libbpg/jctvc/TLibEncoder/TEncGOP.cpp

2838 lines
107 KiB
C++
Raw Normal View History

2015-01-16 12:46:18 +00:00
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2014, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file TEncGOP.cpp
\brief GOP encoder class
*/
#include <list>
#include <algorithm>
#include <functional>
#include "TEncTop.h"
#include "TEncGOP.h"
#include "TEncAnalyze.h"
#include "libmd5/MD5.h"
#include "TLibCommon/SEI.h"
#include "TLibCommon/NAL.h"
#include "NALwrite.h"
#include <time.h>
#include <math.h>
#define VERBOSE_FRAME 0
using namespace std;
#if ENVIRONMENT_VARIABLE_DEBUG_AND_TEST
Bool g_bFinalEncode = false;
#endif
//! \ingroup TLibEncoder
//! \{
// ====================================================================================================================
// Constructor / destructor / initialization / destroy
// ====================================================================================================================
Int getLSB(Int poc, Int maxLSB)
{
if (poc >= 0)
{
return poc % maxLSB;
}
else
{
return (maxLSB - ((-poc) % maxLSB)) % maxLSB;
}
}
TEncGOP::TEncGOP()
{
m_iLastIDR = 0;
m_iGopSize = 0;
m_iNumPicCoded = 0; //Niko
m_bFirst = true;
#if ALLOW_RECOVERY_POINT_AS_RAP
m_iLastRecoveryPicPOC = 0;
#endif
m_pcCfg = NULL;
m_pcSliceEncoder = NULL;
m_pcListPic = NULL;
m_pcEntropyCoder = NULL;
m_pcCavlcCoder = NULL;
m_pcSbacCoder = NULL;
m_pcBinCABAC = NULL;
m_bSeqFirst = true;
m_bRefreshPending = 0;
m_pocCRA = 0;
m_numLongTermRefPicSPS = 0;
::memset(m_ltRefPicPocLsbSps, 0, sizeof(m_ltRefPicPocLsbSps));
::memset(m_ltRefPicUsedByCurrPicFlag, 0, sizeof(m_ltRefPicUsedByCurrPicFlag));
m_cpbRemovalDelay = 0;
m_lastBPSEI = 0;
xResetNonNestedSEIPresentFlags();
xResetNestedSEIPresentFlags();
m_associatedIRAPType = NAL_UNIT_CODED_SLICE_IDR_N_LP;
m_associatedIRAPPOC = 0;
return;
}
TEncGOP::~TEncGOP()
{
}
/** Create list to contain pointers to CTU start addresses of slice.
*/
Void TEncGOP::create()
{
m_bLongtermTestPictureHasBeenCoded = 0;
m_bLongtermTestPictureHasBeenCoded2 = 0;
}
Void TEncGOP::destroy()
{
}
Void TEncGOP::init ( TEncTop* pcTEncTop )
{
m_pcEncTop = pcTEncTop;
m_pcCfg = pcTEncTop;
m_pcSliceEncoder = pcTEncTop->getSliceEncoder();
m_pcListPic = pcTEncTop->getListPic();
m_pcEntropyCoder = pcTEncTop->getEntropyCoder();
m_pcCavlcCoder = pcTEncTop->getCavlcCoder();
m_pcSbacCoder = pcTEncTop->getSbacCoder();
m_pcBinCABAC = pcTEncTop->getBinCABAC();
m_pcLoopFilter = pcTEncTop->getLoopFilter();
m_pcSAO = pcTEncTop->getSAO();
m_pcRateCtrl = pcTEncTop->getRateCtrl();
m_lastBPSEI = 0;
m_totalCoded = 0;
}
SEIActiveParameterSets* TEncGOP::xCreateSEIActiveParameterSets (TComSPS *sps)
{
SEIActiveParameterSets *seiActiveParameterSets = new SEIActiveParameterSets();
seiActiveParameterSets->activeVPSId = m_pcCfg->getVPS()->getVPSId();
seiActiveParameterSets->m_selfContainedCvsFlag = false;
seiActiveParameterSets->m_noParameterSetUpdateFlag = false;
seiActiveParameterSets->numSpsIdsMinus1 = 0;
seiActiveParameterSets->activeSeqParameterSetId.resize(seiActiveParameterSets->numSpsIdsMinus1 + 1);
