIdx[3]; /* right */
slave.checkInter_rd5_6(md.pred[PRED_Nx2N], pmode.cuGeom, SIZE_Nx2N, refMasks);
break;
case PRED_2NxN:
refMasks[0] = m_splitRefIdx[0] | m_splitRefIdx[1]; /* top */
refMasks[1] = m_splitRefIdx[2] | m_splitRefIdx[3]; /* bot */
slave.checkInter_rd5_6(md.pred[PRED_2NxN], pmode.cuGeom, SIZE_2NxN, refMasks);
break;
case PRED_2NxnU:
refMasks[0] = m_splitRefIdx[0] | m_splitRefIdx[1]; /* 25% top */
refMasks[1] = m_splitRefIdx[0] | m_splitRefIdx[1] | m_splitRefIdx[2] | m_splitRefIdx[3]; /* 75% bot */
slave.checkInter_rd5_6(md.pred[PRED_2NxnU], pmode.cuGeom, SIZE_2NxnU, refMasks);
break;
case PRED_2NxnD:
refMasks[0] = m_splitRefIdx[0] | m_splitRefIdx[1] | m_splitRefIdx[2] | m_splitRefIdx[3]; /* 75% top */
refMasks[1] = m_splitRefIdx[2] | m_splitRefIdx[3]; /* 25% bot */
slave.checkInter_rd5_6(md.pred[PRED_2NxnD], pmode.cuGeom, SIZE_2NxnD, refMasks);
break;
case PRED_nLx2N:
refMasks[0] = m_splitRefIdx[0] | m_splitRefIdx[2]; /* 25% left */
refMasks[1] = m_splitRefIdx[0] | m_splitRefIdx[1] | m_splitRefIdx[2] | m_splitRefIdx[3]; /* 75% right */
slave.checkInter_rd5_6(md.pred[PRED_nLx2N], pmode.cuGeom, SIZE_nLx2N, refMasks);
break;
case PRED_nRx2N:
refMasks[0] = m_splitRefIdx[0] | m_splitRefIdx[1] | m_splitRefIdx[2] | m_splitRefIdx[3]; /* 75% left */
refMasks[1] = m_splitRefIdx[1] | m_splitRefIdx[3]; /* 25% right */
slave.checkInter_rd5_6(md.pred[PRED_nRx2N], pmode.cuGeom, SIZE_nRx2N, refMasks);
break;
default:
X265_CHECK(0, "invalid job ID for parallel mode analysis\n");
break;
}
}
task = -1;
pmode.m_lock.acquire();
if (pmode.m_jobTotal > pmode.m_jobAcquired)
task = pmode.m_jobAcquired++;
pmode.m_lock.release();
}
while (task >= 0);
}
uint32_t Analysis::compressInterCU_dist(const CUData& parentCTU, const CUGeom& cuGeom, int32_t qp)
{
uint32_t depth = cuGeom.depth;
uint32_t cuAddr = parentCTU.m_cuAddr;
ModeDepth& md = m_modeDepth[depth];
md.bestMode = NULL;
bool mightSplit = !(cuGeom.flags & CUGeom::LEAF);
bool mightNotSplit = !(cuGeom.flags & CUGeom::SPLIT_MANDATORY);
uint32_t minDepth = m_param->rdLevel <= 4 ? topSkipMinDepth(parentCTU, cuGeom) : 0;
uint32_t splitRefs[4] = { 0, 0, 0, 0 };
X265_CHECK(m_param->rdLevel >= 2, "compressInterCU_dist does not support RD 0 or 1\n");
PMODE pmode(*this, cuGeom);
if (mightNotSplit && depth >= minDepth)
{
/* Initialize all prediction CUs based on parentCTU */
md.pred[PRED_MERGE].cu.initSubCU(parentCTU, cuGeom, qp);
md.pred[PRED_SKIP].cu.initSubCU(parentCTU, cuGeom, qp);
if (m_param->rdLevel <= 4)
checkMerge2Nx2N_rd0_4(md.pred[PRED_SKIP], md.pred[PRED_MERGE], cuGeom);
else
checkMerge2Nx2N_rd5_6(md.pred[PRED_SKIP], md.pred[PRED_MERGE], cuGeom, false);
}
bool bNoSplit = false;
bool splitIntra = true;
if (md.bestMode)
{
bNoSplit = md.bestMode->cu.isSkipped(0);
if (mightSplit && depth && depth >= minDepth && !bNoSplit && m_param->rdLevel <= 4)
bNoSplit = recursionDepthCheck(parentCTU, cuGeom, *md.bestMode);
}
if (mightSplit && !bNoSplit)
{
Mode* splitPred = &md.pred[PRED_SPLIT];
splitPred->initCosts();
CUData* splitCU = &splitPred->cu;
splitCU->initSubCU(parentCTU, cuGeom, qp);
uint32_t nextDepth = depth + 1;
ModeDepth& nd = m_modeDepth[nextDepth];
invalidateContexts(nextDepth);
Entropy* nextContext = &m_rqt[depth].cur;
int nextQP = qp;
splitIntra = false;
for (uint32_t subPartIdx = 0; subPartIdx < 4; subPartIdx++)
{
const CUGeom& childGeom = *(&cuGeom + cuGeom.childOffset + subPartIdx);
if (childGeom.flags & CUGeom::PRESENT)
{
m_modeDepth[0].fencYuv.copyPartToYuv(nd.fencYuv, childGeom.absPartIdx);
m_rqt[nextDepth].cur.load(*nextContext);
if (m_slice->m_pps->bUseDQP && nextDepth <= m_slice->m_pps->maxCuDQPDepth)
nextQP = setLambdaFromQP(parentCTU, calculateQpforCuSize(parentCTU, childGeom));
splitRefs[subPartIdx] = compressInterCU_dist(parentCTU, childGeom, nextQP);
// Save best CU and pred data for this sub CU
splitIntra |= nd.bestMode->cu.isIntra(0);
splitCU->copyPartFrom(nd.bestMode->cu, childGeom, subPartIdx);
splitPred->addSubCosts(*nd.bestMode);
nd.bestMode->reconYuv.copyToPartYuv(splitPred->reconYuv, childGeom.numPartitions * subPartIdx);
nextContext = &nd.bestMode->contexts;
}
else
splitCU->setEmptyPart(childGeom, subPartIdx);
}
nextContext->store(splitPred->contexts);
if (mightNotSplit)
addSplitFlagCost(*splitPred, cuGeom.depth);
else
updateModeCost(*splitPred);
checkDQPForSplitPred(*splitPred, cuGeom);
}
if (mightNotSplit && depth >= minDepth)
{
int bTryAmp = m_slice->m_sps->maxAMPDepth > depth;
int bTryIntra = (m_slice->m_sliceType != B_SLICE || m_param->bIntraInBFrames) && (!m_param->limitReferences || splitIntra);
if (m_slice->m_pps->bUseDQP && depth <= m_slice->m_pps->maxCuDQPDepth && m_slice->m_pps->maxCuDQPDepth != 0)
setLambdaFromQP(parentCTU, qp);
if (bTryIntra)
{
md.pred[PRED_INTRA].cu.initSubCU(parentCTU, cuGeom, qp);
if (cuGeom.log2CUSize == 3 && m_slice->m_sps->quadtreeTULog2MinSize < 3 && m_param->rdLevel >= 5)
md.pred[PRED_INTRA_NxN].cu.initSubCU(parentCTU, cuGeom, qp);
pmode.modes[pmode.m_jobTotal++] = PRED_INTRA;
}
md.pred[PRED_2Nx2N].cu.initSubCU(parentCTU, cuGeom, qp); pmode.modes[pmode.m_jobTotal++] = PRED_2Nx2N;
md.pred[PRED_BIDIR].cu.initSubCU(parentCTU, cuGeom, qp);
if (m_param->bEnableRectInter)
{
md.pred[PRED_2NxN].cu.initSubCU(parentCTU, cuGeom, qp); pmode.modes[pmode.m_jobTotal++] = PRED_2NxN;
md.pred[PRED_Nx2N].cu.initSubCU(parentCTU, cuGeom, qp); pmode.modes[pmode.m_jobTotal++] = PRED_Nx2N;
}
if (bTryAmp)
{
md.pred[PRED_2NxnU].cu.initSubCU(parentCTU, cuGeom, qp); pmode.modes[pmode.m_jobTotal++] = PRED_2NxnU;
md.pred[PRED_2NxnD].cu.initSubCU(parentCTU, cuGeom, qp); pmode.modes[pmode.m_jobTotal++] = PRED_2NxnD;
md.pred[PRED_nLx2N].cu.initSubCU(parentCTU, cuGeom, qp); pmode.modes[pmode.m_jobTotal++] = PRED_nLx2N;
md.pred[PRED_nRx2N].cu.initSubCU(parentCTU, cuGeom, qp); pmode.modes[pmode.m_jobTotal++] = PRED_nRx2N;
}
m_splitRefIdx[0] = splitRefs[0]; m_splitRefIdx[1] = splitRefs[1]; m_splitRefIdx[2] = splitRefs[2]; m_splitRefIdx[3] = splitRefs[3];
pmode.tryBondPeers(*m_frame->m_encData->m_jobProvider, pmode.m_jobTotal);
/* participate in processing jobs, until all are distributed */
processPmode(pmode, *this);
/* the master worker thread (this one) does merge analysis. By doing
* merge after all the other jobs are at least started, we usually avoid
* blocking on another thread */
if (m_param->rdLevel <= 4)
{
{
ProfileCUScope(parentCTU, pmodeBlockTime, countPModeMasters);
pmode.waitForExit();
}
/* select best inter mode based on sa8d cost */
Mode *bestInter = &md.pred[PRED_2Nx2N];
if (m_param->bEnableRectInter)
{
if (md.pred[PRED_Nx2N].sa8dCost < bestInter->sa8dCost)
bestInter = &md.pred[PRED_Nx2N];
if (md.pred[PRED_2NxN].sa8dCost < bestInter->sa8dCost)
bestInter = &md.pred[PRED_2NxN];
}
if (bTryAmp)
{
if (md.pred[PRED_2NxnU].sa8dCost < bestInter->sa8dCost)
bestInter = &md.pred[PRED_2NxnU];
if (md.pred[PRED_2NxnD].sa8dCost < bestInter->sa8dCost)
bestInter = &md.pred[PRED_2NxnD];
if (md.pred[PRED_nLx2N].sa8dCost < bestInter->sa8dCost)
