libbpg/x265/source/encoder/motion.cpp

1265 lines
43 KiB
C++
Raw Normal View History

2015-10-27 10:46:00 +00:00
/*****************************************************************************
* Copyright (C) 2013 x265 project
*
* Authors: Steve Borho <steve@borho.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*
* This program is also available under a commercial proprietary license.
* For more information, contact us at license @ x265.com.
*****************************************************************************/
#include "common.h"
#include "primitives.h"
#include "lowres.h"
#include "motion.h"
#include "x265.h"
#if _MSC_VER
#pragma warning(disable: 4127) // conditional expression is constant (macros use this construct)
#endif
using namespace X265_NS;
namespace {
struct SubpelWorkload
{
int hpel_iters;
int hpel_dirs;
int qpel_iters;
int qpel_dirs;
bool hpel_satd;
};
const SubpelWorkload workload[X265_MAX_SUBPEL_LEVEL + 1] =
{
{ 1, 4, 0, 4, false }, // 4 SAD HPEL only
{ 1, 4, 1, 4, false }, // 4 SAD HPEL + 4 SATD QPEL
{ 1, 4, 1, 4, true }, // 4 SATD HPEL + 4 SATD QPEL
{ 2, 4, 1, 4, true }, // 2x4 SATD HPEL + 4 SATD QPEL
{ 2, 4, 2, 4, true }, // 2x4 SATD HPEL + 2x4 SATD QPEL
{ 1, 8, 1, 8, true }, // 8 SATD HPEL + 8 SATD QPEL (default)
{ 2, 8, 1, 8, true }, // 2x8 SATD HPEL + 8 SATD QPEL
{ 2, 8, 2, 8, true }, // 2x8 SATD HPEL + 2x8 SATD QPEL
};
static int sizeScale[NUM_PU_SIZES];
#define SAD_THRESH(v) (bcost < (((v >> 4) * sizeScale[partEnum])))
/* radius 2 hexagon. repeated entries are to avoid having to compute mod6 every time. */
const MV hex2[8] = { MV(-1, -2), MV(-2, 0), MV(-1, 2), MV(1, 2), MV(2, 0), MV(1, -2), MV(-1, -2), MV(-2, 0) };
const uint8_t mod6m1[8] = { 5, 0, 1, 2, 3, 4, 5, 0 }; /* (x-1)%6 */
const MV square1[9] = { MV(0, 0), MV(0, -1), MV(0, 1), MV(-1, 0), MV(1, 0), MV(-1, -1), MV(-1, 1), MV(1, -1), MV(1, 1) };
const MV hex4[16] =
{
MV(0, -4), MV(0, 4), MV(-2, -3), MV(2, -3),
MV(-4, -2), MV(4, -2), MV(-4, -1), MV(4, -1),
MV(-4, 0), MV(4, 0), MV(-4, 1), MV(4, 1),
MV(-4, 2), MV(4, 2), MV(-2, 3), MV(2, 3),
};
const MV offsets[] =
{
MV(-1, 0), MV(0, -1),
MV(-1, -1), MV(1, -1),
MV(-1, 0), MV(1, 0),
MV(-1, 1), MV(-1, -1),
MV(1, -1), MV(1, 1),
MV(-1, 0), MV(0, 1),
MV(-1, 1), MV(1, 1),
MV(1, 0), MV(0, 1),
}; // offsets for Two Point Search
/* sum of absolute differences between MV candidates, used for adaptive ME range */
inline int predictorDifference(const MV *mvc, intptr_t numCandidates)
{
int sum = 0;
for (int i = 0; i < numCandidates - 1; i++)
{
sum += abs(mvc[i].x - mvc[i + 1].x)
+ abs(mvc[i].y - mvc[i + 1].y);
}
return sum;
}
}
MotionEstimate::MotionEstimate()
{
ctuAddr = -1;
absPartIdx = -1;
searchMethod = X265_HEX_SEARCH;
subpelRefine = 2;
blockwidth = blockheight = 0;
blockOffset = 0;
bChromaSATD = false;
chromaSatd = NULL;
}
void MotionEstimate::init(int method, int refine, int csp)
{
searchMethod = method;
subpelRefine = refine;
fencPUYuv.create(FENC_STRIDE, csp);
}
void MotionEstimate::initScales(void)
{
#define SETUP_SCALE(W, H) \
sizeScale[LUMA_ ## W ## x ## H] = (H * H) >> 4;
SETUP_SCALE(4, 4);
SETUP_SCALE(8, 8);
SETUP_SCALE(8, 4);
SETUP_SCALE(4, 8);
SETUP_SCALE(16, 16);
SETUP_SCALE(16, 8);
SETUP_SCALE(8, 16);
SETUP_SCALE(16, 12);
SETUP_SCALE(12, 16);
SETUP_SCALE(4, 16);
SETUP_SCALE(16, 4);
SETUP_SCALE(32, 32);
SETUP_SCALE(32, 16);
SETUP_SCALE(16, 32);
SETUP_SCALE(32, 24);
SETUP_SCALE(24, 32);
SETUP_SCALE(32, 8);
SETUP_SCALE(8, 32);
SETUP_SCALE(64, 64);
SETUP_SCALE(64, 32);
SETUP_SCALE(32, 64);
SETUP_SCALE(64, 48);
SETUP_SCALE(48, 64);
SETUP_SCALE(64, 16);
SETUP_SCALE(16, 64);
#undef SETUP_SCALE
}
int MotionEstimate::hpelIterationCount(int subme)
{
