libbpg/x265/source/common/cudata.h

363 lines
18 KiB
C
Raw Normal View History

2015-10-27 10:46:00 +00:00
/*****************************************************************************
* Copyright (C) 2015 x265 project
*
* Authors: Steve Borho <steve@borho.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*
* This program is also available under a commercial proprietary license.
* For more information, contact us at license @ x265.com.
*****************************************************************************/
#ifndef X265_CUDATA_H
#define X265_CUDATA_H
#include "common.h"
#include "slice.h"
#include "mv.h"
namespace X265_NS {
// private namespace
class FrameData;
class Slice;
struct TUEntropyCodingParameters;
struct CUDataMemPool;
enum PartSize
{
SIZE_2Nx2N, // symmetric motion partition, 2Nx2N
SIZE_2NxN, // symmetric motion partition, 2Nx N
SIZE_Nx2N, // symmetric motion partition, Nx2N
SIZE_NxN, // symmetric motion partition, Nx N
SIZE_2NxnU, // asymmetric motion partition, 2Nx( N/2) + 2Nx(3N/2)
SIZE_2NxnD, // asymmetric motion partition, 2Nx(3N/2) + 2Nx( N/2)
SIZE_nLx2N, // asymmetric motion partition, ( N/2)x2N + (3N/2)x2N
SIZE_nRx2N, // asymmetric motion partition, (3N/2)x2N + ( N/2)x2N
NUM_SIZES
};
enum PredMode
{
MODE_NONE = 0,
MODE_INTER = (1 << 0),
MODE_INTRA = (1 << 1),
MODE_SKIP = (1 << 2) | MODE_INTER
};
// motion vector predictor direction used in AMVP
enum MVP_DIR
{
MD_LEFT = 0, // MVP of left block
MD_ABOVE, // MVP of above block
MD_ABOVE_RIGHT, // MVP of above right block
MD_BELOW_LEFT, // MVP of below left block
MD_ABOVE_LEFT, // MVP of above left block
MD_COLLOCATED // MVP of temporal neighbour
};
struct CUGeom
{
enum {
INTRA = 1<<0, // CU is intra predicted
PRESENT = 1<<1, // CU is not completely outside the frame
SPLIT_MANDATORY = 1<<2, // CU split is mandatory if CU is inside frame and can be split
LEAF = 1<<3, // CU is a leaf node of the CTU
SPLIT = 1<<4, // CU is currently split in four child CUs.
};
// (1 + 4 + 16 + 64) = 85.
enum { MAX_GEOMS = 85 };
uint32_t log2CUSize; // Log of the CU size.
uint32_t childOffset; // offset of the first child CU from current CU
uint32_t absPartIdx; // Part index of this CU in terms of 4x4 blocks.
uint32_t numPartitions; // Number of 4x4 blocks in the CU
uint32_t flags; // CU flags.
uint32_t depth; // depth of this CU relative from CTU
};
struct MVField
{
MV mv;
int refIdx;
};
// Structure that keeps the neighbour's MV information.
struct InterNeighbourMV
{
// Neighbour MV. The index represents the list.
MV mv[2];
// Collocated right bottom CU addr.
uint32_t cuAddr[2];
// For spatial prediction, this field contains the reference index
// in each list (-1 if not available).
//
// For temporal prediction, the first value is used for the
// prediction with list 0. The second value is used for the prediction
// with list 1. For each value, the first four bits are the reference index
// associated to the PMV, and the fifth bit is the list associated to the PMV.
// if both reference indices are -1, then unifiedRef is also -1
union { int16_t refIdx[2]; int32_t unifiedRef; };
};
typedef void(*cucopy_t)(uint8_t* dst, uint8_t* src); // dst and src are aligned to MIN(size, 32)
typedef void(*cubcast_t)(uint8_t* dst, uint8_t val); // dst is aligned to MIN(size, 32)
// Partition count table, index represents partitioning mode.
const uint32_t nbPartsTable[8] = { 1, 2, 2, 4, 2, 2, 2, 2 };
// Partition table.
// First index is partitioning mode. Second index is partition index.