bestInter = &md.pred[PRED_nLx2N];
if (md.pred[PRED_nRx2N].sa8dCost < bestInter->sa8dCost)
bestInter = &md.pred[PRED_nRx2N];
}
if (m_param->rdLevel > 2)
{
/* RD selection between merge, inter, bidir and intra */
if (!m_bChromaSa8d) /* When m_bChromaSa8d is enabled, chroma MC has already been done */
{
uint32_t numPU = bestInter->cu.getNumPartInter(0);
for (uint32_t puIdx = 0; puIdx < numPU; puIdx++)
{
PredictionUnit pu(bestInter->cu, cuGeom, puIdx);
motionCompensation(bestInter->cu, pu, bestInter->predYuv, false, true);
}
}
encodeResAndCalcRdInterCU(*bestInter, cuGeom);
checkBestMode(*bestInter, depth);
/* If BIDIR is available and within 17/16 of best inter option, choose by RDO */
if (m_slice->m_sliceType == B_SLICE && md.pred[PRED_BIDIR].sa8dCost != MAX_INT64 &&
md.pred[PRED_BIDIR].sa8dCost * 16 <= bestInter->sa8dCost * 17)
{
encodeResAndCalcRdInterCU(md.pred[PRED_BIDIR], cuGeom);
checkBestMode(md.pred[PRED_BIDIR], depth);
}
if (bTryIntra)
checkBestMode(md.pred[PRED_INTRA], depth);
}
else /* m_param->rdLevel == 2 */
{
if (!md.bestMode || bestInter->sa8dCost < md.bestMode->sa8dCost)
md.bestMode = bestInter;
if (m_slice->m_sliceType == B_SLICE && md.pred[PRED_BIDIR].sa8dCost < md.bestMode->sa8dCost)
md.bestMode = &md.pred[PRED_BIDIR];
if (bTryIntra && md.pred[PRED_INTRA].sa8dCost < md.bestMode->sa8dCost)
{
md.bestMode = &md.pred[PRED_INTRA];
encodeIntraInInter(*md.bestMode, cuGeom);
}
else if (!md.bestMode->cu.m_mergeFlag[0])
{
/* finally code the best mode selected from SA8D costs */
uint32_t numPU = md.bestMode->cu.getNumPartInter(0);
for (uint32_t puIdx = 0; puIdx < numPU; puIdx++)
{
PredictionUnit pu(md.bestMode->cu, cuGeom, puIdx);
motionCompensation(md.bestMode->cu, pu, md.bestMode->predYuv, false, true);
}
encodeResAndCalcRdInterCU(*md.bestMode, cuGeom);
}
}
}
else
{
{
ProfileCUScope(parentCTU, pmodeBlockTime, countPModeMasters);
pmode.waitForExit();
}
checkBestMode(md.pred[PRED_2Nx2N], depth);
if (m_slice->m_sliceType == B_SLICE && md.pred[PRED_BIDIR].sa8dCost < MAX_INT64)
checkBestMode(md.pred[PRED_BIDIR], depth);
if (m_param->bEnableRectInter)
{
checkBestMode(md.pred[PRED_Nx2N], depth);
checkBestMode(md.pred[PRED_2NxN], depth);
}
if (bTryAmp)
{
checkBestMode(md.pred[PRED_2NxnU], depth);
checkBestMode(md.pred[PRED_2NxnD], depth);
checkBestMode(md.pred[PRED_nLx2N], depth);
checkBestMode(md.pred[PRED_nRx2N], depth);
}
if (bTryIntra)
{
checkBestMode(md.pred[PRED_INTRA], depth);
if (cuGeom.log2CUSize == 3 && m_slice->m_sps->quadtreeTULog2MinSize < 3)
checkBestMode(md.pred[PRED_INTRA_NxN], depth);
}
}
if (m_bTryLossless)
tryLossless(cuGeom);
if (mightSplit)
addSplitFlagCost(*md.bestMode, cuGeom.depth);
}
/* compare split RD cost against best cost */
if (mightSplit && !bNoSplit)
checkBestMode(md.pred[PRED_SPLIT], depth);
/* determine which motion references the parent CU should search */
uint32_t refMask;
if (!(m_param->limitReferences & X265_REF_LIMIT_DEPTH))
refMask = 0;
else if (md.bestMode == &md.pred[PRED_SPLIT])
refMask = splitRefs[0] | splitRefs[1] | splitRefs[2] | splitRefs[3];
else
{
/* use best merge/inter mode, in case of intra use 2Nx2N inter references */
CUData& cu = md.bestMode->cu.isIntra(0) ? md.pred[PRED_2Nx2N].cu : md.bestMode->cu;
uint32_t numPU = cu.getNumPartInter(0);
refMask = 0;
for (uint32_t puIdx = 0, subPartIdx = 0; puIdx < numPU; puIdx++, subPartIdx += cu.getPUOffset(puIdx, 0))
refMask |= cu.getBestRefIdx(subPartIdx);
}
if (mightNotSplit)
{
/* early-out statistics */
FrameData& curEncData = *m_frame->m_encData;
FrameData::RCStatCU& cuStat = curEncData.m_cuStat[parentCTU.m_cuAddr];
uint64_t temp = cuStat.avgCost[depth] * cuStat.count[depth];
cuStat.count[depth] += 1;
cuStat.avgCost[depth] = (temp + md.bestMode->rdCost) / cuStat.count[depth];
}
/* Copy best data to encData CTU and recon */
X265_CHECK(md.bestMode->ok(), "best mode is not ok");
md.bestMode->cu.copyToPic(depth);
md.bestMode->reconYuv.copyToPicYuv(*m_frame->m_reconPic, cuAddr, cuGeom.absPartIdx);
return refMask;
}
uint32_t Analysis::compressInterCU_rd0_4(const CUData& parentCTU, const CUGeom& cuGeom, int32_t qp)
{
uint32_t depth = cuGeom.depth;
uint32_t cuAddr = parentCTU.m_cuAddr;
ModeDepth& md = m_modeDepth[depth];
md.bestMode = NULL;
PicYuv& reconPic = *m_frame->m_reconPic;
bool mightSplit = !(cuGeom.flags & CUGeom::LEAF);
bool mightNotSplit = !(cuGeom.flags & CUGeom::SPLIT_MANDATORY);
uint32_t minDepth = topSkipMinDepth(parentCTU, cuGeom);
bool earlyskip = false;
bool splitIntra = true;
uint32_t splitRefs[4] = { 0, 0, 0, 0 };
/* Step 1. Evaluate Merge/Skip candidates for likely early-outs */
if (mightNotSplit && depth >= minDepth)
{
/* Compute Merge Cost */
md.pred[PRED_MERGE].cu.initSubCU(parentCTU, cuGeom, qp);
md.pred[PRED_SKIP].cu.initSubCU(parentCTU, cuGeom, qp);
checkMerge2Nx2N_rd0_4(md.pred[PRED_SKIP], md.pred[PRED_MERGE], cuGeom);
if (m_param->rdLevel)
earlyskip = m_param->bEnableEarlySkip && md.bestMode && md.bestMode->cu.isSkipped(0); // TODO: sa8d threshold per depth
}
bool bNoSplit = false;
if (md.bestMode)
{
bNoSplit = md.bestMode->cu.isSkipped(0);
if (mightSplit && depth && depth >= minDepth && !bNoSplit)
bNoSplit = recursionDepthCheck(parentCTU, cuGeom, *md.bestMode);
}
/* Step 2. Evaluate each of the 4 split sub-blocks in series */
if (mightSplit && !bNoSplit)
{
Mode* splitPred = &md.pred[PRED_SPLIT];
splitPred->initCosts();
CUData* splitCU = &splitPred->cu;
splitCU->initSubCU(parentCTU, cuGeom, qp);
uint32_t nextDepth = depth + 1;
ModeDepth& nd = m_modeDepth[nextDepth];
invalidateContexts(nextDepth);
Entropy* nextContext = &m_rqt[depth].cur;
int nextQP = qp;
splitIntra = false;
for (uint32_t subPartIdx = 0; subPartIdx < 4; subPartIdx++)
{
const CUGeom& childGeom = *(&cuGeom + cuGeom.childOffset + subPartIdx);
if (childGeom.flags & CUGeom::PRESENT)
{
m_modeDepth[0].fencYuv.copyPartToYuv(nd.fencYuv, childGeom.absPartIdx);
m_rqt[nextDepth].cur.load(*nextContext);
if (m_slice->m_pps->bUseDQP && nextDepth <= m_slice->m_pps->maxCuDQPDepth)
nextQP = setLambdaFromQP(parentCTU, calculateQpforCuSize(parentCTU, childGeom));
splitRefs[subPartIdx] = compressInterCU_rd0_4(parentCTU, childGeom, nextQP);
// Save best CU and pred data for this sub CU
splitIntra |= nd.bestMode->cu.isIntra(0);
splitCU->copyPartFrom(nd.bestMode->cu, childGeom, subPartIdx);
splitPred->addSubCosts(*nd.bestMode);
if (m_param->rdLevel)
nd.bestMode->reconYuv.copyToPartYuv(splitPred->reconYuv, childGeom.numPartitions * subPartIdx);
else
nd.bestMode->predYuv.copyToPartYuv(splitPred->predYuv, childGeom.numPartitions * subPartIdx);
if (m_param->rdLevel > 1)
nextContext = &nd.bestMode->contexts;
}
else
splitCU->setEmptyPart(childGeom, subPartIdx);
}
nextContext->store(splitPred->contexts);
if (mightNotSplit)
addSplitFlagCost(*splitPred, cuGeom.depth);
else if (m_param->rdLevel > 1)
updateModeCost(*splitPred);
else
splitPred->sa8dCost = m_rdCost.calcRdSADCost((uint32_t)splitPred->distortion, splitPred->sa8dBits);