return workload[subme].hpel_iters +
workload[subme].qpel_iters / 2;
}
MotionEstimate::~MotionEstimate()
{
fencPUYuv.destroy();
}
/* Called by lookahead, luma only, no use of PicYuv */
void MotionEstimate::setSourcePU(pixel *fencY, intptr_t stride, intptr_t offset, int pwidth, int pheight)
{
partEnum = partitionFromSizes(pwidth, pheight);
X265_CHECK(LUMA_4x4 != partEnum, "4x4 inter partition detected!\n");
sad = primitives.pu[partEnum].sad;
satd = primitives.pu[partEnum].satd;
sad_x3 = primitives.pu[partEnum].sad_x3;
sad_x4 = primitives.pu[partEnum].sad_x4;
blockwidth = pwidth;
blockOffset = offset;
absPartIdx = ctuAddr = -1;
/* copy PU block into cache */
primitives.pu[partEnum].copy_pp(fencPUYuv.m_buf[0], FENC_STRIDE, fencY + offset, stride);
X265_CHECK(!bChromaSATD, "chroma distortion measurements impossible in this code path\n");
}
/* Called by Search::predInterSearch() or --pme equivalent, chroma residual might be considered */
void MotionEstimate::setSourcePU(const Yuv& srcFencYuv, int _ctuAddr, int cuPartIdx, int puPartIdx, int pwidth, int pheight)
{
partEnum = partitionFromSizes(pwidth, pheight);
X265_CHECK(LUMA_4x4 != partEnum, "4x4 inter partition detected!\n");
sad = primitives.pu[partEnum].sad;
satd = primitives.pu[partEnum].satd;
sad_x3 = primitives.pu[partEnum].sad_x3;
sad_x4 = primitives.pu[partEnum].sad_x4;
chromaSatd = primitives.chroma[fencPUYuv.m_csp].pu[partEnum].satd;
/* Enable chroma residual cost if subpelRefine level is greater than 2 and chroma block size
* is an even multiple of 4x4 pixels (indicated by non-null chromaSatd pointer) */
bChromaSATD = subpelRefine > 2 && chromaSatd;
X265_CHECK(!(bChromaSATD && !workload[subpelRefine].hpel_satd), "Chroma SATD cannot be used with SAD hpel\n");
ctuAddr = _ctuAddr;
absPartIdx = cuPartIdx + puPartIdx;
blockwidth = pwidth;
blockOffset = 0;
/* copy PU from CU Yuv */
fencPUYuv.copyPUFromYuv(srcFencYuv, puPartIdx, partEnum, bChromaSATD);
}
#define COST_MV_PT_DIST(mx, my, point, dist) \
do \
{ \
MV tmv(mx, my); \
int cost = sad(fenc, FENC_STRIDE, fref + mx + my * stride, stride); \
cost += mvcost(tmv << 2); \
if (cost < bcost) { \
bcost = cost; \
bmv = tmv; \
bPointNr = point; \
bDistance = dist; \
} \
} while (0)
#define COST_MV(mx, my) \
do \
{ \
int cost = sad(fenc, FENC_STRIDE, fref + (mx) + (my) * stride, stride); \
cost += mvcost(MV(mx, my) << 2); \
COPY2_IF_LT(bcost, cost, bmv, MV(mx, my)); \
} while (0)
#define COST_MV_X3_DIR(m0x, m0y, m1x, m1y, m2x, m2y, costs) \
{ \
pixel *pix_base = fref + bmv.x + bmv.y * stride; \
sad_x3(fenc, \
pix_base + (m0x) + (m0y) * stride, \
pix_base + (m1x) + (m1y) * stride, \
pix_base + (m2x) + (m2y) * stride, \
stride, costs); \
(costs)[0] += mvcost((bmv + MV(m0x, m0y)) << 2); \
(costs)[1] += mvcost((bmv + MV(m1x, m1y)) << 2); \
(costs)[2] += mvcost((bmv + MV(m2x, m2y)) << 2); \
}
#define COST_MV_PT_DIST_X4(m0x, m0y, p0, d0, m1x, m1y, p1, d1, m2x, m2y, p2, d2, m3x, m3y, p3, d3) \
{ \
sad_x4(fenc, \
fref + (m0x) + (m0y) * stride, \
fref + (m1x) + (m1y) * stride, \
fref + (m2x) + (m2y) * stride, \
fref + (m3x) + (m3y) * stride, \
stride, costs); \
(costs)[0] += mvcost(MV(m0x, m0y) << 2); \
(costs)[1] += mvcost(MV(m1x, m1y) << 2); \
(costs)[2] += mvcost(MV(m2x, m2y) << 2); \
(costs)[3] += mvcost(MV(m3x, m3y) << 2); \
COPY4_IF_LT(bcost, costs[0], bmv, MV(m0x, m0y), bPointNr, p0, bDistance, d0); \
COPY4_IF_LT(bcost, costs[1], bmv, MV(m1x, m1y), bPointNr, p1, bDistance, d1); \
COPY4_IF_LT(bcost, costs[2], bmv, MV(m2x, m2y), bPointNr, p2, bDistance, d2); \
COPY4_IF_LT(bcost, costs[3], bmv, MV(m3x, m3y), bPointNr, p3, bDistance, d3); \
}
#define COST_MV_X4(m0x, m0y, m1x, m1y, m2x, m2y, m3x, m3y) \
{ \