// Third index is 0 for partition sizes, 1 for partition offsets. The
// sizes and offsets are encoded as two packed 4-bit values (X,Y).
// X and Y represent 1/4 fractions of the block size.
const uint32_t partTable[8][4][2] =
{
// XY
{ { 0x44, 0x00 }, { 0x00, 0x00 }, { 0x00, 0x00 }, { 0x00, 0x00 } }, // SIZE_2Nx2N.
{ { 0x42, 0x00 }, { 0x42, 0x02 }, { 0x00, 0x00 }, { 0x00, 0x00 } }, // SIZE_2NxN.
{ { 0x24, 0x00 }, { 0x24, 0x20 }, { 0x00, 0x00 }, { 0x00, 0x00 } }, // SIZE_Nx2N.
{ { 0x22, 0x00 }, { 0x22, 0x20 }, { 0x22, 0x02 }, { 0x22, 0x22 } }, // SIZE_NxN.
{ { 0x41, 0x00 }, { 0x43, 0x01 }, { 0x00, 0x00 }, { 0x00, 0x00 } }, // SIZE_2NxnU.
{ { 0x43, 0x00 }, { 0x41, 0x03 }, { 0x00, 0x00 }, { 0x00, 0x00 } }, // SIZE_2NxnD.
{ { 0x14, 0x00 }, { 0x34, 0x10 }, { 0x00, 0x00 }, { 0x00, 0x00 } }, // SIZE_nLx2N.
{ { 0x34, 0x00 }, { 0x14, 0x30 }, { 0x00, 0x00 }, { 0x00, 0x00 } } // SIZE_nRx2N.
};
// Partition Address table.
// First index is partitioning mode. Second index is partition address.
const uint32_t partAddrTable[8][4] =
{
{ 0x00, 0x00, 0x00, 0x00 }, // SIZE_2Nx2N.
{ 0x00, 0x08, 0x08, 0x08 }, // SIZE_2NxN.
{ 0x00, 0x04, 0x04, 0x04 }, // SIZE_Nx2N.
{ 0x00, 0x04, 0x08, 0x0C }, // SIZE_NxN.
{ 0x00, 0x02, 0x02, 0x02 }, // SIZE_2NxnU.
{ 0x00, 0x0A, 0x0A, 0x0A }, // SIZE_2NxnD.
{ 0x00, 0x01, 0x01, 0x01 }, // SIZE_nLx2N.
{ 0x00, 0x05, 0x05, 0x05 } // SIZE_nRx2N.
};
// Holds part data for a CU of a given size, from an 8x8 CU to a CTU
class CUData
{
public:
static cubcast_t s_partSet[NUM_FULL_DEPTH]; // pointer to broadcast set functions per absolute depth
static uint32_t s_numPartInCUSize;
FrameData* m_encData;
const Slice* m_slice;
cucopy_t m_partCopy; // pointer to function that copies m_numPartitions elements
cubcast_t m_partSet; // pointer to function that sets m_numPartitions elements
cucopy_t m_subPartCopy; // pointer to function that copies m_numPartitions/4 elements, may be NULL
cubcast_t m_subPartSet; // pointer to function that sets m_numPartitions/4 elements, may be NULL
uint32_t m_cuAddr; // address of CTU within the picture in raster order
uint32_t m_absIdxInCTU; // address of CU within its CTU in Z scan order
uint32_t m_cuPelX; // CU position within the picture, in pixels (X)
uint32_t m_cuPelY; // CU position within the picture, in pixels (Y)
uint32_t m_numPartitions; // maximum number of 4x4 partitions within this CU
uint32_t m_chromaFormat;
uint32_t m_hChromaShift;
uint32_t m_vChromaShift;
/* Per-part data, stored contiguously */
int8_t* m_qp; // array of QP values
uint8_t* m_log2CUSize; // array of cu log2Size TODO: seems redundant to depth
uint8_t* m_lumaIntraDir; // array of intra directions (luma)
uint8_t* m_tqBypass; // array of CU lossless flags
int8_t* m_refIdx[2]; // array of motion reference indices per list
uint8_t* m_cuDepth; // array of depths
uint8_t* m_predMode; // array of prediction modes
uint8_t* m_partSize; // array of partition sizes
uint8_t* m_mergeFlag; // array of merge flags
uint8_t* m_interDir; // array of inter directions