seiActiveParameterSets->activeSeqParameterSetId[0] = sps->getSPSId();
return seiActiveParameterSets;
}
SEIFramePacking* TEncGOP::xCreateSEIFramePacking()
{
SEIFramePacking *seiFramePacking = new SEIFramePacking();
seiFramePacking->m_arrangementId = m_pcCfg->getFramePackingArrangementSEIId();
seiFramePacking->m_arrangementCancelFlag = 0;
seiFramePacking->m_arrangementType = m_pcCfg->getFramePackingArrangementSEIType();
assert((seiFramePacking->m_arrangementType > 2) && (seiFramePacking->m_arrangementType < 6) );
seiFramePacking->m_quincunxSamplingFlag = m_pcCfg->getFramePackingArrangementSEIQuincunx();
seiFramePacking->m_contentInterpretationType = m_pcCfg->getFramePackingArrangementSEIInterpretation();
seiFramePacking->m_spatialFlippingFlag = 0;
seiFramePacking->m_frame0FlippedFlag = 0;
seiFramePacking->m_fieldViewsFlag = (seiFramePacking->m_arrangementType == 2);
seiFramePacking->m_currentFrameIsFrame0Flag = ((seiFramePacking->m_arrangementType == 5) && (m_iNumPicCoded&1));
seiFramePacking->m_frame0SelfContainedFlag = 0;
seiFramePacking->m_frame1SelfContainedFlag = 0;
seiFramePacking->m_frame0GridPositionX = 0;
seiFramePacking->m_frame0GridPositionY = 0;
seiFramePacking->m_frame1GridPositionX = 0;
seiFramePacking->m_frame1GridPositionY = 0;
seiFramePacking->m_arrangementReservedByte = 0;
seiFramePacking->m_arrangementPersistenceFlag = true;
seiFramePacking->m_upsampledAspectRatio = 0;
return seiFramePacking;
}
SEISegmentedRectFramePacking* TEncGOP::xCreateSEISegmentedRectFramePacking()
{
SEISegmentedRectFramePacking *seiSegmentedRectFramePacking = new SEISegmentedRectFramePacking();
seiSegmentedRectFramePacking->m_arrangementCancelFlag = m_pcCfg->getSegmentedRectFramePackingArrangementSEICancel();
seiSegmentedRectFramePacking->m_contentInterpretationType = m_pcCfg->getSegmentedRectFramePackingArrangementSEIType();
seiSegmentedRectFramePacking->m_arrangementPersistenceFlag = m_pcCfg->getSegmentedRectFramePackingArrangementSEIPersistence();
return seiSegmentedRectFramePacking;
}
SEIDisplayOrientation* TEncGOP::xCreateSEIDisplayOrientation()
{
SEIDisplayOrientation *seiDisplayOrientation = new SEIDisplayOrientation();
seiDisplayOrientation->cancelFlag = false;
seiDisplayOrientation->horFlip = false;
seiDisplayOrientation->verFlip = false;
seiDisplayOrientation->anticlockwiseRotation = m_pcCfg->getDisplayOrientationSEIAngle();
return seiDisplayOrientation;
}
SEIToneMappingInfo* TEncGOP::xCreateSEIToneMappingInfo()
{
SEIToneMappingInfo *seiToneMappingInfo = new SEIToneMappingInfo();
seiToneMappingInfo->m_toneMapId = m_pcCfg->getTMISEIToneMapId();
seiToneMappingInfo->m_toneMapCancelFlag = m_pcCfg->getTMISEIToneMapCancelFlag();
seiToneMappingInfo->m_toneMapPersistenceFlag = m_pcCfg->getTMISEIToneMapPersistenceFlag();
seiToneMappingInfo->m_codedDataBitDepth = m_pcCfg->getTMISEICodedDataBitDepth();
assert(seiToneMappingInfo->m_codedDataBitDepth >= 8 && seiToneMappingInfo->m_codedDataBitDepth <= 14);
seiToneMappingInfo->m_targetBitDepth = m_pcCfg->getTMISEITargetBitDepth();
assert(seiToneMappingInfo->m_targetBitDepth >= 1 && seiToneMappingInfo->m_targetBitDepth <= 17);