pixel *pix_base = fref + omv.x + omv.y * stride; \
sad_x4(fenc, \
pix_base + (m0x) + (m0y) * stride, \
pix_base + (m1x) + (m1y) * stride, \
pix_base + (m2x) + (m2y) * stride, \
pix_base + (m3x) + (m3y) * stride, \
stride, costs); \
costs[0] += mvcost((omv + MV(m0x, m0y)) << 2); \
costs[1] += mvcost((omv + MV(m1x, m1y)) << 2); \
costs[2] += mvcost((omv + MV(m2x, m2y)) << 2); \
costs[3] += mvcost((omv + MV(m3x, m3y)) << 2); \
COPY2_IF_LT(bcost, costs[0], bmv, omv + MV(m0x, m0y)); \
COPY2_IF_LT(bcost, costs[1], bmv, omv + MV(m1x, m1y)); \
COPY2_IF_LT(bcost, costs[2], bmv, omv + MV(m2x, m2y)); \
COPY2_IF_LT(bcost, costs[3], bmv, omv + MV(m3x, m3y)); \
}
#define COST_MV_X4_DIR(m0x, m0y, m1x, m1y, m2x, m2y, m3x, m3y, costs) \
{ \
pixel *pix_base = fref + bmv.x + bmv.y * stride; \
sad_x4(fenc, \
pix_base + (m0x) + (m0y) * stride, \
pix_base + (m1x) + (m1y) * stride, \
pix_base + (m2x) + (m2y) * stride, \
pix_base + (m3x) + (m3y) * stride, \
stride, costs); \
(costs)[0] += mvcost((bmv + MV(m0x, m0y)) << 2); \
(costs)[1] += mvcost((bmv + MV(m1x, m1y)) << 2); \
(costs)[2] += mvcost((bmv + MV(m2x, m2y)) << 2); \
(costs)[3] += mvcost((bmv + MV(m3x, m3y)) << 2); \
}
#define DIA1_ITER(mx, my) \
{ \
omv.x = mx; omv.y = my; \
COST_MV_X4(0, -1, 0, 1, -1, 0, 1, 0); \
}
#define CROSS(start, x_max, y_max) \
{ \
int16_t i = start; \
if ((x_max) <= X265_MIN(mvmax.x - omv.x, omv.x - mvmin.x)) \
for (; i < (x_max) - 2; i += 4) { \
COST_MV_X4(i, 0, -i, 0, i + 2, 0, -i - 2, 0); } \
for (; i < (x_max); i += 2) \
{ \
if (omv.x + i <= mvmax.x) \
COST_MV(omv.x + i, omv.y); \
if (omv.x - i >= mvmin.x) \
COST_MV(omv.x - i, omv.y); \
} \
i = start; \
if ((y_max) <= X265_MIN(mvmax.y - omv.y, omv.y - mvmin.y)) \
for (; i < (y_max) - 2; i += 4) { \
COST_MV_X4(0, i, 0, -i, 0, i + 2, 0, -i - 2); } \
for (; i < (y_max); i += 2) \
{ \
if (omv.y + i <= mvmax.y) \
COST_MV(omv.x, omv.y + i); \
if (omv.y - i >= mvmin.y) \
COST_MV(omv.x, omv.y - i); \
} \
}
void MotionEstimate::StarPatternSearch(ReferencePlanes *ref,
const MV & mvmin,
const MV & mvmax,
MV & bmv,
int & bcost,
int & bPointNr,
int & bDistance,
int earlyExitIters,
int merange)
{
ALIGN_VAR_16(int, costs[16]);
pixel* fenc = fencPUYuv.m_buf[0];
pixel* fref = ref->fpelPlane[0] + blockOffset;
intptr_t stride = ref->lumaStride;
MV omv = bmv;
int saved = bcost;
int rounds = 0;
{
int16_t dist = 1;
/* bPointNr
2
4 * 5
7
*/
const int16_t top = omv.y - dist;
const int16_t bottom = omv.y + dist;
const int16_t left = omv.x - dist;
const int16_t right = omv.x + dist;
if (top >= mvmin.y && left >= mvmin.x && right <= mvmax.x && bottom <= mvmax.y)
{
COST_MV_PT_DIST_X4(omv.x, top, 2, dist,
left, omv.y, 4, dist,
right, omv.y, 5, dist,
omv.x, bottom, 7, dist);
}
else
{
if (top >= mvmin.y) // check top
{
COST_MV_PT_DIST(omv.x, top, 2, dist);
}
if (left >= mvmin.x) // check middle left
{
COST_MV_PT_DIST(left, omv.y, 4, dist);
}
if (right <= mvmax.x) // check middle right
{
COST_MV_PT_DIST(right, omv.y, 5, dist);
}
if (bottom <= mvmax.y) // check bottom
{
COST_MV_PT_DIST(omv.x, bottom, 7, dist);
}
}
if (bcost < saved)
rounds = 0;
else if (++rounds >= earlyExitIters)
return;
}
for (int16_t dist = 2; dist <= 8; dist <<= 1)
{
/* bPointNr
2
1 3
4 * 5
6 8
7
Points 2, 4, 5, 7 are dist
Points 1, 3, 6, 8 are dist>>1
*/
const int16_t top = omv.y - dist;
const int16_t bottom = omv.y + dist;
const int16_t left = omv.x - dist;
const int16_t right = omv.x + dist;
const int16_t top2 = omv.y - (dist >> 1);
const int16_t bottom2 = omv.y + (dist >> 1);
const int16_t left2 = omv.x - (dist >> 1);
const int16_t right2 = omv.x + (dist >> 1);
saved = bcost;
if (top >= mvmin.y && left >= mvmin.x &&