uint8_t* m_mvpIdx[2]; // array of motion vector predictor candidates or merge candidate indices [0]
uint8_t* m_tuDepth; // array of transform indices
uint8_t* m_transformSkip[3]; // array of transform skipping flags per plane
uint8_t* m_cbf[3]; // array of coded block flags (CBF) per plane
uint8_t* m_chromaIntraDir; // array of intra directions (chroma)
enum { BytesPerPartition = 21 }; // combined sizeof() of all per-part data
coeff_t* m_trCoeff[3]; // transformed coefficient buffer per plane
MV* m_mv[2]; // array of motion vectors per list
MV* m_mvd[2]; // array of coded motion vector deltas per list
enum { TMVP_UNIT_MASK = 0xF0 }; // mask for mapping index to into a compressed (reference) MV field
const CUData* m_cuAboveLeft; // pointer to above-left neighbor CTU
const CUData* m_cuAboveRight; // pointer to above-right neighbor CTU
const CUData* m_cuAbove; // pointer to above neighbor CTU
const CUData* m_cuLeft; // pointer to left neighbor CTU
CUData();
void initialize(const CUDataMemPool& dataPool, uint32_t depth, int csp, int instance);
static void calcCTUGeoms(uint32_t ctuWidth, uint32_t ctuHeight, uint32_t maxCUSize, uint32_t minCUSize, CUGeom cuDataArray[CUGeom::MAX_GEOMS]);
void initCTU(const Frame& frame, uint32_t cuAddr, int qp);
void initSubCU(const CUData& ctu, const CUGeom& cuGeom, int qp);
void initLosslessCU(const CUData& cu, const CUGeom& cuGeom);
void copyPartFrom(const CUData& cu, const CUGeom& childGeom, uint32_t subPartIdx);
void setEmptyPart(const CUGeom& childGeom, uint32_t subPartIdx);
void copyToPic(uint32_t depth) const;
/* RD-0 methods called only from encodeResidue */
void copyFromPic(const CUData& ctu, const CUGeom& cuGeom);
void updatePic(uint32_t depth) const;
void setPartSizeSubParts(PartSize size) { m_partSet(m_partSize, (uint8_t)size); }
void setPredModeSubParts(PredMode mode) { m_partSet(m_predMode, (uint8_t)mode); }
void clearCbf() { m_partSet(m_cbf[0], 0); m_partSet(m_cbf[1], 0); m_partSet(m_cbf[2], 0); }
/* these functions all take depth as an absolute depth from CTU, it is used to calculate the number of parts to copy */
void setQPSubParts(int8_t qp, uint32_t absPartIdx, uint32_t depth) { s_partSet[depth]((uint8_t*)m_qp + absPartIdx, (uint8_t)qp); }
void setTUDepthSubParts(uint8_t tuDepth, uint32_t absPartIdx, uint32_t depth) { s_partSet[depth](m_tuDepth + absPartIdx, tuDepth); }
void setLumaIntraDirSubParts(uint8_t dir, uint32_t absPartIdx, uint32_t depth) { s_partSet[depth](m_lumaIntraDir + absPartIdx, dir); }
void setChromIntraDirSubParts(uint8_t dir, uint32_t absPartIdx, uint32_t depth) { s_partSet[depth](m_chromaIntraDir + absPartIdx, dir); }
void setCbfSubParts(uint8_t cbf, TextType ttype, uint32_t absPartIdx, uint32_t depth) { s_partSet[depth](m_cbf[ttype] + absPartIdx, cbf); }
void setCbfPartRange(uint8_t cbf, TextType ttype, uint32_t absPartIdx, uint32_t coveredPartIdxes) { memset(m_cbf[ttype] + absPartIdx, cbf, coveredPartIdxes); }
void setTransformSkipSubParts(uint8_t tskip, TextType ttype, uint32_t absPartIdx, uint32_t depth) { s_partSet[depth](m_transformSkip[ttype] + absPartIdx, tskip); }