seiToneMappingInfo->m_modelId = m_pcCfg->getTMISEIModelID();
assert(seiToneMappingInfo->m_modelId >=0 &&seiToneMappingInfo->m_modelId<=4);
switch( seiToneMappingInfo->m_modelId)
{
case 0:
{
seiToneMappingInfo->m_minValue = m_pcCfg->getTMISEIMinValue();
seiToneMappingInfo->m_maxValue = m_pcCfg->getTMISEIMaxValue();
break;
}
case 1:
{
seiToneMappingInfo->m_sigmoidMidpoint = m_pcCfg->getTMISEISigmoidMidpoint();
seiToneMappingInfo->m_sigmoidWidth = m_pcCfg->getTMISEISigmoidWidth();
break;
}
case 2:
{
UInt num = 1u<<(seiToneMappingInfo->m_targetBitDepth);
seiToneMappingInfo->m_startOfCodedInterval.resize(num);
Int* ptmp = m_pcCfg->getTMISEIStartOfCodedInterva();
if(ptmp)
{
for(Int i=0; i<num;i++)
{
seiToneMappingInfo->m_startOfCodedInterval[i] = ptmp[i];
}
}
break;
}
case 3:
{
seiToneMappingInfo->m_numPivots = m_pcCfg->getTMISEINumPivots();
seiToneMappingInfo->m_codedPivotValue.resize(seiToneMappingInfo->m_numPivots);
seiToneMappingInfo->m_targetPivotValue.resize(seiToneMappingInfo->m_numPivots);
Int* ptmpcoded = m_pcCfg->getTMISEICodedPivotValue();
Int* ptmptarget = m_pcCfg->getTMISEITargetPivotValue();
if(ptmpcoded&&ptmptarget)
{
for(Int i=0; i<(seiToneMappingInfo->m_numPivots);i++)
{
seiToneMappingInfo->m_codedPivotValue[i]=ptmpcoded[i];
seiToneMappingInfo->m_targetPivotValue[i]=ptmptarget[i];
}
}
break;
}
case 4:
{
seiToneMappingInfo->m_cameraIsoSpeedIdc = m_pcCfg->getTMISEICameraIsoSpeedIdc();
seiToneMappingInfo->m_cameraIsoSpeedValue = m_pcCfg->getTMISEICameraIsoSpeedValue();
assert( seiToneMappingInfo->m_cameraIsoSpeedValue !=0 );
seiToneMappingInfo->m_exposureIndexIdc = m_pcCfg->getTMISEIExposurIndexIdc();
seiToneMappingInfo->m_exposureIndexValue = m_pcCfg->getTMISEIExposurIndexValue();
assert( seiToneMappingInfo->m_exposureIndexValue !=0 );
seiToneMappingInfo->m_exposureCompensationValueSignFlag = m_pcCfg->getTMISEIExposureCompensationValueSignFlag();
seiToneMappingInfo->m_exposureCompensationValueNumerator = m_pcCfg->getTMISEIExposureCompensationValueNumerator();
seiToneMappingInfo->m_exposureCompensationValueDenomIdc = m_pcCfg->getTMISEIExposureCompensationValueDenomIdc();
seiToneMappingInfo->m_refScreenLuminanceWhite = m_pcCfg->getTMISEIRefScreenLuminanceWhite();
seiToneMappingInfo->m_extendedRangeWhiteLevel = m_pcCfg->getTMISEIExtendedRangeWhiteLevel();
assert( seiToneMappingInfo->m_extendedRangeWhiteLevel >= 100 );
seiToneMappingInfo->m_nominalBlackLevelLumaCodeValue = m_pcCfg->getTMISEINominalBlackLevelLumaCodeValue();
seiToneMappingInfo->m_nominalWhiteLevelLumaCodeValue = m_pcCfg->getTMISEINominalWhiteLevelLumaCodeValue();
assert( seiToneMappingInfo->m_nominalWhiteLevelLumaCodeValue > seiToneMappingInfo->m_nominalBlackLevelLumaCodeValue );
seiToneMappingInfo->m_extendedWhiteLevelLumaCodeValue = m_pcCfg->getTMISEIExtendedWhiteLevelLumaCodeValue();
assert( seiToneMappingInfo->m_extendedWhiteLevelLumaCodeValue >= seiToneMappingInfo->m_nominalWhiteLevelLumaCodeValue );
break;
}
default:
{
assert(!"Undefined SEIToneMapModelId");
break;
}
}
return seiToneMappingInfo;
}