}
/* Split CUs
* 0 1
* 2 3 */
uint32_t allSplitRefs = splitRefs[0] | splitRefs[1] | splitRefs[2] | splitRefs[3];
/* Step 3. Evaluate ME (2Nx2N, rect, amp) and intra modes at current depth */
if (mightNotSplit && depth >= minDepth)
{
if (m_slice->m_pps->bUseDQP && depth <= m_slice->m_pps->maxCuDQPDepth && m_slice->m_pps->maxCuDQPDepth != 0)
setLambdaFromQP(parentCTU, qp);
if (!earlyskip)
{
uint32_t refMasks[2];
refMasks[0] = allSplitRefs;
md.pred[PRED_2Nx2N].cu.initSubCU(parentCTU, cuGeom, qp);
checkInter_rd0_4(md.pred[PRED_2Nx2N], cuGeom, SIZE_2Nx2N, refMasks);
if (m_param->limitReferences & X265_REF_LIMIT_CU)
{
CUData& cu = md.pred[PRED_2Nx2N].cu;
uint32_t refMask = cu.getBestRefIdx(0);
allSplitRefs = splitRefs[0] = splitRefs[1] = splitRefs[2] = splitRefs[3] = refMask;
}
if (m_slice->m_sliceType == B_SLICE)
{
md.pred[PRED_BIDIR].cu.initSubCU(parentCTU, cuGeom, qp);
checkBidir2Nx2N(md.pred[PRED_2Nx2N], md.pred[PRED_BIDIR], cuGeom);
}
Mode *bestInter = &md.pred[PRED_2Nx2N];
if (m_param->bEnableRectInter)
{
refMasks[0] = splitRefs[0] | splitRefs[2]; /* left */
refMasks[1] = splitRefs[1] | splitRefs[3]; /* right */
md.pred[PRED_Nx2N].cu.initSubCU(parentCTU, cuGeom, qp);
checkInter_rd0_4(md.pred[PRED_Nx2N], cuGeom, SIZE_Nx2N, refMasks);
if (md.pred[PRED_Nx2N].sa8dCost < bestInter->sa8dCost)
bestInter = &md.pred[PRED_Nx2N];
refMasks[0] = splitRefs[0] | splitRefs[1]; /* top */
refMasks[1] = splitRefs[2] | splitRefs[3]; /* bot */
md.pred[PRED_2NxN].cu.initSubCU(parentCTU, cuGeom, qp);
checkInter_rd0_4(md.pred[PRED_2NxN], cuGeom, SIZE_2NxN, refMasks);
if (md.pred[PRED_2NxN].sa8dCost < bestInter->sa8dCost)
bestInter = &md.pred[PRED_2NxN];
}
if (m_slice->m_sps->maxAMPDepth > depth)
{
bool bHor = false, bVer = false;
if (bestInter->cu.m_partSize[0] == SIZE_2NxN)
bHor = true;
else if (bestInter->cu.m_partSize[0] == SIZE_Nx2N)
bVer = true;
else if (bestInter->cu.m_partSize[0] == SIZE_2Nx2N &&
md.bestMode && md.bestMode->cu.getQtRootCbf(0))
{
bHor = true;
bVer = true;
}
if (bHor)
{
refMasks[0] = splitRefs[0] | splitRefs[1]; /* 25% top */
refMasks[1] = allSplitRefs; /* 75% bot */
md.pred[PRED_2NxnU].cu.initSubCU(parentCTU, cuGeom, qp);
checkInter_rd0_4(md.pred[PRED_2NxnU], cuGeom, SIZE_2NxnU, refMasks);
if (md.pred[PRED_2NxnU].sa8dCost < bestInter->sa8dCost)
bestInter = &md.pred[PRED_2NxnU];
refMasks[0] = allSplitRefs; /* 75% top */
refMasks[1] = splitRefs[2] | splitRefs[3]; /* 25% bot */
md.pred[PRED_2NxnD].cu.initSubCU(parentCTU, cuGeom, qp);
checkInter_rd0_4(md.pred[PRED_2NxnD], cuGeom, SIZE_2NxnD, refMasks);
if (md.pred[PRED_2NxnD].sa8dCost < bestInter->sa8dCost)
bestInter = &md.pred[PRED_2NxnD];
}
if (bVer)
{
refMasks[0] = splitRefs[0] | splitRefs[2]; /* 25% left */
refMasks[1] = allSplitRefs; /* 75% right */
md.pred[PRED_nLx2N].cu.initSubCU(parentCTU, cuGeom, qp);
checkInter_rd0_4(md.pred[PRED_nLx2N], cuGeom, SIZE_nLx2N, refMasks);
if (md.pred[PRED_nLx2N].sa8dCost < bestInter->sa8dCost)
bestInter = &md.pred[PRED_nLx2N];
refMasks[0] = allSplitRefs; /* 75% left */
refMasks[1] = splitRefs[1] | splitRefs[3]; /* 25% right */
md.pred[PRED_nRx2N].cu.initSubCU(parentCTU, cuGeom, qp);
checkInter_rd0_4(md.pred[PRED_nRx2N], cuGeom, SIZE_nRx2N, refMasks);
if (md.pred[PRED_nRx2N].sa8dCost < bestInter->sa8dCost)
bestInter = &md.pred[PRED_nRx2N];
}
}
bool bTryIntra = m_slice->m_sliceType != B_SLICE || m_param->bIntraInBFrames;
if (m_param->rdLevel >= 3)
{
/* Calculate RD cost of best inter option */
if (!m_bChromaSa8d) /* When m_bChromaSa8d is enabled, chroma MC has already been done */
{
uint32_t numPU = bestInter->cu.getNumPartInter(0);
for (uint32_t puIdx = 0; puIdx < numPU; puIdx++)
{
PredictionUnit pu(bestInter->cu, cuGeom, puIdx);
motionCompensation(bestInter->cu, pu, bestInter->predYuv, false, true);
}
}
encodeResAndCalcRdInterCU(*bestInter, cuGeom);
checkBestMode(*bestInter, depth);
/* If BIDIR is available and within 17/16 of best inter option, choose by RDO */
if (m_slice->m_sliceType == B_SLICE && md.pred[PRED_BIDIR].sa8dCost != MAX_INT64 &&
md.pred[PRED_BIDIR].sa8dCost * 16 <= bestInter->sa8dCost * 17)
{
encodeResAndCalcRdInterCU(md.pred[PRED_BIDIR], cuGeom);
checkBestMode(md.pred[PRED_BIDIR], depth);
}
if ((bTryIntra && md.bestMode->cu.getQtRootCbf(0)) ||
md.bestMode->sa8dCost == MAX_INT64)
{
if (!m_param->limitReferences || splitIntra)
{
ProfileCounter(parentCTU, totalIntraCU[cuGeom.depth]);
md.pred[PRED_INTRA].cu.initSubCU(parentCTU, cuGeom, qp);
checkIntraInInter(md.pred[PRED_INTRA], cuGeom);
encodeIntraInInter(md.pred[PRED_INTRA], cuGeom);
checkBestMode(md.pred[PRED_INTRA], depth);
}
else
{
ProfileCounter(parentCTU, skippedIntraCU[cuGeom.depth]);
}
}
}
else
{
/* SA8D choice between merge/skip, inter, bidir, and intra */
if (!md.bestMode || bestInter->sa8dCost < md.bestMode->sa8dCost)
md.bestMode = bestInter;
if (m_slice->m_sliceType == B_SLICE &&
md.pred[PRED_BIDIR].sa8dCost < md.bestMode->sa8dCost)
md.bestMode = &md.pred[PRED_BIDIR];
if (bTryIntra || md.bestMode->sa8dCost == MAX_INT64)
{
if (!m_param->limitReferences || splitIntra)
{
ProfileCounter(parentCTU, totalIntraCU[cuGeom.depth]);
md.pred[PRED_INTRA].cu.initSubCU(parentCTU, cuGeom, qp);
checkIntraInInter(md.pred[PRED_INTRA], cuGeom);
if (md.pred[PRED_INTRA].sa8dCost < md.bestMode->sa8dCost)
md.bestMode = &md.pred[PRED_INTRA];
}
else
{
ProfileCounter(parentCTU, skippedIntraCU[cuGeom.depth]);
}
}
/* finally code the best mode selected by SA8D costs:
* RD level 2 - fully encode the best mode
* RD level 1 - generate recon pixels
* RD level 0 - generate chroma prediction */
if (md.bestMode->cu.m_mergeFlag[0] && md.bestMode->cu.m_partSize[0] == SIZE_2Nx2N)
{
/* prediction already generated for this CU, and if rd level
* is not 0, it is already fully encoded */
}
else if (md.bestMode->cu.isInter(0))
{
uint32_t numPU = md.bestMode->cu.getNumPartInter(0);
for (uint32_t puIdx = 0; puIdx < numPU; puIdx++)
{
PredictionUnit pu(md.bestMode->cu, cuGeom, puIdx);
motionCompensation(md.bestMode->cu, pu, md.bestMode->predYuv, false, true);
}
if (m_param->rdLevel == 2)
encodeResAndCalcRdInterCU(*md.bestMode, cuGeom);
else if (m_param->rdLevel == 1)
{
/* generate recon pixels with no rate distortion considerations */
CUData& cu = md.bestMode->cu;
uint32_t tuDepthRange[2];
cu.getInterTUQtDepthRange(tuDepthRange, 0);
m_rqt[cuGeom.depth].tmpResiYuv.subtract(*md.bestMode->fencYuv, md.bestMode->predYuv, cuGeom.log2CUSize);
residualTransformQuantInter(*md.bestMode, cuGeom, 0, 0, tuDepthRange);
if (cu.getQtRootCbf(0))
md.bestMode->reconYuv.addClip(md.bestMode->predYuv, m_rqt[cuGeom.depth].tmpResiYuv, cu.m_log2CUSize[0]);
else
{
md.bestMode->reconYuv.copyFromYuv(md.bestMode->predYuv);
if (cu.m_mergeFlag[0] && cu.m_partSize[0] == SIZE_2Nx2N)
cu.setPredModeSubParts(MODE_SKIP);
}
}
}
else
{
if (m_param->rdLevel == 2)
encodeIntraInInter(*md.bestMode, cuGeom);
else if (m_param->rdLevel == 1)
{
/* generate recon pixels with no rate distortion considerations */