void setTransformSkipPartRange(uint8_t tskip, TextType ttype, uint32_t absPartIdx, uint32_t coveredPartIdxes) { memset(m_transformSkip[ttype] + absPartIdx, tskip, coveredPartIdxes); }
bool setQPSubCUs(int8_t qp, uint32_t absPartIdx, uint32_t depth);
void setPUInterDir(uint8_t dir, uint32_t absPartIdx, uint32_t puIdx);
void setPUMv(int list, const MV& mv, int absPartIdx, int puIdx);
void setPURefIdx(int list, int8_t refIdx, int absPartIdx, int puIdx);
uint8_t getCbf(uint32_t absPartIdx, TextType ttype, uint32_t tuDepth) const { return (m_cbf[ttype][absPartIdx] >> tuDepth) & 0x1; }
uint8_t getQtRootCbf(uint32_t absPartIdx) const { return m_cbf[0][absPartIdx] || m_cbf[1][absPartIdx] || m_cbf[2][absPartIdx]; }
int8_t getRefQP(uint32_t currAbsIdxInCTU) const;
uint32_t getInterMergeCandidates(uint32_t absPartIdx, uint32_t puIdx, MVField (*candMvField)[2], uint8_t* candDir) const;
void clipMv(MV& outMV) const;
int getPMV(InterNeighbourMV *neighbours, uint32_t reference_list, uint32_t refIdx, MV* amvpCand, MV* pmv) const;
void getNeighbourMV(uint32_t puIdx, uint32_t absPartIdx, InterNeighbourMV* neighbours) const;
void getIntraTUQtDepthRange(uint32_t tuDepthRange[2], uint32_t absPartIdx) const;
void getInterTUQtDepthRange(uint32_t tuDepthRange[2], uint32_t absPartIdx) const;
uint32_t getBestRefIdx(uint32_t subPartIdx) const { return ((m_interDir[subPartIdx] & 1) << m_refIdx[0][subPartIdx]) |
(((m_interDir[subPartIdx] >> 1) & 1) << (m_refIdx[1][subPartIdx] + 16)); }
uint32_t getPUOffset(uint32_t puIdx, uint32_t absPartIdx) const { return (partAddrTable[(int)m_partSize[absPartIdx]][puIdx] << (g_unitSizeDepth - m_cuDepth[absPartIdx]) * 2) >> 4; }
uint32_t getNumPartInter(uint32_t absPartIdx) const { return nbPartsTable[(int)m_partSize[absPartIdx]]; }
bool isIntra(uint32_t absPartIdx) const { return m_predMode[absPartIdx] == MODE_INTRA; }
bool isInter(uint32_t absPartIdx) const { return !!(m_predMode[absPartIdx] & MODE_INTER); }
bool isSkipped(uint32_t absPartIdx) const { return m_predMode[absPartIdx] == MODE_SKIP; }
bool isBipredRestriction() const { return m_log2CUSize[0] == 3 && m_partSize[0] != SIZE_2Nx2N; }
void getPartIndexAndSize(uint32_t puIdx, uint32_t& absPartIdx, int& puWidth, int& puHeight) const;
void getMvField(const CUData* cu, uint32_t absPartIdx, int picList, MVField& mvField) const;
void getAllowedChromaDir(uint32_t absPartIdx, uint32_t* modeList) const;
int getIntraDirLumaPredictor(uint32_t absPartIdx, uint32_t* intraDirPred) const;
uint32_t getSCUAddr() const { return (m_cuAddr << g_unitSizeDepth * 2) + m_absIdxInCTU; }
uint32_t getCtxSplitFlag(uint32_t absPartIdx, uint32_t depth) const;
uint32_t getCtxSkipFlag(uint32_t absPartIdx) const;
void getTUEntropyCodingParameters(TUEntropyCodingParameters &result, uint32_t absPartIdx, uint32_t log2TrSize, bool bIsLuma) const;
const CUData* getPULeft(uint32_t& lPartUnitIdx, uint32_t curPartUnitIdx) const;
const CUData* getPUAbove(uint32_t& aPartUnitIdx, uint32_t curPartUnitIdx) const;