right <= mvmax.x && bottom <= mvmax.y) // check border
{
COST_MV_PT_DIST_X4(omv.x, top, 2, dist,
left2, top2, 1, dist >> 1,
right2, top2, 3, dist >> 1,
left, omv.y, 4, dist);
COST_MV_PT_DIST_X4(right, omv.y, 5, dist,
left2, bottom2, 6, dist >> 1,
right2, bottom2, 8, dist >> 1,
omv.x, bottom, 7, dist);
}
else // check border for each mv
{
if (top >= mvmin.y) // check top
{
COST_MV_PT_DIST(omv.x, top, 2, dist);
}
if (top2 >= mvmin.y) // check half top
{
if (left2 >= mvmin.x) // check half left
{
COST_MV_PT_DIST(left2, top2, 1, (dist >> 1));
}
if (right2 <= mvmax.x) // check half right
{
COST_MV_PT_DIST(right2, top2, 3, (dist >> 1));
}
}
if (left >= mvmin.x) // check left
{
COST_MV_PT_DIST(left, omv.y, 4, dist);
}
if (right <= mvmax.x) // check right
{
COST_MV_PT_DIST(right, omv.y, 5, dist);
}
if (bottom2 <= mvmax.y) // check half bottom
{
if (left2 >= mvmin.x) // check half left
{
COST_MV_PT_DIST(left2, bottom2, 6, (dist >> 1));
}
if (right2 <= mvmax.x) // check half right
{
COST_MV_PT_DIST(right2, bottom2, 8, (dist >> 1));
}
}
if (bottom <= mvmax.y) // check bottom
{
COST_MV_PT_DIST(omv.x, bottom, 7, dist);
}
}
if (bcost < saved)
rounds = 0;
else if (++rounds >= earlyExitIters)
return;
}
for (int16_t dist = 16; dist <= (int16_t)merange; dist <<= 1)
{
const int16_t top = omv.y - dist;
const int16_t bottom = omv.y + dist;
const int16_t left = omv.x - dist;
const int16_t right = omv.x + dist;
saved = bcost;
if (top >= mvmin.y && left >= mvmin.x &&
right <= mvmax.x && bottom <= mvmax.y) // check border
{
/* index
0
3
2
1
0 3 2 1 * 1 2 3 0
1
2
3
0
*/
COST_MV_PT_DIST_X4(omv.x, top, 0, dist,
left, omv.y, 0, dist,
right, omv.y, 0, dist,
omv.x, bottom, 0, dist);
for (int16_t index = 1; index < 4; index++)
{
int16_t posYT = top + ((dist >> 2) * index);
int16_t posYB = bottom - ((dist >> 2) * index);
int16_t posXL = omv.x - ((dist >> 2) * index);
int16_t posXR = omv.x + ((dist >> 2) * index);
COST_MV_PT_DIST_X4(posXL, posYT, 0, dist,
posXR, posYT, 0, dist,
posXL, posYB, 0, dist,
posXR, posYB, 0, dist);
}
}
else // check border for each mv
{
if (top >= mvmin.y) // check top
{
COST_MV_PT_DIST(omv.x, top, 0, dist);
}
if (left >= mvmin.x) // check left
{
COST_MV_PT_DIST(left, omv.y, 0, dist);
}
if (right <= mvmax.x) // check right
{
COST_MV_PT_DIST(right, omv.y, 0, dist);
}
if (bottom <= mvmax.y) // check bottom
{
COST_MV_PT_DIST(omv.x, bottom, 0, dist);
}
for (int16_t index = 1; index < 4; index++)
{
int16_t posYT = top + ((dist >> 2) * index);
int16_t posYB = bottom - ((dist >> 2) * index);
int16_t posXL = omv.x - ((dist >> 2) * index);
int16_t posXR = omv.x + ((dist >> 2) * index);
if (posYT >= mvmin.y) // check top
{
if (posXL >= mvmin.x) // check left
{
COST_MV_PT_DIST(posXL, posYT, 0, dist);
}
if (posXR <= mvmax.x) // check right
{
COST_MV_PT_DIST(posXR, posYT, 0, dist);
}
}
if (posYB <= mvmax.y) // check bottom
{
if (posXL >= mvmin.x) // check left
{
COST_MV_PT_DIST(posXL, posYB, 0, dist);
}
if (posXR <= mvmax.x) // check right
{
COST_MV_PT_DIST(posXR, posYB, 0, dist);
}
}
}
}
if (bcost < saved)
rounds = 0;
else if (++rounds >= earlyExitIters)
return;
}
}
int MotionEstimate::motionEstimate(ReferencePlanes *ref,
const MV & mvmin,
const MV & mvmax,
const MV & qmvp,
int numCandidates,
const MV * mvc,
int merange,
MV & outQMv)
{
ALIGN_VAR_16(int, costs[16]);
if (ctuAddr >= 0)
blockOffset = ref->reconPic->getLumaAddr(ctuAddr, absPartIdx) - ref->reconPic->getLumaAddr(0);
intptr_t stride = ref->lumaStride;
pixel* fenc = fencPUYuv.m_buf[0];
pixel* fref = ref->fpelPlane[0] + blockOffset;
setMVP(qmvp);
MV qmvmin = mvmin.toQPel();
MV qmvmax = mvmax.toQPel();
/* The term cost used here means satd/sad values for that particular search.