CUData& cu = md.bestMode->cu;
uint32_t tuDepthRange[2];
cu.getIntraTUQtDepthRange(tuDepthRange, 0);
residualTransformQuantIntra(*md.bestMode, cuGeom, 0, 0, tuDepthRange);
getBestIntraModeChroma(*md.bestMode, cuGeom);
residualQTIntraChroma(*md.bestMode, cuGeom, 0, 0);
md.bestMode->reconYuv.copyFromPicYuv(reconPic, cu.m_cuAddr, cuGeom.absPartIdx); // TODO:
}
}
}
} // !earlyskip
if (m_bTryLossless)
tryLossless(cuGeom);
if (mightSplit)
addSplitFlagCost(*md.bestMode, cuGeom.depth);
}
if (mightSplit && !bNoSplit)
{
Mode* splitPred = &md.pred[PRED_SPLIT];
if (!md.bestMode)
md.bestMode = splitPred;
else if (m_param->rdLevel > 1)
checkBestMode(*splitPred, cuGeom.depth);
else if (splitPred->sa8dCost < md.bestMode->sa8dCost)
md.bestMode = splitPred;
checkDQPForSplitPred(*md.bestMode, cuGeom);
}
/* determine which motion references the parent CU should search */
uint32_t refMask;
if (!(m_param->limitReferences & X265_REF_LIMIT_DEPTH))
refMask = 0;
else if (md.bestMode == &md.pred[PRED_SPLIT])
refMask = allSplitRefs;
else
{
/* use best merge/inter mode, in case of intra use 2Nx2N inter references */
CUData& cu = md.bestMode->cu.isIntra(0) ? md.pred[PRED_2Nx2N].cu : md.bestMode->cu;
uint32_t numPU = cu.getNumPartInter(0);
refMask = 0;
for (uint32_t puIdx = 0, subPartIdx = 0; puIdx < numPU; puIdx++, subPartIdx += cu.getPUOffset(puIdx, 0))
refMask |= cu.getBestRefIdx(subPartIdx);
}
if (mightNotSplit)
{
/* early-out statistics */
FrameData& curEncData = *m_frame->m_encData;
FrameData::RCStatCU& cuStat = curEncData.m_cuStat[parentCTU.m_cuAddr];
uint64_t temp = cuStat.avgCost[depth] * cuStat.count[depth];
cuStat.count[depth] += 1;
cuStat.avgCost[depth] = (temp + md.bestMode->rdCost) / cuStat.count[depth];
}
/* Copy best data to encData CTU and recon */
X265_CHECK(md.bestMode->ok(), "best mode is not ok");
md.bestMode->cu.copyToPic(depth);
if (m_param->rdLevel)
md.bestMode->reconYuv.copyToPicYuv(reconPic, cuAddr, cuGeom.absPartIdx);
return refMask;
}
uint32_t Analysis::compressInterCU_rd5_6(const CUData& parentCTU, const CUGeom& cuGeom, uint32_t &zOrder, int32_t qp)
{
uint32_t depth = cuGeom.depth;
ModeDepth& md = m_modeDepth[depth];
md.bestMode = NULL;
bool mightSplit = !(cuGeom.flags & CUGeom::LEAF);
bool mightNotSplit = !(cuGeom.flags & CUGeom::SPLIT_MANDATORY);
if (m_param->analysisMode == X265_ANALYSIS_LOAD)
{
uint8_t* reuseDepth = &m_reuseInterDataCTU->depth[parentCTU.m_cuAddr * parentCTU.m_numPartitions];
uint8_t* reuseModes = &m_reuseInterDataCTU->modes[parentCTU.m_cuAddr * parentCTU.m_numPartitions];
if (mightNotSplit && depth == reuseDepth[zOrder] && zOrder == cuGeom.absPartIdx && reuseModes[zOrder] == MODE_SKIP)
{
md.pred[PRED_SKIP].cu.initSubCU(parentCTU, cuGeom, qp);
md.pred[PRED_MERGE].cu.initSubCU(parentCTU, cuGeom, qp);
checkMerge2Nx2N_rd5_6(md.pred[PRED_SKIP], md.pred[PRED_MERGE], cuGeom, true);
if (m_bTryLossless)
tryLossless(cuGeom);
if (mightSplit)
addSplitFlagCost(*md.bestMode, cuGeom.depth);
// increment zOrder offset to point to next best depth in sharedDepth buffer
zOrder += g_depthInc[g_maxCUDepth - 1][reuseDepth[zOrder]];
mightSplit = false;
mightNotSplit = false;
}
}
bool foundSkip = false;
bool splitIntra = true;
uint32_t splitRefs[4] = { 0, 0, 0, 0 };
/* Step 1. Evaluate Merge/Skip candidates for likely early-outs */
if (mightNotSplit)
{
md.pred[PRED_SKIP].cu.initSubCU(parentCTU, cuGeom, qp);
md.pred[PRED_MERGE].cu.initSubCU(parentCTU, cuGeom, qp);
checkMerge2Nx2N_rd5_6(md.pred[PRED_SKIP], md.pred[PRED_MERGE], cuGeom, false);
foundSkip = md.bestMode && !md.bestMode->cu.getQtRootCbf(0);
}
// estimate split cost
/* Step 2. Evaluate each of the 4 split sub-blocks in series */
if (mightSplit && !foundSkip)
{
Mode* splitPred = &md.pred[PRED_SPLIT];
splitPred->initCosts();
CUData* splitCU = &splitPred->cu;
splitCU->initSubCU(parentCTU, cuGeom, qp);
uint32_t nextDepth = depth + 1;
ModeDepth& nd = m_modeDepth[nextDepth];
invalidateContexts(nextDepth);
Entropy* nextContext = &m_rqt[depth].cur;
int nextQP = qp;
splitIntra = false;
for (uint32_t subPartIdx = 0; subPartIdx < 4; subPartIdx++)
{
const CUGeom& childGeom = *(&cuGeom + cuGeom.childOffset + subPartIdx);
if (childGeom.flags & CUGeom::PRESENT)
{
m_modeDepth[0].fencYuv.copyPartToYuv(nd.fencYuv, childGeom.absPartIdx);
m_rqt[nextDepth].cur.load(*nextContext);
if (m_slice->m_pps->bUseDQP && nextDepth <= m_slice->m_pps->maxCuDQPDepth)
nextQP = setLambdaFromQP(parentCTU, calculateQpforCuSize(parentCTU, childGeom));
splitRefs[subPartIdx] = compressInterCU_rd5_6(parentCTU, childGeom, zOrder, nextQP);
// Save best CU and pred data for this sub CU
splitIntra |= nd.bestMode->cu.isIntra(0);
splitCU->copyPartFrom(nd.bestMode->cu, childGeom, subPartIdx);
splitPred->addSubCosts(*nd.bestMode);
nd.bestMode->reconYuv.copyToPartYuv(splitPred->reconYuv, childGeom.numPartitions * subPartIdx);
nextContext = &nd.bestMode->contexts;
}
else
{
splitCU->setEmptyPart(childGeom, subPartIdx);
zOrder += g_depthInc[g_maxCUDepth - 1][nextDepth];
}
}
nextContext->store(splitPred->contexts);
if (mightNotSplit)
addSplitFlagCost(*splitPred, cuGeom.depth);
else
updateModeCost(*splitPred);
checkDQPForSplitPred(*splitPred, cuGeom);
}
/* Split CUs
* 0 1
* 2 3 */
uint32_t allSplitRefs = splitRefs[0] | splitRefs[1] | splitRefs[2] | splitRefs[3];
/* Step 3. Evaluate ME (2Nx2N, rect, amp) and intra modes at current depth */
if (mightNotSplit)
{
if (m_slice->m_pps->bUseDQP && depth <= m_slice->m_pps->maxCuDQPDepth && m_slice->m_pps->maxCuDQPDepth != 0)
setLambdaFromQP(parentCTU, qp);
if (!(foundSkip && m_param->bEnableEarlySkip))
{
uint32_t refMasks[2];
refMasks[0] = allSplitRefs;
md.pred[PRED_2Nx2N].cu.initSubCU(parentCTU, cuGeom, qp);
checkInter_rd5_6(md.pred[PRED_2Nx2N], cuGeom, SIZE_2Nx2N, refMasks);
checkBestMode(md.pred[PRED_2Nx2N], cuGeom.depth);
if (m_param->limitReferences & X265_REF_LIMIT_CU)
{
CUData& cu = md.pred[PRED_2Nx2N].cu;
uint32_t refMask = cu.getBestRefIdx(0);
allSplitRefs = splitRefs[0] = splitRefs[1] = splitRefs[2] = splitRefs[3] = refMask;
}
if (m_slice->m_sliceType == B_SLICE)
{
md.pred[PRED_BIDIR].cu.initSubCU(parentCTU, cuGeom, qp);
checkBidir2Nx2N(md.pred[PRED_2Nx2N], md.pred[PRED_BIDIR], cuGeom);
if (md.pred[PRED_BIDIR].sa8dCost < MAX_INT64)
{
encodeResAndCalcRdInterCU(md.pred[PRED_BIDIR], cuGeom);
checkBestMode(md.pred[PRED_BIDIR], cuGeom.depth);
}
}
if (m_param->bEnableRectInter)
{
refMasks[0] = splitRefs[0] | splitRefs[2]; /* left */
refMasks[1] = splitRefs[1] | splitRefs[3]; /* right */
md.pred[PRED_Nx2N].cu.initSubCU(parentCTU, cuGeom, qp);
checkInter_rd5_6(md.pred[PRED_Nx2N], cuGeom, SIZE_Nx2N, refMasks);
checkBestMode(md.pred[PRED_Nx2N], cuGeom.depth);
refMasks[0] = splitRefs[0] | splitRefs[1]; /* top */
refMasks[1] = splitRefs[2] | splitRefs[3]; /* bot */
md.pred[PRED_2NxN].cu.initSubCU(parentCTU, cuGeom, qp);
checkInter_rd5_6(md.pred[PRED_2NxN], cuGeom, SIZE_2NxN, refMasks);
checkBestMode(md.pred[PRED_2NxN], cuGeom.depth);
}