const CUData* getPUAboveLeft(uint32_t& alPartUnitIdx, uint32_t curPartUnitIdx) const;
const CUData* getPUAboveRight(uint32_t& arPartUnitIdx, uint32_t curPartUnitIdx) const;
const CUData* getPUBelowLeft(uint32_t& blPartUnitIdx, uint32_t curPartUnitIdx) const;
const CUData* getQpMinCuLeft(uint32_t& lPartUnitIdx, uint32_t currAbsIdxInCTU) const;
const CUData* getQpMinCuAbove(uint32_t& aPartUnitIdx, uint32_t currAbsIdxInCTU) const;
const CUData* getPUAboveRightAdi(uint32_t& arPartUnitIdx, uint32_t curPartUnitIdx, uint32_t partUnitOffset) const;
const CUData* getPUBelowLeftAdi(uint32_t& blPartUnitIdx, uint32_t curPartUnitIdx, uint32_t partUnitOffset) const;
protected:
template<typename T>
void setAllPU(T *p, const T& val, int absPartIdx, int puIdx);
int8_t getLastCodedQP(uint32_t absPartIdx) const;
int getLastValidPartIdx(int absPartIdx) const;
bool hasEqualMotion(uint32_t absPartIdx, const CUData& candCU, uint32_t candAbsPartIdx) const;
/* Check whether the current PU and a spatial neighboring PU are in same merge region */
bool isDiffMER(int xN, int yN, int xP, int yP) const { return ((xN >> 2) != (xP >> 2)) || ((yN >> 2) != (yP >> 2)); }
// add possible motion vector predictor candidates
bool getDirectPMV(MV& pmv, InterNeighbourMV *neighbours, uint32_t picList, uint32_t refIdx) const;
bool getIndirectPMV(MV& outMV, InterNeighbourMV *neighbours, uint32_t reference_list, uint32_t refIdx) const;
void getInterNeighbourMV(InterNeighbourMV *neighbour, uint32_t partUnitIdx, MVP_DIR dir) const;
bool getColMVP(MV& outMV, int& outRefIdx, int picList, int cuAddr, int absPartIdx) const;
bool getCollocatedMV(int cuAddr, int partUnitIdx, InterNeighbourMV *neighbour) const;
MV scaleMvByPOCDist(const MV& inMV, int curPOC, int curRefPOC, int colPOC, int colRefPOC) const;
void deriveLeftRightTopIdx(uint32_t puIdx, uint32_t& partIdxLT, uint32_t& partIdxRT) const;
uint32_t deriveCenterIdx(uint32_t puIdx) const;
uint32_t deriveRightBottomIdx(uint32_t puIdx) const;
uint32_t deriveLeftBottomIdx(uint32_t puIdx) const;
};
// TU settings for entropy encoding
struct TUEntropyCodingParameters
{
const uint16_t *scan;
const uint16_t *scanCG;
ScanType scanType;
uint32_t log2TrSizeCG;
uint32_t firstSignificanceMapContext;
};
struct CUDataMemPool
{
uint8_t* charMemBlock;
coeff_t* trCoeffMemBlock;
MV* mvMemBlock;
CUDataMemPool() { charMemBlock = NULL; trCoeffMemBlock = NULL; mvMemBlock = NULL; }
bool create(uint32_t depth, uint32_t csp, uint32_t numInstances)
{
uint32_t numPartition = NUM_4x4_PARTITIONS >> (depth * 2);
uint32_t cuSize = g_maxCUSize >> depth;
uint32_t sizeL = cuSize * cuSize;
uint32_t sizeC = sizeL >> (CHROMA_H_SHIFT(csp) + CHROMA_V_SHIFT(csp));
CHECKED_MALLOC(trCoeffMemBlock, coeff_t, (sizeL + sizeC * 2) * numInstances);
CHECKED_MALLOC(charMemBlock, uint8_t, numPartition * numInstances * CUData::BytesPerPartition);
CHECKED_MALLOC(mvMemBlock, MV, numPartition * 4 * numInstances);
return true;
fail:
return false;
}
void destroy()
{
X265_FREE(trCoeffMemBlock);
X265_FREE(mvMemBlock);
X265_FREE(charMemBlock);
}
};
}
#endif // ifndef X265_CUDATA_H