* The costs used in ME integer search only includes the SAD cost of motion
* residual and sqrtLambda times MVD bits. The subpel refine steps use SATD
* cost of residual and sqrtLambda * MVD bits. Mode decision will be based
* on video distortion cost (SSE/PSNR) plus lambda times all signaling bits
* (mode + MVD bits). */
// measure SAD cost at clipped QPEL MVP
MV pmv = qmvp.clipped(qmvmin, qmvmax);
MV bestpre = pmv;
int bprecost;
if (ref->isLowres)
bprecost = ref->lowresQPelCost(fenc, blockOffset, pmv, sad);
else
bprecost = subpelCompare(ref, pmv, sad);
/* re-measure full pel rounded MVP with SAD as search start point */
MV bmv = pmv.roundToFPel();
int bcost = bprecost;
if (pmv.isSubpel())
bcost = sad(fenc, FENC_STRIDE, fref + bmv.x + bmv.y * stride, stride) + mvcost(bmv << 2);
// measure SAD cost at MV(0) if MVP is not zero
if (pmv.notZero())
{
int cost = sad(fenc, FENC_STRIDE, fref, stride) + mvcost(MV(0, 0));
if (cost < bcost)
{
bcost = cost;
bmv = 0;
}
}
X265_CHECK(!(ref->isLowres && numCandidates), "lowres motion candidates not allowed\n")
// measure SAD cost at each QPEL motion vector candidate
for (int i = 0; i < numCandidates; i++)
{
MV m = mvc[i].clipped(qmvmin, qmvmax);
if (m.notZero() & (m != pmv ? 1 : 0) & (m != bestpre ? 1 : 0)) // check already measured
{
int cost = subpelCompare(ref, m, sad) + mvcost(m);
if (cost < bprecost)
{
bprecost = cost;
bestpre = m;
}
}
}
pmv = pmv.roundToFPel();
MV omv = bmv; // current search origin or starting point
switch (searchMethod)
{
case X265_DIA_SEARCH:
{
/* diamond search, radius 1 */
bcost <<= 4;
int i = merange;
do
{
COST_MV_X4_DIR(0, -1, 0, 1, -1, 0, 1, 0, costs);
COPY1_IF_LT(bcost, (costs[0] << 4) + 1);
COPY1_IF_LT(bcost, (costs[1] << 4) + 3);
COPY1_IF_LT(bcost, (costs[2] << 4) + 4);
COPY1_IF_LT(bcost, (costs[3] << 4) + 12);
if (!(bcost & 15))
break;
bmv.x -= (bcost << 28) >> 30;
bmv.y -= (bcost << 30) >> 30;
bcost &= ~15;
}
while (--i && bmv.checkRange(mvmin, mvmax));
bcost >>= 4;
break;
}
case X265_HEX_SEARCH:
{
me_hex2:
/* hexagon search, radius 2 */
#if 0
for (int i = 0; i < merange / 2; i++)
{
omv = bmv;
COST_MV(omv.x - 2, omv.y);
COST_MV(omv.x - 1, omv.y + 2);
COST_MV(omv.x + 1, omv.y + 2);
COST_MV(omv.x + 2, omv.y);
COST_MV(omv.x + 1, omv.y - 2);
COST_MV(omv.x - 1, omv.y - 2);
if (omv == bmv)
break;
if (!bmv.checkRange(mvmin, mvmax))
break;
}
#else // if 0
/* equivalent to the above, but eliminates duplicate candidates */
COST_MV_X3_DIR(-2, 0, -1, 2, 1, 2, costs);
bcost <<= 3;
COPY1_IF_LT(bcost, (costs[0] << 3) + 2);
COPY1_IF_LT(bcost, (costs[1] << 3) + 3);
COPY1_IF_LT(bcost, (costs[2] << 3) + 4);
COST_MV_X3_DIR(2, 0, 1, -2, -1, -2, costs);
COPY1_IF_LT(bcost, (costs[0] << 3) + 5);
COPY1_IF_LT(bcost, (costs[1] << 3) + 6);
COPY1_IF_LT(bcost, (costs[2] << 3) + 7);
if (bcost & 7)
{
int dir = (bcost & 7) - 2;
bmv += hex2[dir + 1];
/* half hexagon, not overlapping the previous iteration */
for (int i = (merange >> 1) - 1; i > 0 && bmv.checkRange(mvmin, mvmax); i--)
{
COST_MV_X3_DIR(hex2[dir + 0].x, hex2[dir + 0].y,
hex2[dir + 1].x, hex2[dir + 1].y,
hex2[dir + 2].x, hex2[dir + 2].y,
costs);
bcost &= ~7;
COPY1_IF_LT(bcost, (costs[0] << 3) + 1);
COPY1_IF_LT(bcost, (costs[1] << 3) + 2);
COPY1_IF_LT(bcost, (costs[2] << 3) + 3);
if (!(bcost & 7))
break;
dir += (bcost & 7) - 2;
dir = mod6m1[dir + 1];
bmv += hex2[dir + 1];
}
}
bcost >>= 3;
#endif // if 0
/* square refine */
int dir = 0;
COST_MV_X4_DIR(0, -1, 0, 1, -1, 0, 1, 0, costs);
COPY2_IF_LT(bcost, costs[0], dir, 1);
COPY2_IF_LT(bcost, costs[1], dir, 2);
COPY2_IF_LT(bcost, costs[2], dir, 3);
COPY2_IF_LT(bcost, costs[3], dir, 4);
COST_MV_X4_DIR(-1, -1, -1, 1, 1, -1, 1, 1, costs);
COPY2_IF_LT(bcost, costs[0], dir, 5);
COPY2_IF_LT(bcost, costs[1], dir, 6);
COPY2_IF_LT(bcost, costs[2], dir, 7);
COPY2_IF_LT(bcost, costs[3], dir, 8);
bmv += square1[dir];
break;
}
case X265_UMH_SEARCH:
{
int ucost1, ucost2;
int16_t cross_start = 1;
/* refine predictors */
omv = bmv;
ucost1 = bcost;
DIA1_ITER(pmv.x, pmv.y);
if (pmv.notZero())
DIA1_ITER(0, 0);
ucost2 = bcost;
if (bmv.notZero() && bmv != pmv)
DIA1_ITER(bmv.x, bmv.y);
if (bcost == ucost2)
cross_start = 3;
/* Early Termination */
omv = bmv;
if (bcost == ucost2 && SAD_THRESH(2000))
{
COST_MV_X4(0, -2, -1, -1, 1, -1, -2, 0);
COST_MV_X4(2, 0, -1, 1, 1, 1, 0, 2);
if (bcost == ucost1 && SAD_THRESH(500))
break;
if (bcost == ucost2)
{
int16_t range = (int16_t)(merange >> 1) | 1;
CROSS(3, range, range);
COST_MV_X4(-1, -2, 1, -2, -2, -1, 2, -1);
COST_MV_X4(-2, 1, 2, 1, -1, 2, 1, 2);
if (bcost == ucost2)
break;
cross_start = range + 2;
}
}
// TODO: Need to study x264's logic for building mvc list to understand why they
// have special cases here for 16x16, and whether they apply to HEVC CTU
// adaptive search range based on mvc variability
if (numCandidates)
{
/* range multipliers based on casual inspection of some statistics of
* average distance between current predictor and final mv found by ESA.