// Try AMP (SIZE_2NxnU, SIZE_2NxnD, SIZE_nLx2N, SIZE_nRx2N)
if (m_slice->m_sps->maxAMPDepth > depth)
{
bool bHor = false, bVer = false;
if (md.bestMode->cu.m_partSize[0] == SIZE_2NxN)
bHor = true;
else if (md.bestMode->cu.m_partSize[0] == SIZE_Nx2N)
bVer = true;
else if (md.bestMode->cu.m_partSize[0] == SIZE_2Nx2N && !md.bestMode->cu.m_mergeFlag[0])
{
bHor = true;
bVer = true;
}
if (bHor)
{
refMasks[0] = splitRefs[0] | splitRefs[1]; /* 25% top */
refMasks[1] = allSplitRefs; /* 75% bot */
md.pred[PRED_2NxnU].cu.initSubCU(parentCTU, cuGeom, qp);
checkInter_rd5_6(md.pred[PRED_2NxnU], cuGeom, SIZE_2NxnU, refMasks);
checkBestMode(md.pred[PRED_2NxnU], cuGeom.depth);
refMasks[0] = allSplitRefs; /* 75% top */
refMasks[1] = splitRefs[2] | splitRefs[3]; /* 25% bot */
md.pred[PRED_2NxnD].cu.initSubCU(parentCTU, cuGeom, qp);
checkInter_rd5_6(md.pred[PRED_2NxnD], cuGeom, SIZE_2NxnD, refMasks);
checkBestMode(md.pred[PRED_2NxnD], cuGeom.depth);
}
if (bVer)
{
refMasks[0] = splitRefs[0] | splitRefs[2]; /* 25% left */
refMasks[1] = allSplitRefs; /* 75% right */
md.pred[PRED_nLx2N].cu.initSubCU(parentCTU, cuGeom, qp);
checkInter_rd5_6(md.pred[PRED_nLx2N], cuGeom, SIZE_nLx2N, refMasks);
checkBestMode(md.pred[PRED_nLx2N], cuGeom.depth);
refMasks[0] = allSplitRefs; /* 75% left */
refMasks[1] = splitRefs[1] | splitRefs[3]; /* 25% right */
md.pred[PRED_nRx2N].cu.initSubCU(parentCTU, cuGeom, qp);
checkInter_rd5_6(md.pred[PRED_nRx2N], cuGeom, SIZE_nRx2N, refMasks);
checkBestMode(md.pred[PRED_nRx2N], cuGeom.depth);
}
}
if (m_slice->m_sliceType != B_SLICE || m_param->bIntraInBFrames)
{
if (!m_param->limitReferences || splitIntra)
{
ProfileCounter(parentCTU, totalIntraCU[cuGeom.depth]);
md.pred[PRED_INTRA].cu.initSubCU(parentCTU, cuGeom, qp);
checkIntra(md.pred[PRED_INTRA], cuGeom, SIZE_2Nx2N, NULL, NULL);
checkBestMode(md.pred[PRED_INTRA], depth);
if (cuGeom.log2CUSize == 3 && m_slice->m_sps->quadtreeTULog2MinSize < 3)
{
md.pred[PRED_INTRA_NxN].cu.initSubCU(parentCTU, cuGeom, qp);
checkIntra(md.pred[PRED_INTRA_NxN], cuGeom, SIZE_NxN, NULL, NULL);
checkBestMode(md.pred[PRED_INTRA_NxN], depth);
}
}
else
{
ProfileCounter(parentCTU, skippedIntraCU[cuGeom.depth]);
}
}
}
if (m_bTryLossless)
tryLossless(cuGeom);
if (mightSplit)
addSplitFlagCost(*md.bestMode, cuGeom.depth);
}
/* compare split RD cost against best cost */
if (mightSplit && !foundSkip)
checkBestMode(md.pred[PRED_SPLIT], depth);
/* determine which motion references the parent CU should search */
uint32_t refMask;
if (!(m_param->limitReferences & X265_REF_LIMIT_DEPTH))
refMask = 0;
else if (md.bestMode == &md.pred[PRED_SPLIT])
refMask = allSplitRefs;
else
{
/* use best merge/inter mode, in case of intra use 2Nx2N inter references */
CUData& cu = md.bestMode->cu.isIntra(0) ? md.pred[PRED_2Nx2N].cu : md.bestMode->cu;
uint32_t numPU = cu.getNumPartInter(0);
refMask = 0;
for (uint32_t puIdx = 0, subPartIdx = 0; puIdx < numPU; puIdx++, subPartIdx += cu.getPUOffset(puIdx, 0))
refMask |= cu.getBestRefIdx(subPartIdx);
}
/* Copy best data to encData CTU and recon */
X265_CHECK(md.bestMode->ok(), "best mode is not ok");
md.bestMode->cu.copyToPic(depth);
md.bestMode->reconYuv.copyToPicYuv(*m_frame->m_reconPic, parentCTU.m_cuAddr, cuGeom.absPartIdx);
return refMask;
}
/* sets md.bestMode if a valid merge candidate is found, else leaves it NULL */
void Analysis::checkMerge2Nx2N_rd0_4(Mode& skip, Mode& merge, const CUGeom& cuGeom)
{
uint32_t depth = cuGeom.depth;
ModeDepth& md = m_modeDepth[depth];
Yuv *fencYuv = &md.fencYuv;
/* Note that these two Mode instances are named MERGE and SKIP but they may
* hold the reverse when the function returns. We toggle between the two modes */
Mode* tempPred = &merge;
Mode* bestPred = &skip;
X265_CHECK(m_slice->m_sliceType != I_SLICE, "Evaluating merge in I slice\n");
tempPred->initCosts();
tempPred->cu.setPartSizeSubParts(SIZE_2Nx2N);
tempPred->cu.setPredModeSubParts(MODE_INTER);
tempPred->cu.m_mergeFlag[0] = true;
bestPred->initCosts();
bestPred->cu.setPartSizeSubParts(SIZE_2Nx2N);
bestPred->cu.setPredModeSubParts(MODE_INTER);
bestPred->cu.m_mergeFlag[0] = true;
MVField candMvField[MRG_MAX_NUM_CANDS][2]; // double length for mv of both lists
uint8_t candDir[MRG_MAX_NUM_CANDS];
uint32_t numMergeCand = tempPred->cu.getInterMergeCandidates(0, 0, candMvField, candDir);
PredictionUnit pu(merge.cu, cuGeom, 0);
bestPred->sa8dCost = MAX_INT64;
int bestSadCand = -1;
int sizeIdx = cuGeom.log2CUSize - 2;
for (uint32_t i = 0; i < numMergeCand; ++i)
{
if (m_bFrameParallel &&
(candMvField[i][0].mv.y >= (m_param->searchRange + 1) * 4 ||
candMvField[i][1].mv.y >= (m_param->searchRange + 1) * 4))
continue;
tempPred->cu.m_mvpIdx[0][0] = (uint8_t)i; // merge candidate ID is stored in L0 MVP idx
X265_CHECK(m_slice->m_sliceType == B_SLICE || !(candDir[i] & 0x10), " invalid merge for P slice\n");
tempPred->cu.m_interDir[0] = candDir[i];
tempPred->cu.m_mv[0][0] = candMvField[i][0].mv;
tempPred->cu.m_mv[1][0] = candMvField[i][1].mv;
tempPred->cu.m_refIdx[0][0] = (int8_t)candMvField[i][0].refIdx;
tempPred->cu.m_refIdx[1][0] = (int8_t)candMvField[i][1].refIdx;
motionCompensation(tempPred->cu, pu, tempPred->predYuv, true, m_bChromaSa8d);
tempPred->sa8dBits = getTUBits(i, numMergeCand);
tempPred->distortion = primitives.cu[sizeIdx].sa8d(fencYuv->m_buf[0], fencYuv->m_size, tempPred->predYuv.m_buf[0], tempPred->predYuv.m_size);
if (m_bChromaSa8d)
{
tempPred->distortion += primitives.chroma[m_csp].cu[sizeIdx].sa8d(fencYuv->m_buf[1], fencYuv->m_csize, tempPred->predYuv.m_buf[1], tempPred->predYuv.m_csize);
tempPred->distortion += primitives.chroma[m_csp].cu[sizeIdx].sa8d(fencYuv->m_buf[2], fencYuv->m_csize, tempPred->predYuv.m_buf[2], tempPred->predYuv.m_csize);
}
tempPred->sa8dCost = m_rdCost.calcRdSADCost((uint32_t)tempPred->distortion, tempPred->sa8dBits);
if (tempPred->sa8dCost < bestPred->sa8dCost)
{
bestSadCand = i;
std::swap(tempPred, bestPred);
}
}
/* force mode decision to take inter or intra */
if (bestSadCand < 0)
return;
/* calculate the motion compensation for chroma for the best mode selected */
if (!m_bChromaSa8d) /* Chroma MC was done above */
motionCompensation(bestPred->cu, pu, bestPred->predYuv, false, true);
if (m_param->rdLevel)
{
if (m_param->bLossless)
bestPred->rdCost = MAX_INT64;
else
encodeResAndCalcRdSkipCU(*bestPred);
/* Encode with residual */
tempPred->cu.m_mvpIdx[0][0] = (uint8_t)bestSadCand;
tempPred->cu.setPUInterDir(candDir[bestSadCand], 0, 0);
tempPred->cu.setPUMv(0, candMvField[bestSadCand][0].mv, 0, 0);
tempPred->cu.setPUMv(1, candMvField[bestSadCand][1].mv, 0, 0);
tempPred->cu.setPURefIdx(0, (int8_t)candMvField[bestSadCand][0].refIdx, 0, 0);
tempPred->cu.setPURefIdx(1, (int8_t)candMvField[bestSadCand][1].refIdx, 0, 0);
tempPred->sa8dCost = bestPred->sa8dCost;
tempPred->sa8dBits = bestPred->sa8dBits;
tempPred->predYuv.copyFromYuv(bestPred->predYuv);
encodeResAndCalcRdInterCU(*tempPred, cuGeom);
md.bestMode = tempPred->rdCost < bestPred->rdCost ? tempPred : bestPred;