SEITempMotionConstrainedTileSets* TEncGOP::xCreateSEITempMotionConstrainedTileSets ()
{
TComPPS *pps = m_pcEncTop->getPPS();
SEITempMotionConstrainedTileSets *sei = new SEITempMotionConstrainedTileSets();
if(pps->getTilesEnabledFlag())
{
sei->m_mc_all_tiles_exact_sample_value_match_flag = false;
sei->m_each_tile_one_tile_set_flag = false;
sei->m_limited_tile_set_display_flag = false;
sei->setNumberOfTileSets((pps->getNumTileColumnsMinus1() + 1) * (pps->getNumTileRowsMinus1() + 1));
for(Int i=0; i < sei->getNumberOfTileSets(); i++)
{
sei->tileSetData(i).m_mcts_id = i; //depends the application;
sei->tileSetData(i).setNumberOfTileRects(1);
for(Int j=0; j<sei->tileSetData(i).getNumberOfTileRects(); j++)
{
sei->tileSetData(i).topLeftTileIndex(j) = i+j;
sei->tileSetData(i).bottomRightTileIndex(j) = i+j;
}
sei->tileSetData(i).m_exact_sample_value_match_flag = false;
sei->tileSetData(i).m_mcts_tier_level_idc_present_flag = false;
}
}
else
{
assert(!"Tile is not enabled");
}
return sei;
}
SEIKneeFunctionInfo* TEncGOP::xCreateSEIKneeFunctionInfo()
{
SEIKneeFunctionInfo *seiKneeFunctionInfo = new SEIKneeFunctionInfo();
seiKneeFunctionInfo->m_kneeId = m_pcCfg->getKneeSEIId();
seiKneeFunctionInfo->m_kneeCancelFlag = m_pcCfg->getKneeSEICancelFlag();
if ( !seiKneeFunctionInfo->m_kneeCancelFlag )
{
seiKneeFunctionInfo->m_kneePersistenceFlag = m_pcCfg->getKneeSEIPersistenceFlag();
seiKneeFunctionInfo->m_kneeInputDrange = m_pcCfg->getKneeSEIInputDrange();
seiKneeFunctionInfo->m_kneeInputDispLuminance = m_pcCfg->getKneeSEIInputDispLuminance();
seiKneeFunctionInfo->m_kneeOutputDrange = m_pcCfg->getKneeSEIOutputDrange();
seiKneeFunctionInfo->m_kneeOutputDispLuminance = m_pcCfg->getKneeSEIOutputDispLuminance();
seiKneeFunctionInfo->m_kneeNumKneePointsMinus1 = m_pcCfg->getKneeSEINumKneePointsMinus1();
Int* piInputKneePoint = m_pcCfg->getKneeSEIInputKneePoint();
Int* piOutputKneePoint = m_pcCfg->getKneeSEIOutputKneePoint();
if(piInputKneePoint&&piOutputKneePoint)
{
seiKneeFunctionInfo->m_kneeInputKneePoint.resize(seiKneeFunctionInfo->m_kneeNumKneePointsMinus1+1);
seiKneeFunctionInfo->m_kneeOutputKneePoint.resize(seiKneeFunctionInfo->m_kneeNumKneePointsMinus1+1);
for(Int i=0; i<=seiKneeFunctionInfo->m_kneeNumKneePointsMinus1; i++)
{
seiKneeFunctionInfo->m_kneeInputKneePoint[i] = piInputKneePoint[i];
seiKneeFunctionInfo->m_kneeOutputKneePoint[i] = piOutputKneePoint[i];
}
}
}
return seiKneeFunctionInfo;
}
SEIChromaSamplingFilterHint* TEncGOP::xCreateSEIChromaSamplingFilterHint(Bool bChromaLocInfoPresent, Int iHorFilterIndex, Int iVerFilterIndex)
{
SEIChromaSamplingFilterHint *seiChromaSamplingFilterHint = new SEIChromaSamplingFilterHint();
seiChromaSamplingFilterHint->m_verChromaFilterIdc = iVerFilterIndex;
seiChromaSamplingFilterHint->m_horChromaFilterIdc = iHorFilterIndex;
seiChromaSamplingFilterHint->m_verFilteringProcessFlag = 1;
seiChromaSamplingFilterHint->m_targetFormatIdc = 3;
seiChromaSamplingFilterHint->m_perfectReconstructionFlag = false;
if(seiChromaSamplingFilterHint->m_verChromaFilterIdc == 1)
{
seiChromaSamplingFilterHint->m_numVerticalFilters = 1;