* these have not been tuned much by actual encoding. */
static const uint8_t range_mul[4][4] =
{
{ 3, 3, 4, 4 },
{ 3, 4, 4, 4 },
{ 4, 4, 4, 5 },
{ 4, 4, 5, 6 },
};
int mvd;
int sad_ctx, mvd_ctx;
int denom = 1;
if (numCandidates == 1)
{
if (LUMA_64x64 == partEnum)
/* mvc is probably the same as mvp, so the difference isn't meaningful.
* but prediction usually isn't too bad, so just use medium range */
mvd = 25;
else
mvd = abs(qmvp.x - mvc[0].x) + abs(qmvp.y - mvc[0].y);
}
else
{
/* calculate the degree of agreement between predictors. */
/* in 64x64, mvc includes all the neighbors used to make mvp,
* so don't count mvp separately. */
denom = numCandidates - 1;
mvd = 0;
if (partEnum != LUMA_64x64)
{
mvd = abs(qmvp.x - mvc[0].x) + abs(qmvp.y - mvc[0].y);
denom++;
}
mvd += predictorDifference(mvc, numCandidates);
}
sad_ctx = SAD_THRESH(1000) ? 0
: SAD_THRESH(2000) ? 1
: SAD_THRESH(4000) ? 2 : 3;
mvd_ctx = mvd < 10 * denom ? 0
: mvd < 20 * denom ? 1
: mvd < 40 * denom ? 2 : 3;
merange = (merange * range_mul[mvd_ctx][sad_ctx]) >> 2;
}
/* FIXME if the above DIA2/OCT2/CROSS found a new mv, it has not updated omx/omy.
* we are still centered on the same place as the DIA2. is this desirable? */
CROSS(cross_start, merange, merange >> 1);
COST_MV_X4(-2, -2, -2, 2, 2, -2, 2, 2);
/* hexagon grid */
omv = bmv;
const uint16_t *p_cost_omvx = m_cost_mvx + omv.x * 4;
const uint16_t *p_cost_omvy = m_cost_mvy + omv.y * 4;
uint16_t i = 1;
do
{
if (4 * i > X265_MIN4(mvmax.x - omv.x, omv.x - mvmin.x,
mvmax.y - omv.y, omv.y - mvmin.y))
{
for (int j = 0; j < 16; j++)
{
MV mv = omv + (hex4[j] * i);
if (mv.checkRange(mvmin, mvmax))
COST_MV(mv.x, mv.y);
}
}
else
{
int16_t dir = 0;
pixel *fref_base = fref + omv.x + (omv.y - 4 * i) * stride;
size_t dy = (size_t)i * stride;
#define SADS(k, x0, y0, x1, y1, x2, y2, x3, y3) \
sad_x4(fenc, \
fref_base x0 * i + (y0 - 2 * k + 4) * dy, \
fref_base x1 * i + (y1 - 2 * k + 4) * dy, \
fref_base x2 * i + (y2 - 2 * k + 4) * dy, \
fref_base x3 * i + (y3 - 2 * k + 4) * dy, \
stride, costs + 4 * k); \
fref_base += 2 * dy;
#define ADD_MVCOST(k, x, y) costs[k] += p_cost_omvx[x * 4 * i] + p_cost_omvy[y * 4 * i]
#define MIN_MV(k, x, y) COPY2_IF_LT(bcost, costs[k], dir, x * 16 + (y & 15))
SADS(0, +0, -4, +0, +4, -2, -3, +2, -3);
SADS(1, -4, -2, +4, -2, -4, -1, +4, -1);
SADS(2, -4, +0, +4, +0, -4, +1, +4, +1);
SADS(3, -4, +2, +4, +2, -2, +3, +2, +3);
ADD_MVCOST(0, 0, -4);
ADD_MVCOST(1, 0, 4);
ADD_MVCOST(2, -2, -3);
ADD_MVCOST(3, 2, -3);
ADD_MVCOST(4, -4, -2);
ADD_MVCOST(5, 4, -2);
ADD_MVCOST(6, -4, -1);
ADD_MVCOST(7, 4, -1);
ADD_MVCOST(8, -4, 0);
ADD_MVCOST(9, 4, 0);
ADD_MVCOST(10, -4, 1);
ADD_MVCOST(11, 4, 1);
ADD_MVCOST(12, -4, 2);
ADD_MVCOST(13, 4, 2);
ADD_MVCOST(14, -2, 3);
ADD_MVCOST(15, 2, 3);
MIN_MV(0, 0, -4);
MIN_MV(1, 0, 4);
MIN_MV(2, -2, -3);
MIN_MV(3, 2, -3);
MIN_MV(4, -4, -2);
MIN_MV(5, 4, -2);
MIN_MV(6, -4, -1);
MIN_MV(7, 4, -1);
MIN_MV(8, -4, 0);
MIN_MV(9, 4, 0);
MIN_MV(10, -4, 1);
MIN_MV(11, 4, 1);
MIN_MV(12, -4, 2);
MIN_MV(13, 4, 2);
MIN_MV(14, -2, 3);
MIN_MV(15, 2, 3);
#undef SADS
#undef ADD_MVCOST
#undef MIN_MV
if (dir)
{
bmv.x = omv.x + i * (dir >> 4);
bmv.y = omv.y + i * ((dir << 28) >> 28);
}
}
}
while (++i <= merange >> 2);
if (bmv.checkRange(mvmin, mvmax))
goto me_hex2;
break;
}
case X265_STAR_SEARCH: // Adapted from HM ME
{
int bPointNr = 0;
int bDistance = 0;
const int EarlyExitIters = 3;
StarPatternSearch(ref, mvmin, mvmax, bmv, bcost, bPointNr, bDistance, EarlyExitIters, merange);
if (bDistance == 1)
{
// if best distance was only 1, check two missing points. If no new point is found, stop
if (bPointNr)
{
/* For a given direction 1 to 8, check nearest two outer X pixels
X X
X 1 2 3 X
4 * 5
X 6 7 8 X
X X
*/
int saved = bcost;
const MV mv1 = bmv + offsets[(bPointNr - 1) * 2];
const MV mv2 = bmv + offsets[(bPointNr - 1) * 2 + 1];
if (mv1.checkRange(mvmin, mvmax))
{
COST_MV(mv1.x, mv1.y);