}
else
md.bestMode = bestPred;
/* broadcast sets of MV field data */
md.bestMode->cu.setPUInterDir(candDir[bestSadCand], 0, 0);
md.bestMode->cu.setPUMv(0, candMvField[bestSadCand][0].mv, 0, 0);
md.bestMode->cu.setPUMv(1, candMvField[bestSadCand][1].mv, 0, 0);
md.bestMode->cu.setPURefIdx(0, (int8_t)candMvField[bestSadCand][0].refIdx, 0, 0);
md.bestMode->cu.setPURefIdx(1, (int8_t)candMvField[bestSadCand][1].refIdx, 0, 0);
checkDQP(*md.bestMode, cuGeom);
X265_CHECK(md.bestMode->ok(), "Merge mode not ok\n");
}
/* sets md.bestMode if a valid merge candidate is found, else leaves it NULL */
void Analysis::checkMerge2Nx2N_rd5_6(Mode& skip, Mode& merge, const CUGeom& cuGeom, bool isShareMergeCand)
{
uint32_t depth = cuGeom.depth;
/* Note that these two Mode instances are named MERGE and SKIP but they may
* hold the reverse when the function returns. We toggle between the two modes */
Mode* tempPred = &merge;
Mode* bestPred = &skip;
merge.initCosts();
merge.cu.setPredModeSubParts(MODE_INTER);
merge.cu.setPartSizeSubParts(SIZE_2Nx2N);
merge.cu.m_mergeFlag[0] = true;
skip.initCosts();
skip.cu.setPredModeSubParts(MODE_INTER);
skip.cu.setPartSizeSubParts(SIZE_2Nx2N);
skip.cu.m_mergeFlag[0] = true;
MVField candMvField[MRG_MAX_NUM_CANDS][2]; // double length for mv of both lists
uint8_t candDir[MRG_MAX_NUM_CANDS];
uint32_t numMergeCand = merge.cu.getInterMergeCandidates(0, 0, candMvField, candDir);
PredictionUnit pu(merge.cu, cuGeom, 0);
bool foundCbf0Merge = false;
bool triedPZero = false, triedBZero = false;
bestPred->rdCost = MAX_INT64;
uint32_t first = 0, last = numMergeCand;
if (isShareMergeCand)
{
first = *m_reuseBestMergeCand;
last = first + 1;
}
for (uint32_t i = first; i < last; i++)
{
if (m_bFrameParallel &&
(candMvField[i][0].mv.y >= (m_param->searchRange + 1) * 4 ||
candMvField[i][1].mv.y >= (m_param->searchRange + 1) * 4))
continue;
/* the merge candidate list is packed with MV(0,0) ref 0 when it is not full */
if (candDir[i] == 1 && !candMvField[i][0].mv.word && !candMvField[i][0].refIdx)
{
if (triedPZero)
continue;
triedPZero = true;
}
else if (candDir[i] == 3 &&
!candMvField[i][0].mv.word && !candMvField[i][0].refIdx &&
!candMvField[i][1].mv.word && !candMvField[i][1].refIdx)
{
if (triedBZero)
continue;
triedBZero = true;
}
tempPred->cu.m_mvpIdx[0][0] = (uint8_t)i; /* merge candidate ID is stored in L0 MVP idx */
tempPred->cu.m_interDir[0] = candDir[i];
tempPred->cu.m_mv[0][0] = candMvField[i][0].mv;
tempPred->cu.m_mv[1][0] = candMvField[i][1].mv;
tempPred->cu.m_refIdx[0][0] = (int8_t)candMvField[i][0].refIdx;
tempPred->cu.m_refIdx[1][0] = (int8_t)candMvField[i][1].refIdx;
tempPred->cu.setPredModeSubParts(MODE_INTER); /* must be cleared between encode iterations */
motionCompensation(tempPred->cu, pu, tempPred->predYuv, true, true);
uint8_t hasCbf = true;
bool swapped = false;
if (!foundCbf0Merge)
{
/* if the best prediction has CBF (not a skip) then try merge with residual */
encodeResAndCalcRdInterCU(*tempPred, cuGeom);
hasCbf = tempPred->cu.getQtRootCbf(0);
foundCbf0Merge = !hasCbf;
if (tempPred->rdCost < bestPred->rdCost)
{
std::swap(tempPred, bestPred);
swapped = true;
}
}
if (!m_param->bLossless && hasCbf)
{
/* try merge without residual (skip), if not lossless coding */
if (swapped)
{
tempPred->cu.m_mvpIdx[0][0] = (uint8_t)i;
tempPred->cu.m_interDir[0] = candDir[i];
tempPred->cu.m_mv[0][0] = candMvField[i][0].mv;
tempPred->cu.m_mv[1][0] = candMvField[i][1].mv;
tempPred->cu.m_refIdx[0][0] = (int8_t)candMvField[i][0].refIdx;
tempPred->cu.m_refIdx[1][0] = (int8_t)candMvField[i][1].refIdx;
tempPred->cu.setPredModeSubParts(MODE_INTER);
tempPred->predYuv.copyFromYuv(bestPred->predYuv);
}
encodeResAndCalcRdSkipCU(*tempPred);
if (tempPred->rdCost < bestPred->rdCost)
std::swap(tempPred, bestPred);
}
}
if (bestPred->rdCost < MAX_INT64)
{
m_modeDepth[depth].bestMode = bestPred;
/* broadcast sets of MV field data */
uint32_t bestCand = bestPred->cu.m_mvpIdx[0][0];
bestPred->cu.setPUInterDir(candDir[bestCand], 0, 0);
bestPred->cu.setPUMv(0, candMvField[bestCand][0].mv, 0, 0);
bestPred->cu.setPUMv(1, candMvField[bestCand][1].mv, 0, 0);
bestPred->cu.setPURefIdx(0, (int8_t)candMvField[bestCand][0].refIdx, 0, 0);
bestPred->cu.setPURefIdx(1, (int8_t)candMvField[bestCand][1].refIdx, 0, 0);
checkDQP(*bestPred, cuGeom);
X265_CHECK(bestPred->ok(), "merge mode is not ok");
}
if (m_param->analysisMode)
{
m_reuseBestMergeCand++;
if (m_param->analysisMode == X265_ANALYSIS_SAVE)
*m_reuseBestMergeCand = bestPred->cu.m_mvpIdx[0][0];
}
}
void Analysis::checkInter_rd0_4(Mode& interMode, const CUGeom& cuGeom, PartSize partSize, uint32_t refMask[2])
{
interMode.initCosts();
interMode.cu.setPartSizeSubParts(partSize);
interMode.cu.setPredModeSubParts(MODE_INTER);
int numPredDir = m_slice->isInterP() ? 1 : 2;
if (m_param->analysisMode == X265_ANALYSIS_LOAD && m_reuseInterDataCTU)
{
uint32_t numPU = interMode.cu.getNumPartInter(0);
for (uint32_t part = 0; part < numPU; part++)
{
MotionData* bestME = interMode.bestME[part];
for (int32_t i = 0; i < numPredDir; i++)
{
bestME[i].ref = *m_reuseRef;
m_reuseRef++;
}
}
}
predInterSearch(interMode, cuGeom, m_bChromaSa8d, refMask);
/* predInterSearch sets interMode.sa8dBits */
const Yuv& fencYuv = *interMode.fencYuv;
Yuv& predYuv = interMode.predYuv;
int part = partitionFromLog2Size(cuGeom.log2CUSize);
interMode.distortion = primitives.cu[part].sa8d(fencYuv.m_buf[0], fencYuv.m_size, predYuv.m_buf[0], predYuv.m_size);
if (m_bChromaSa8d)
{
interMode.distortion += primitives.chroma[m_csp].cu[part].sa8d(fencYuv.m_buf[1], fencYuv.m_csize, predYuv.m_buf[1], predYuv.m_csize);
interMode.distortion += primitives.chroma[m_csp].cu[part].sa8d(fencYuv.m_buf[2], fencYuv.m_csize, predYuv.m_buf[2], predYuv.m_csize);
}
interMode.sa8dCost = m_rdCost.calcRdSADCost((uint32_t)interMode.distortion, interMode.sa8dBits);
if (m_param->analysisMode == X265_ANALYSIS_SAVE && m_reuseInterDataCTU)
{
uint32_t numPU = interMode.cu.getNumPartInter(0);
for (uint32_t puIdx = 0; puIdx < numPU; puIdx++)
{
MotionData* bestME = interMode.bestME[puIdx];
for (int32_t i = 0; i < numPredDir; i++)
{
*m_reuseRef = bestME[i].ref;
m_reuseRef++;
}
}
}
}
void Analysis::checkInter_rd5_6(Mode& interMode, const CUGeom& cuGeom, PartSize partSize, uint32_t refMask[2])
{
interMode.initCosts();
interMode.cu.setPartSizeSubParts(partSize);
interMode.cu.setPredModeSubParts(MODE_INTER);
int numPredDir = m_slice->isInterP() ? 1 : 2;
if (m_param->analysisMode == X265_ANALYSIS_LOAD && m_reuseInterDataCTU)
{
uint32_t numPU = interMode.cu.getNumPartInter(0);
for (uint32_t puIdx = 0; puIdx < numPU; puIdx++)
{
MotionData* bestME = interMode.bestME[puIdx];
for (int32_t i = 0; i < numPredDir; i++)
{
bestME[i].ref = *m_reuseRef;
m_reuseRef++;
}
}
}
predInterSearch(interMode, cuGeom, true, refMask);
/* predInterSearch sets interMode.sa8dBits, but this is ignored */
encodeResAndCalcRdInterCU(interMode, cuGeom);