seiChromaSamplingFilterHint->m_verTapLengthMinus1 = (Int*)malloc(seiChromaSamplingFilterHint->m_numVerticalFilters * sizeof(Int));
seiChromaSamplingFilterHint->m_verFilterCoeff = (Int**)malloc(seiChromaSamplingFilterHint->m_numVerticalFilters * sizeof(Int*));
for(Int i = 0; i < seiChromaSamplingFilterHint->m_numVerticalFilters; i ++)
{
seiChromaSamplingFilterHint->m_verTapLengthMinus1[i] = 0;
seiChromaSamplingFilterHint->m_verFilterCoeff[i] = (Int*)malloc(seiChromaSamplingFilterHint->m_verTapLengthMinus1[i] * sizeof(Int));
for(Int j = 0; j < seiChromaSamplingFilterHint->m_verTapLengthMinus1[i]; j ++)
{
seiChromaSamplingFilterHint->m_verFilterCoeff[i][j] = 0;
}
}
}
else
{
seiChromaSamplingFilterHint->m_numVerticalFilters = 0;
seiChromaSamplingFilterHint->m_verTapLengthMinus1 = NULL;
seiChromaSamplingFilterHint->m_verFilterCoeff = NULL;
}
if(seiChromaSamplingFilterHint->m_horChromaFilterIdc == 1)
{
seiChromaSamplingFilterHint->m_numHorizontalFilters = 1;
seiChromaSamplingFilterHint->m_horTapLengthMinus1 = (Int*)malloc(seiChromaSamplingFilterHint->m_numHorizontalFilters * sizeof(Int));
seiChromaSamplingFilterHint->m_horFilterCoeff = (Int**)malloc(seiChromaSamplingFilterHint->m_numHorizontalFilters * sizeof(Int*));
for(Int i = 0; i < seiChromaSamplingFilterHint->m_numHorizontalFilters; i ++)
{
seiChromaSamplingFilterHint->m_horTapLengthMinus1[i] = 0;
seiChromaSamplingFilterHint->m_horFilterCoeff[i] = (Int*)malloc(seiChromaSamplingFilterHint->m_horTapLengthMinus1[i] * sizeof(Int));
for(Int j = 0; j < seiChromaSamplingFilterHint->m_horTapLengthMinus1[i]; j ++)
{
seiChromaSamplingFilterHint->m_horFilterCoeff[i][j] = 0;
}
}
}
else
{
seiChromaSamplingFilterHint->m_numHorizontalFilters = 0;
seiChromaSamplingFilterHint->m_horTapLengthMinus1 = NULL;
seiChromaSamplingFilterHint->m_horFilterCoeff = NULL;
}
return seiChromaSamplingFilterHint;
}
Void TEncGOP::xCreateLeadingSEIMessages (/*SEIMessages seiMessages,*/ AccessUnit &accessUnit, TComSPS *sps)
{
OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI);
if(m_pcCfg->getActiveParameterSetsSEIEnabled())
{
SEIActiveParameterSets *sei = xCreateSEIActiveParameterSets (sps);
//nalu = NALUnit(NAL_UNIT_PREFIX_SEI);
m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
m_seiWriter.writeSEImessage(nalu.m_Bitstream, *sei, sps);
writeRBSPTrailingBits(nalu.m_Bitstream);
accessUnit.push_back(new NALUnitEBSP(nalu));
delete sei;
m_activeParameterSetSEIPresentInAU = true;
}
if(m_pcCfg->getFramePackingArrangementSEIEnabled())
{
SEIFramePacking *sei = xCreateSEIFramePacking ();
nalu = NALUnit(NAL_UNIT_PREFIX_SEI);
m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
m_seiWriter.writeSEImessage(nalu.m_Bitstream, *sei, sps);
writeRBSPTrailingBits(nalu.m_Bitstream);
accessUnit.push_back(new NALUnitEBSP(nalu));
delete sei;
}
if(m_pcCfg->getSegmentedRectFramePackingArrangementSEIEnabled())
{
SEISegmentedRectFramePacking *sei = xCreateSEISegmentedRectFramePacking ();
nalu = NALUnit(NAL_UNIT_PREFIX_SEI);
m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
m_seiWriter.writeSEImessage(nalu.m_Bitstream, *sei, sps);