}
if (mv2.checkRange(mvmin, mvmax))
{
COST_MV(mv2.x, mv2.y);
}
if (bcost == saved)
break;
}
else
break;
}
const int RasterDistance = 5;
if (bDistance > RasterDistance)
{
// raster search refinement if original search distance was too big
MV tmv;
for (tmv.y = mvmin.y; tmv.y <= mvmax.y; tmv.y += RasterDistance)
{
for (tmv.x = mvmin.x; tmv.x <= mvmax.x; tmv.x += RasterDistance)
{
if (tmv.x + (RasterDistance * 3) <= mvmax.x)
{
pixel *pix_base = fref + tmv.y * stride + tmv.x;
sad_x4(fenc,
pix_base,
pix_base + RasterDistance,
pix_base + RasterDistance * 2,
pix_base + RasterDistance * 3,
stride, costs);
costs[0] += mvcost(tmv << 2);
COPY2_IF_LT(bcost, costs[0], bmv, tmv);
tmv.x += RasterDistance;
costs[1] += mvcost(tmv << 2);
COPY2_IF_LT(bcost, costs[1], bmv, tmv);
tmv.x += RasterDistance;
costs[2] += mvcost(tmv << 2);
COPY2_IF_LT(bcost, costs[2], bmv, tmv);
tmv.x += RasterDistance;
costs[3] += mvcost(tmv << 3);
COPY2_IF_LT(bcost, costs[3], bmv, tmv);
}
else
COST_MV(tmv.x, tmv.y);
}
}
}
while (bDistance > 0)
{
// center a new search around current best
bDistance = 0;
bPointNr = 0;
const int MaxIters = 32;
StarPatternSearch(ref, mvmin, mvmax, bmv, bcost, bPointNr, bDistance, MaxIters, merange);
if (bDistance == 1)
{
if (!bPointNr)
break;
/* For a given direction 1 to 8, check nearest 2 outer X pixels
X X
X 1 2 3 X
4 * 5
X 6 7 8 X
X X
*/
const MV mv1 = bmv + offsets[(bPointNr - 1) * 2];
const MV mv2 = bmv + offsets[(bPointNr - 1) * 2 + 1];
if (mv1.checkRange(mvmin, mvmax))
{
COST_MV(mv1.x, mv1.y);
}
if (mv2.checkRange(mvmin, mvmax))
{
COST_MV(mv2.x, mv2.y);
}
break;
}
}
break;
}
case X265_FULL_SEARCH:
{
// dead slow exhaustive search, but at least it uses sad_x4()
MV tmv;
for (tmv.y = mvmin.y; tmv.y <= mvmax.y; tmv.y++)
{
for (tmv.x = mvmin.x; tmv.x <= mvmax.x; tmv.x++)
{
if (tmv.x + 3 <= mvmax.x)
{
pixel *pix_base = fref + tmv.y * stride + tmv.x;
sad_x4(fenc,
pix_base,
pix_base + 1,
pix_base + 2,
pix_base + 3,
stride, costs);
costs[0] += mvcost(tmv << 2);
COPY2_IF_LT(bcost, costs[0], bmv, tmv);
tmv.x++;
costs[1] += mvcost(tmv << 2);
COPY2_IF_LT(bcost, costs[1], bmv, tmv);
tmv.x++;
costs[2] += mvcost(tmv << 2);
COPY2_IF_LT(bcost, costs[2], bmv, tmv);
tmv.x++;
costs[3] += mvcost(tmv << 2);
COPY2_IF_LT(bcost, costs[3], bmv, tmv);
}
else
COST_MV(tmv.x, tmv.y);
}
}
break;
}
default:
X265_CHECK(0, "invalid motion estimate mode\n");
break;
}
if (bprecost < bcost)
{
bmv = bestpre;
bcost = bprecost;
}
else
bmv = bmv.toQPel(); // promote search bmv to qpel
const SubpelWorkload& wl = workload[this->subpelRefine];
if (!bcost)
{
/* if there was zero residual at the clipped MVP, we can skip subpel
* refine, but we do need to include the mvcost in the returned cost */
bcost = mvcost(bmv);
}
else if (ref->isLowres)
{
int bdir = 0;
for (int i = 1; i <= wl.hpel_dirs; i++)
{
MV qmv = bmv + square1[i] * 2;
int cost = ref->lowresQPelCost(fenc, blockOffset, qmv, sad) + mvcost(qmv);
COPY2_IF_LT(bcost, cost, bdir, i);
}
bmv += square1[bdir] * 2;
bcost = ref->lowresQPelCost(fenc, blockOffset, bmv, satd) + mvcost(bmv);
bdir = 0;
for (int i = 1; i <= wl.qpel_dirs; i++)
{
MV qmv = bmv + square1[i];
int cost = ref->lowresQPelCost(fenc, blockOffset, qmv, satd) + mvcost(qmv);
COPY2_IF_LT(bcost, cost, bdir, i);
}
bmv += square1[bdir];
}
else
{
pixelcmp_t hpelcomp;
if (wl.hpel_satd)
{
bcost = subpelCompare(ref, bmv, satd) + mvcost(bmv);
hpelcomp = satd;
}
else
hpelcomp = sad;
for (int iter = 0; iter < wl.hpel_iters; iter++)
{
int bdir = 0;
for (int i = 1; i <= wl.hpel_dirs; i++)
{
MV qmv = bmv + square1[i] * 2;
int cost = subpelCompare(ref, qmv, hpelcomp) + mvcost(qmv);
COPY2_IF_LT(bcost, cost, bdir, i);
}
if (bdir)
bmv += square1[bdir] * 2;
else
break;
}
/* if HPEL search used SAD, remeasure with SATD before QPEL */
if (!wl.hpel_satd)
bcost = subpelCompare(ref, bmv, satd) + mvcost(bmv);
for (int iter = 0; iter < wl.qpel_iters; iter++)
{
int bdir = 0;