if (m_param->analysisMode == X265_ANALYSIS_SAVE && m_reuseInterDataCTU)
{
uint32_t numPU = interMode.cu.getNumPartInter(0);
for (uint32_t puIdx = 0; puIdx < numPU; puIdx++)
{
MotionData* bestME = interMode.bestME[puIdx];
for (int32_t i = 0; i < numPredDir; i++)
{
*m_reuseRef = bestME[i].ref;
m_reuseRef++;
}
}
}
}
void Analysis::checkBidir2Nx2N(Mode& inter2Nx2N, Mode& bidir2Nx2N, const CUGeom& cuGeom)
{
CUData& cu = bidir2Nx2N.cu;
if (cu.isBipredRestriction() || inter2Nx2N.bestME[0][0].cost == MAX_UINT || inter2Nx2N.bestME[0][1].cost == MAX_UINT)
{
bidir2Nx2N.sa8dCost = MAX_INT64;
bidir2Nx2N.rdCost = MAX_INT64;
return;
}
const Yuv& fencYuv = *bidir2Nx2N.fencYuv;
MV mvzero(0, 0);
int partEnum = cuGeom.log2CUSize - 2;
bidir2Nx2N.bestME[0][0] = inter2Nx2N.bestME[0][0];
bidir2Nx2N.bestME[0][1] = inter2Nx2N.bestME[0][1];
MotionData* bestME = bidir2Nx2N.bestME[0];
int ref0 = bestME[0].ref;
MV mvp0 = bestME[0].mvp;
int mvpIdx0 = bestME[0].mvpIdx;
int ref1 = bestME[1].ref;
MV mvp1 = bestME[1].mvp;
int mvpIdx1 = bestME[1].mvpIdx;
bidir2Nx2N.initCosts();
cu.setPartSizeSubParts(SIZE_2Nx2N);
cu.setPredModeSubParts(MODE_INTER);
cu.setPUInterDir(3, 0, 0);
cu.setPURefIdx(0, (int8_t)ref0, 0, 0);
cu.setPURefIdx(1, (int8_t)ref1, 0, 0);
cu.m_mvpIdx[0][0] = (uint8_t)mvpIdx0;
cu.m_mvpIdx[1][0] = (uint8_t)mvpIdx1;
cu.m_mergeFlag[0] = 0;
/* Estimate cost of BIDIR using best 2Nx2N L0 and L1 motion vectors */
cu.setPUMv(0, bestME[0].mv, 0, 0);
cu.m_mvd[0][0] = bestME[0].mv - mvp0;
cu.setPUMv(1, bestME[1].mv, 0, 0);
cu.m_mvd[1][0] = bestME[1].mv - mvp1;
PredictionUnit pu(cu, cuGeom, 0);
motionCompensation(cu, pu, bidir2Nx2N.predYuv, true, m_bChromaSa8d);
int sa8d = primitives.cu[partEnum].sa8d(fencYuv.m_buf[0], fencYuv.m_size, bidir2Nx2N.predYuv.m_buf[0], bidir2Nx2N.predYuv.m_size);
if (m_bChromaSa8d)
{
/* Add in chroma distortion */
sa8d += primitives.chroma[m_csp].cu[partEnum].sa8d(fencYuv.m_buf[1], fencYuv.m_csize, bidir2Nx2N.predYuv.m_buf[1], bidir2Nx2N.predYuv.m_csize);
sa8d += primitives.chroma[m_csp].cu[partEnum].sa8d(fencYuv.m_buf[2], fencYuv.m_csize, bidir2Nx2N.predYuv.m_buf[2], bidir2Nx2N.predYuv.m_csize);
}
bidir2Nx2N.sa8dBits = bestME[0].bits + bestME[1].bits + m_listSelBits[2] - (m_listSelBits[0] + m_listSelBits[1]);
bidir2Nx2N.sa8dCost = sa8d + m_rdCost.getCost(bidir2Nx2N.sa8dBits);
bool bTryZero = bestME[0].mv.notZero() || bestME[1].mv.notZero();
if (bTryZero)
{
/* Do not try zero MV if unidir motion predictors are beyond
* valid search area */
MV mvmin, mvmax;
int merange = X265_MAX(m_param->sourceWidth, m_param->sourceHeight);
setSearchRange(cu, mvzero, merange, mvmin, mvmax);
mvmax.y += 2; // there is some pad for subpel refine
mvmin <<= 2;
mvmax <<= 2;
bTryZero &= bestME[0].mvp.checkRange(mvmin, mvmax);
bTryZero &= bestME[1].mvp.checkRange(mvmin, mvmax);
}
if (bTryZero)
{
/* Estimate cost of BIDIR using coincident blocks */
Yuv& tmpPredYuv = m_rqt[cuGeom.depth].tmpPredYuv;
int zsa8d;
if (m_bChromaSa8d)
{
cu.m_mv[0][0] = mvzero;
cu.m_mv[1][0] = mvzero;
motionCompensation(cu, pu, tmpPredYuv, true, true);
zsa8d = primitives.cu[partEnum].sa8d(fencYuv.m_buf[0], fencYuv.m_size, tmpPredYuv.m_buf[0], tmpPredYuv.m_size);
zsa8d += primitives.chroma[m_csp].cu[partEnum].sa8d(fencYuv.m_buf[1], fencYuv.m_csize, tmpPredYuv.m_buf[1], tmpPredYuv.m_csize);
zsa8d += primitives.chroma[m_csp].cu[partEnum].sa8d(fencYuv.m_buf[2], fencYuv.m_csize, tmpPredYuv.m_buf[2], tmpPredYuv.m_csize);
}
else
{
pixel *fref0 = m_slice->m_mref[0][ref0].getLumaAddr(pu.ctuAddr, pu.cuAbsPartIdx);
pixel *fref1 = m_slice->m_mref[1][ref1].getLumaAddr(pu.ctuAddr, pu.cuAbsPartIdx);
intptr_t refStride = m_slice->m_mref[0][0].lumaStride;
primitives.pu[partEnum].pixelavg_pp(tmpPredYuv.m_buf[0], tmpPredYuv.m_size, fref0, refStride, fref1, refStride, 32);
zsa8d = primitives.cu[partEnum].sa8d(fencYuv.m_buf[0], fencYuv.m_size, tmpPredYuv.m_buf[0], tmpPredYuv.m_size);
}
uint32_t bits0 = bestME[0].bits - m_me.bitcost(bestME[0].mv, mvp0) + m_me.bitcost(mvzero, mvp0);
uint32_t bits1 = bestME[1].bits - m_me.bitcost(bestME[1].mv, mvp1) + m_me.bitcost(mvzero, mvp1);
uint32_t zcost = zsa8d + m_rdCost.getCost(bits0) + m_rdCost.getCost(bits1);
/* refine MVP selection for zero mv, updates: mvp, mvpidx, bits, cost */
mvp0 = checkBestMVP(inter2Nx2N.amvpCand[0][ref0], mvzero, mvpIdx0, bits0, zcost);
mvp1 = checkBestMVP(inter2Nx2N.amvpCand[1][ref1], mvzero, mvpIdx1, bits1, zcost);
uint32_t zbits = bits0 + bits1 + m_listSelBits[2] - (m_listSelBits[0] + m_listSelBits[1]);
zcost = zsa8d + m_rdCost.getCost(zbits);
if (zcost < bidir2Nx2N.sa8dCost)
{
bidir2Nx2N.sa8dBits = zbits;
bidir2Nx2N.sa8dCost = zcost;
cu.setPUMv(0, mvzero, 0, 0);
cu.m_mvd[0][0] = mvzero - mvp0;
cu.m_mvpIdx[0][0] = (uint8_t)mvpIdx0;
cu.setPUMv(1, mvzero, 0, 0);
cu.m_mvd[1][0] = mvzero - mvp1;
cu.m_mvpIdx[1][0] = (uint8_t)mvpIdx1;
if (m_bChromaSa8d)
/* real MC was already performed */
bidir2Nx2N.predYuv.copyFromYuv(tmpPredYuv);
else
motionCompensation(cu, pu, bidir2Nx2N.predYuv, true, true);
}
else if (m_bChromaSa8d)
{
/* recover overwritten motion vectors */
cu.m_mv[0][0] = bestME[0].mv;
cu.m_mv[1][0] = bestME[1].mv;
}
}
}
void Analysis::encodeResidue(const CUData& ctu, const CUGeom& cuGeom)
{
if (cuGeom.depth < ctu.m_cuDepth[cuGeom.absPartIdx] && cuGeom.depth < g_maxCUDepth)
{
for (uint32_t subPartIdx = 0; subPartIdx < 4; subPartIdx++)
{
const CUGeom& childGeom = *(&cuGeom + cuGeom.childOffset + subPartIdx);
if (childGeom.flags & CUGeom::PRESENT)
encodeResidue(ctu, childGeom);
}
return;
}
uint32_t absPartIdx = cuGeom.absPartIdx;
int sizeIdx = cuGeom.log2CUSize - 2;
/* reuse the bestMode data structures at the current depth */
Mode *bestMode = m_modeDepth[cuGeom.depth].bestMode;
CUData& cu = bestMode->cu;
cu.copyFromPic(ctu, cuGeom);
PicYuv& reconPic = *m_frame->m_reconPic;
Yuv& fencYuv = m_modeDepth[cuGeom.depth].fencYuv;
if (cuGeom.depth)
m_modeDepth[0].fencYuv.copyPartToYuv(fencYuv, absPartIdx);
X265_CHECK(bestMode->fencYuv == &fencYuv, "invalid fencYuv\n");
if (cu.isIntra(0))
{
ProfileCUScope(ctu, intraRDOElapsedTime[cuGeom.depth], countIntraRDO[cuGeom.depth]); // not really RDO, but close enough
uint32_t tuDepthRange[2];
cu.getIntraTUQtDepthRange(tuDepthRange, 0);
residualTransformQuantIntra(*bestMode, cuGeom, 0, 0, tuDepthRange);
getBestIntraModeChroma(*bestMode, cuGeom);
residualQTIntraChroma(*bestMode, cuGeom, 0, 0);
}
else // if (cu.isInter(0))
{
ProfileCUScope(ctu, interRDOElapsedTime[cuGeom.depth], countInterRDO[cuGeom.depth]); // not really RDO, but close enough
X265_CHECK(!ctu.isSkipped(absPartIdx), "skip not expected prior to transform\n");
/* Calculate residual for current CU part into depth sized resiYuv */
ShortYuv& resiYuv = m_rqt[cuGeom.depth].tmpResiYuv;
/* at RD 0, the prediction pixels are accumulated into the top depth predYuv */
Yuv& predYuv = m_modeDepth[0].bestMode->predYuv;
pixel* predY = predYuv.getLumaAddr(absPartIdx);
pixel* predU = predYuv.getCbAddr(absPartIdx);