writeRBSPTrailingBits(nalu.m_Bitstream);
accessUnit.push_back(new NALUnitEBSP(nalu));
delete sei;
}
if (m_pcCfg->getDisplayOrientationSEIAngle())
{
SEIDisplayOrientation *sei = xCreateSEIDisplayOrientation();
nalu = NALUnit(NAL_UNIT_PREFIX_SEI);
m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
m_seiWriter.writeSEImessage(nalu.m_Bitstream, *sei, sps);
writeRBSPTrailingBits(nalu.m_Bitstream);
accessUnit.push_back(new NALUnitEBSP(nalu));
delete sei;
}
if(m_pcCfg->getToneMappingInfoSEIEnabled())
{
SEIToneMappingInfo *sei = xCreateSEIToneMappingInfo ();
nalu = NALUnit(NAL_UNIT_PREFIX_SEI);
m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
m_seiWriter.writeSEImessage(nalu.m_Bitstream, *sei, sps);
writeRBSPTrailingBits(nalu.m_Bitstream);
accessUnit.push_back(new NALUnitEBSP(nalu));
delete sei;
}
if(m_pcCfg->getTMCTSSEIEnabled())
{
SEITempMotionConstrainedTileSets *sei_tmcts = xCreateSEITempMotionConstrainedTileSets ();
nalu = NALUnit(NAL_UNIT_PREFIX_SEI);
m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
m_seiWriter.writeSEImessage(nalu.m_Bitstream, *sei_tmcts, sps);
writeRBSPTrailingBits(nalu.m_Bitstream);
accessUnit.push_back(new NALUnitEBSP(nalu));
delete sei_tmcts;
}
if(m_pcCfg->getTimeCodeSEIEnabled())
{
SEITimeCode sei_time_code;
// Set data as per command line options
sei_time_code.numClockTs = m_pcCfg->getNumberOfTimesets();
for(Int i = 0; i < sei_time_code.numClockTs; i++)
sei_time_code.timeSetArray[i] = m_pcCfg->getTimeSet(i);
nalu = NALUnit(NAL_UNIT_PREFIX_SEI);
m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
m_seiWriter.writeSEImessage(nalu.m_Bitstream, sei_time_code, sps);
writeRBSPTrailingBits(nalu.m_Bitstream);
accessUnit.push_back(new NALUnitEBSP(nalu));
}
if(m_pcCfg->getKneeSEIEnabled())
{
SEIKneeFunctionInfo *sei = xCreateSEIKneeFunctionInfo();
nalu = NALUnit(NAL_UNIT_PREFIX_SEI);
m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
m_seiWriter.writeSEImessage(nalu.m_Bitstream, *sei, sps);
writeRBSPTrailingBits(nalu.m_Bitstream);
accessUnit.push_back(new NALUnitEBSP(nalu));
delete sei;
}
if(m_pcCfg->getMasteringDisplaySEI().colourVolumeSEIEnabled)
{
const TComSEIMasteringDisplay &seiCfg=m_pcCfg->getMasteringDisplaySEI();
SEIMasteringDisplayColourVolume mdcv;
mdcv.values = seiCfg;
nalu = NALUnit(NAL_UNIT_PREFIX_SEI);
m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
m_seiWriter.writeSEImessage(nalu.m_Bitstream, mdcv, sps);
writeRBSPTrailingBits(nalu.m_Bitstream);
accessUnit.push_back(new NALUnitEBSP(nalu));
}
}
// ====================================================================================================================
// Public member functions
// ====================================================================================================================
Void TEncGOP::compressGOP( Int iPOCLast, Int iNumPicRcvd, TComList<TComPic*>& rcListPic,
TComList<TComPicYuv*>& rcListPicYuvRecOut, std::list<AccessUnit>& accessUnitsInGOP,
Bool isField, Bool isTff, const InputColourSpaceConversion snr_conversion, const Bool printFrameMSE )
{
// TODO: Split this function up.