for (int i = 1; i <= wl.qpel_dirs; i++)
{
MV qmv = bmv + square1[i];
int cost = subpelCompare(ref, qmv, satd) + mvcost(qmv);
COPY2_IF_LT(bcost, cost, bdir, i);
}
if (bdir)
bmv += square1[bdir];
else
break;
}
}
x265_emms();
outQMv = bmv;
return bcost;
}
int MotionEstimate::subpelCompare(ReferencePlanes *ref, const MV& qmv, pixelcmp_t cmp)
{
intptr_t refStride = ref->lumaStride;
pixel *fref = ref->fpelPlane[0] + blockOffset + (qmv.x >> 2) + (qmv.y >> 2) * refStride;
int xFrac = qmv.x & 0x3;
int yFrac = qmv.y & 0x3;
int cost;
intptr_t lclStride = fencPUYuv.m_size;
X265_CHECK(lclStride == FENC_STRIDE, "fenc buffer is assumed to have FENC_STRIDE by sad_x3 and sad_x4\n");
if (!(yFrac | xFrac))
cost = cmp(fencPUYuv.m_buf[0], lclStride, fref, refStride);
else
{
/* we are taking a short-cut here if the reference is weighted. To be
* accurate we should be interpolating unweighted pixels and weighting
* the final 16bit values prior to rounding and down shifting. Instead we
* are simply interpolating the weighted full-pel pixels. Not 100%
* accurate but good enough for fast qpel ME */
ALIGN_VAR_32(pixel, subpelbuf[64 * 64]);
if (!yFrac)
primitives.pu[partEnum].luma_hpp(fref, refStride, subpelbuf, lclStride, xFrac);
else if (!xFrac)
primitives.pu[partEnum].luma_vpp(fref, refStride, subpelbuf, lclStride, yFrac);
else
primitives.pu[partEnum].luma_hvpp(fref, refStride, subpelbuf, lclStride, xFrac, yFrac);
cost = cmp(fencPUYuv.m_buf[0], lclStride, subpelbuf, lclStride);
}
if (bChromaSATD)
{
int csp = fencPUYuv.m_csp;
int hshift = fencPUYuv.m_hChromaShift;
int vshift = fencPUYuv.m_vChromaShift;
int shiftHor = (2 + hshift);
int shiftVer = (2 + vshift);
lclStride = fencPUYuv.m_csize;
intptr_t refStrideC = ref->reconPic->m_strideC;
intptr_t refOffset = (qmv.x >> shiftHor) + (qmv.y >> shiftVer) * refStrideC;
const pixel* refCb = ref->getCbAddr(ctuAddr, absPartIdx) + refOffset;
const pixel* refCr = ref->getCrAddr(ctuAddr, absPartIdx) + refOffset;
xFrac = qmv.x & ((1 << shiftHor) - 1);
yFrac = qmv.y & ((1 << shiftVer) - 1);
if (!(yFrac | xFrac))
{
cost += chromaSatd(fencPUYuv.m_buf[1], lclStride, refCb, refStrideC);
cost += chromaSatd(fencPUYuv.m_buf[2], lclStride, refCr, refStrideC);
}
else
{
ALIGN_VAR_32(pixel, subpelbuf[64 * 64]);
if (!yFrac)
{
primitives.chroma[csp].pu[partEnum].filter_hpp(refCb, refStrideC, subpelbuf, lclStride, xFrac << (1 - hshift));
cost += chromaSatd(fencPUYuv.m_buf[1], lclStride, subpelbuf, lclStride);
primitives.chroma[csp].pu[partEnum].filter_hpp(refCr, refStrideC, subpelbuf, lclStride, xFrac << (1 - hshift));
cost += chromaSatd(fencPUYuv.m_buf[2], lclStride, subpelbuf, lclStride);
}
else if (!xFrac)
{
primitives.chroma[csp].pu[partEnum].filter_vpp(refCb, refStrideC, subpelbuf, lclStride, yFrac << (1 - vshift));
cost += chromaSatd(fencPUYuv.m_buf[1], lclStride, subpelbuf, lclStride);
primitives.chroma[csp].pu[partEnum].filter_vpp(refCr, refStrideC, subpelbuf, lclStride, yFrac << (1 - vshift));
cost += chromaSatd(fencPUYuv.m_buf[2], lclStride, subpelbuf, lclStride);
}
else
{
ALIGN_VAR_32(int16_t, immed[64 * (64 + NTAPS_CHROMA)]);
int extStride = blockwidth >> hshift;
int filterSize = NTAPS_CHROMA;
int halfFilterSize = (filterSize >> 1);
primitives.chroma[csp].pu[partEnum].filter_hps(refCb, refStrideC, immed, extStride, xFrac << (1 - hshift), 1);
primitives.chroma[csp].pu[partEnum].filter_vsp(immed + (halfFilterSize - 1) * extStride, extStride, subpelbuf, lclStride, yFrac << (1 - vshift));
cost += chromaSatd(fencPUYuv.m_buf[1], lclStride, subpelbuf, lclStride);
primitives.chroma[csp].pu[partEnum].filter_hps(refCr, refStrideC, immed, extStride, xFrac << (1 - hshift), 1);
primitives.chroma[csp].pu[partEnum].filter_vsp(immed + (halfFilterSize - 1) * extStride, extStride, subpelbuf, lclStride, yFrac << (1 - vshift));
cost += chromaSatd(fencPUYuv.m_buf[2], lclStride, subpelbuf, lclStride);
}
}
}
return cost;
}