pixel* predV = predYuv.getCrAddr(absPartIdx);
primitives.cu[sizeIdx].sub_ps(resiYuv.m_buf[0], resiYuv.m_size,
fencYuv.m_buf[0], predY,
fencYuv.m_size, predYuv.m_size);
primitives.chroma[m_csp].cu[sizeIdx].sub_ps(resiYuv.m_buf[1], resiYuv.m_csize,
fencYuv.m_buf[1], predU,
fencYuv.m_csize, predYuv.m_csize);
primitives.chroma[m_csp].cu[sizeIdx].sub_ps(resiYuv.m_buf[2], resiYuv.m_csize,
fencYuv.m_buf[2], predV,
fencYuv.m_csize, predYuv.m_csize);
uint32_t tuDepthRange[2];
cu.getInterTUQtDepthRange(tuDepthRange, 0);
residualTransformQuantInter(*bestMode, cuGeom, 0, 0, tuDepthRange);
if (cu.m_mergeFlag[0] && cu.m_partSize[0] == SIZE_2Nx2N && !cu.getQtRootCbf(0))
cu.setPredModeSubParts(MODE_SKIP);
/* residualTransformQuantInter() wrote transformed residual back into
* resiYuv. Generate the recon pixels by adding it to the prediction */
if (cu.m_cbf[0][0])
primitives.cu[sizeIdx].add_ps(reconPic.getLumaAddr(cu.m_cuAddr, absPartIdx), reconPic.m_stride,
predY, resiYuv.m_buf[0], predYuv.m_size, resiYuv.m_size);
else
primitives.cu[sizeIdx].copy_pp(reconPic.getLumaAddr(cu.m_cuAddr, absPartIdx), reconPic.m_stride,
predY, predYuv.m_size);
if (cu.m_cbf[1][0])
primitives.chroma[m_csp].cu[sizeIdx].add_ps(reconPic.getCbAddr(cu.m_cuAddr, absPartIdx), reconPic.m_strideC,
predU, resiYuv.m_buf[1], predYuv.m_csize, resiYuv.m_csize);
else
primitives.chroma[m_csp].cu[sizeIdx].copy_pp(reconPic.getCbAddr(cu.m_cuAddr, absPartIdx), reconPic.m_strideC,
predU, predYuv.m_csize);
if (cu.m_cbf[2][0])
primitives.chroma[m_csp].cu[sizeIdx].add_ps(reconPic.getCrAddr(cu.m_cuAddr, absPartIdx), reconPic.m_strideC,
predV, resiYuv.m_buf[2], predYuv.m_csize, resiYuv.m_csize);
else
primitives.chroma[m_csp].cu[sizeIdx].copy_pp(reconPic.getCrAddr(cu.m_cuAddr, absPartIdx), reconPic.m_strideC,
predV, predYuv.m_csize);
}
cu.updatePic(cuGeom.depth);
}
void Analysis::addSplitFlagCost(Mode& mode, uint32_t depth)
{
if (m_param->rdLevel >= 3)
{
/* code the split flag (0 or 1) and update bit costs */
mode.contexts.resetBits();
mode.contexts.codeSplitFlag(mode.cu, 0, depth);
uint32_t bits = mode.contexts.getNumberOfWrittenBits();
mode.mvBits += bits;
mode.totalBits += bits;
updateModeCost(mode);
}
else if (m_param->rdLevel <= 1)
{
mode.sa8dBits++;
mode.sa8dCost = m_rdCost.calcRdSADCost((uint32_t)mode.distortion, mode.sa8dBits);
}
else
{
mode.mvBits++;
mode.totalBits++;
updateModeCost(mode);
}
}
uint32_t Analysis::topSkipMinDepth(const CUData& parentCTU, const CUGeom& cuGeom)
{
/* Do not attempt to code a block larger than the largest block in the
* co-located CTUs in L0 and L1 */
int currentQP = parentCTU.m_qp[0];
int previousQP = currentQP;
uint32_t minDepth0 = 4, minDepth1 = 4;
uint32_t sum = 0;
int numRefs = 0;
if (m_slice->m_numRefIdx[0])
{
numRefs++;
const CUData& cu = *m_slice->m_refFrameList[0][0]->m_encData->getPicCTU(parentCTU.m_cuAddr);
previousQP = cu.m_qp[0];
if (!cu.m_cuDepth[cuGeom.absPartIdx])
return 0;
for (uint32_t i = 0; i < cuGeom.numPartitions; i += 4)
{
uint32_t d = cu.m_cuDepth[cuGeom.absPartIdx + i];
minDepth0 = X265_MIN(d, minDepth0);
sum += d;
}
}
if (m_slice->m_numRefIdx[1])
{
numRefs++;
const CUData& cu = *m_slice->m_refFrameList[1][0]->m_encData->getPicCTU(parentCTU.m_cuAddr);
if (!cu.m_cuDepth[cuGeom.absPartIdx])
return 0;
for (uint32_t i = 0; i < cuGeom.numPartitions; i += 4)
{
uint32_t d = cu.m_cuDepth[cuGeom.absPartIdx + i];
minDepth1 = X265_MIN(d, minDepth1);
sum += d;
}
}
if (!numRefs)
return 0;
uint32_t minDepth = X265_MIN(minDepth0, minDepth1);
uint32_t thresh = minDepth * numRefs * (cuGeom.numPartitions >> 2);
/* allow block size growth if QP is raising or avg depth is
* less than 1.5 of min depth */
if (minDepth && currentQP >= previousQP && (sum <= thresh + (thresh >> 1)))
minDepth -= 1;
return minDepth;
}
/* returns true if recursion should be stopped */
bool Analysis::recursionDepthCheck(const CUData& parentCTU, const CUGeom& cuGeom, const Mode& bestMode)
{
/* early exit when the RD cost of best mode at depth n is less than the sum
* of average of RD cost of the neighbor CU's(above, aboveleft, aboveright,
* left, colocated) and avg cost of that CU at depth "n" with weightage for
* each quantity */
uint32_t depth = cuGeom.depth;
FrameData& curEncData = *m_frame->m_encData;
FrameData::RCStatCU& cuStat = curEncData.m_cuStat[parentCTU.m_cuAddr];
uint64_t cuCost = cuStat.avgCost[depth] * cuStat.count[depth];
uint64_t cuCount = cuStat.count[depth];
uint64_t neighCost = 0, neighCount = 0;
const CUData* above = parentCTU.m_cuAbove;
if (above)
{
FrameData::RCStatCU& astat = curEncData.m_cuStat[above->m_cuAddr];
neighCost += astat.avgCost[depth] * astat.count[depth];
neighCount += astat.count[depth];
const CUData* aboveLeft = parentCTU.m_cuAboveLeft;
if (aboveLeft)
{
FrameData::RCStatCU& lstat = curEncData.m_cuStat[aboveLeft->m_cuAddr];
neighCost += lstat.avgCost[depth] * lstat.count[depth];
neighCount += lstat.count[depth];
}
const CUData* aboveRight = parentCTU.m_cuAboveRight;
if (aboveRight)
{
FrameData::RCStatCU& rstat = curEncData.m_cuStat[aboveRight->m_cuAddr];
neighCost += rstat.avgCost[depth] * rstat.count[depth];
neighCount += rstat.count[depth];
}
}
const CUData* left = parentCTU.m_cuLeft;
if (left)
{
FrameData::RCStatCU& nstat = curEncData.m_cuStat[left->m_cuAddr];
neighCost += nstat.avgCost[depth] * nstat.count[depth];
neighCount += nstat.count[depth];
}
// give 60% weight to all CU's and 40% weight to neighbour CU's
if (neighCount + cuCount)
{
uint64_t avgCost = ((3 * cuCost) + (2 * neighCost)) / ((3 * cuCount) + (2 * neighCount));
uint64_t curCost = m_param->rdLevel > 1 ? bestMode.rdCost : bestMode.sa8dCost;
if (curCost < avgCost && avgCost)
return true;
}
return false;
}
int Analysis::calculateQpforCuSize(const CUData& ctu, const CUGeom& cuGeom)
{
FrameData& curEncData = *m_frame->m_encData;
double qp = curEncData.m_cuStat[ctu.m_cuAddr].baseQp;
/* Use cuTree offsets if cuTree enabled and frame is referenced, else use AQ offsets */
bool isReferenced = IS_REFERENCED(m_frame);
double *qpoffs = (isReferenced && m_param->rc.cuTree) ? m_frame->m_lowres.qpCuTreeOffset : m_frame->m_lowres.qpAqOffset;
if (qpoffs)
{
uint32_t width = m_frame->m_fencPic->m_picWidth;
uint32_t height = m_frame->m_fencPic->m_picHeight;
uint32_t block_x = ctu.m_cuPelX + g_zscanToPelX[cuGeom.absPartIdx];
uint32_t block_y = ctu.m_cuPelY + g_zscanToPelY[cuGeom.absPartIdx];
uint32_t maxCols = (m_frame->m_fencPic->m_picWidth + (16 - 1)) / 16;
uint32_t blockSize = g_maxCUSize >> cuGeom.depth;
double qp_offset = 0;
uint32_t cnt = 0;
uint32_t idx;
for (uint32_t block_yy = block_y; block_yy < block_y + blockSize && block_yy < height; block_yy += 16)
{
for (uint32_t block_xx = block_x; block_xx < block_x + blockSize && block_xx < width; block_xx += 16)
{
idx = ((block_yy / 16) * (maxCols)) + (block_xx / 16);
qp_offset += qpoffs[idx];
cnt++;
}
}
qp_offset /= cnt;
qp += qp_offset;
}
return x265_clip3(QP_MIN, QP_MAX_MAX, (int)(qp + 0.5));
}