TComPic* pcPic = NULL;
TComPicYuv* pcPicYuvRecOut;
TComSlice* pcSlice;
TComOutputBitstream *pcBitstreamRedirect;
pcBitstreamRedirect = new TComOutputBitstream;
AccessUnit::iterator itLocationToPushSliceHeaderNALU; // used to store location where NALU containing slice header is to be inserted
xInitGOP( iPOCLast, iNumPicRcvd, rcListPic, rcListPicYuvRecOut, isField );
m_iNumPicCoded = 0;
SEIPictureTiming pictureTimingSEI;
Bool writeSOP = m_pcCfg->getSOPDescriptionSEIEnabled();
// Initialize Scalable Nesting SEI with single layer values
SEIScalableNesting scalableNestingSEI;
scalableNestingSEI.m_bitStreamSubsetFlag = 1; // If the nested SEI messages are picture buffereing SEI mesages, picure timing SEI messages or sub-picture timing SEI messages, bitstream_subset_flag shall be equal to 1
scalableNestingSEI.m_nestingOpFlag = 0;
scalableNestingSEI.m_nestingNumOpsMinus1 = 0; //nesting_num_ops_minus1
scalableNestingSEI.m_allLayersFlag = 0;
scalableNestingSEI.m_nestingNoOpMaxTemporalIdPlus1 = 6 + 1; //nesting_no_op_max_temporal_id_plus1
scalableNestingSEI.m_nestingNumLayersMinus1 = 1 - 1; //nesting_num_layers_minus1
scalableNestingSEI.m_nestingLayerId[0] = 0;
scalableNestingSEI.m_callerOwnsSEIs = true;
Int picSptDpbOutputDuDelay = 0;
UInt *accumBitsDU = NULL;
UInt *accumNalsDU = NULL;
SEIDecodingUnitInfo decodingUnitInfoSEI;
#if EFFICIENT_FIELD_IRAP
Int IRAPGOPid = -1;
Bool IRAPtoReorder = false;
Bool swapIRAPForward = false;
if(isField)
{
Int pocCurr;
for ( Int iGOPid=0; iGOPid < m_iGopSize; iGOPid++ )
{
// determine actual POC
if(iPOCLast == 0) //case first frame or first top field
{
pocCurr=0;
}
else if(iPOCLast == 1 && isField) //case first bottom field, just like the first frame, the poc computation is not right anymore, we set the right value
{
pocCurr = 1;
}
else
{
pocCurr = iPOCLast - iNumPicRcvd + m_pcCfg->getGOPEntry(iGOPid).m_POC - isField;
}
// check if POC corresponds to IRAP
NalUnitType tmpUnitType = getNalUnitType(pocCurr, m_iLastIDR, isField);
if(tmpUnitType >= NAL_UNIT_CODED_SLICE_BLA_W_LP && tmpUnitType <= NAL_UNIT_CODED_SLICE_CRA) // if picture is an IRAP
{
if(pocCurr%2 == 0 && iGOPid < m_iGopSize-1 && m_pcCfg->getGOPEntry(iGOPid).m_POC == m_pcCfg->getGOPEntry(iGOPid+1).m_POC-1)
{ // if top field and following picture in enc order is associated bottom field
IRAPGOPid = iGOPid;
IRAPtoReorder = true;
swapIRAPForward = true;
break;
}
if(pocCurr%2 != 0 && iGOPid > 0 && m_pcCfg->getGOPEntry(iGOPid).m_POC == m_pcCfg->getGOPEntry(iGOPid-1).m_POC+1)
{
// if picture is an IRAP remember to process it first
IRAPGOPid = iGOPid;
IRAPtoReorder = true;
swapIRAPForward = false;
break;
}
}
}
}
#endif
// reset flag indicating whether pictures have been encoded
for ( Int iGOPid=0; iGOPid < m_iGopSize; iGOPid++ )
{
m_pcCfg->setEncodedFlag(iGOPid, false);
}
for ( Int iGOPid=0; iGOPid < m_iGopSize; iGOPid++ )
{
#if EFFICIENT_FIELD_IRAP
if(IRAPtoReorder)
{
if(swapIRAPForward)
{
if(iGOPid == IRAPGOPid)
{
iGOPid = IRAPGOPid +1;
}
else if(iGOPid == IRAPGOPid +1)
{
iGOPid = IRAPGOPid;
}
}
else
{
if(iGOPid == IRAPGOPid -1)
{
iGOPid = IRAPGOPid;
}
else if(iGOPid == IRAPGOPid)
{
iGOPid = IRAPGOPid -1;
}
}
}
#endif
UInt uiColDir = 1;
//-- For time output for each slice
clock_t iBeforeTime = clock();
//select uiColDir
Int iCloseLeft=1, iCloseRight=-1;
for(Int i = 0; i<m_pcCfg->getGOPEntry(iGOPid).m_numRefPics; i++)
{
Int iRef = m_pcCfg->getGOPEntry(iGOPid).m_referencePics[i];
if(iRef>0&&(iRef<iCloseRight||iCloseRight==-1))
{
iCloseRight=iRef;
}
else if(iRef<0&&(iRef>iCloseLeft||iCloseLeft==1))
{
iCloseLeft=iRef;
}
}
if(iCloseRight>-1)
{
iCloseRight=iCloseRight+m_pcCfg->getGOPEntry(iGOPid).m_POC-1;
}
if(iCloseLeft<1)
{
iCloseLeft=iCloseLeft+m_pcCfg->getGOPEntry(iGOPid).m_POC-1;
while(iCloseLeft<0)
{
iCloseLeft+=m_iGopSize;
}
}
Int iLeftQP=0, iRightQP=0;
for(Int i=0; i<m_iGopSize; i++)
{
if(m_pcCfg->getGOPEntry(i).m_POC==(iCloseLeft%m_iGopSize)+1)
{
iLeftQP= m_pcCfg->getGOPEntry(i).m_QPOffset;
}
if (m_pcCfg->getGOPEntry(i).m_POC==(iCloseRight%m_iGopSize)+1)
{
iRightQP=m_pcCfg->getGOPEntry(i).m_QPOffset;
}
}
if(iCloseRight>-1&&iRightQP<iLeftQP)
{
uiColDir=0;
}
/////////////////////////////////////////////////////////////////////////////////////////////////// Initial to start encoding
Int iTimeOffset;
Int pocCurr;
if(iPOCLast == 0) //case first frame or first top field
{
pocCurr=0;
iTimeOffset = 1;
}
else if(iPOCLast == 1 && isField) //case first bottom field, just like the first frame, the poc computation is not right anymore, we set the right value
{
pocCurr = 1;
iTimeOffset = 1;
}
else
{
pocCurr = iPOCLast - iNumPicRcvd + m_pcCfg->getGOPEntry(iGOPid).m_POC - ((isField && m_iGopSize>1) ? 1:0);
iTimeOffset = m_pcCfg->getGOPEntry(iGOPid).m_POC;
}
if(pocCurr>=m_pcCfg->getFramesToBeEncoded())
{
#if EFFICIENT_FIELD_IRAP
if(IRAPtoReorder)
{
if(swapIRAPForward)
{
if(iGOPid == IRAPGOPid)
{
iGOPid = IRAPGOPid +1;
IRAPtoReorder = false;
}
else if(iGOPid == IRAPGOPid +1)
{
iGOPid --;
}
}
else
{
if(iGOPid == IRAPGOPid)
{
iGOPid = IRAPGOPid -1;
}
else if(iGOPid == IRAPGOPid -1)
{
iGOPid = IRAPGOPid;
IRAPtoReorder = false;
}
}
}
#endif
continue;
}
if( getNalUnitType(pocCurr, m_iLastIDR, isField) == NAL_UNIT_CODED_SLICE_IDR_W_RADL || getNalUnitType(pocCurr, m_iLastIDR, isField) == NAL_UNIT_CODED_SLICE_IDR_N_LP )
{
m_iLastIDR = pocCurr;
}
// start a new access unit: create an entry in the list of output access units
accessUnitsInGOP.push_back(AccessUnit());
AccessUnit& accessUnit = accessUnitsInGOP.back();
xGetBuffer( rcListPic, rcListPicYuvRecOut, iNumPicRcvd, iTimeOffset, pcPic, pcPicYuvRecOut, pocCurr, isField );
// Slice data initialization
pcPic->clearSliceBuffer();
assert(pcPic->getNumAllocatedSlice() == 1);
m_pcSliceEncoder->setSliceIdx(0);
pcPic->setCurrSliceIdx(0);
m_pcSliceEncoder->initEncSlice ( pcPic, iPOCLast, pocCurr, iNumPicRcvd, iGOPid, pcSlice, m_pcEncTop->getSPS(), m_pcEncTop->getPPS(), isField );
//Set Frame/Field coding
pcSlice->getPic()->setField(isField);
pcSlice->setLastIDR(m_iLastIDR);
pcSlice->setSliceIdx(0);
//set default slice level flag to the same as SPS level flag
pcSlice->setLFCrossSliceBoundaryFlag( pcSlice->getPPS()->getLoopFilterAcrossSlicesEnabledFlag() );
pcSlice->setScalingList ( m_pcEncTop->getScalingList() );
if(m_pcEncTop->getUseScalingListId() == SCALING_LIST_OFF)
{
m_pcEncTop->getTrQuant()->setFlatScalingList(pcSlice->getSPS()->getChromaFormatIdc());
m_pcEncTop->getTrQuant()->setUseScalingList(false);
m_pcEncTop->getSPS()->setScalingListPresentFlag(false);
m_pcEncTop->getPPS()->setScalingListPresentFlag(false);
}
else if(m_pcEncTop->getUseScalingListId() == SCALING_LIST_DEFAULT)
{
pcSlice->setDefaultScalingList ();
m_pcEncTop->getSPS()->setScalingListPresentFlag(false);
m_pcEncTop->getPPS()->setScalingListPresentFlag(false);
m_pcEncTop->getTrQuant()->setScalingList(pcSlice->getScalingList(), pcSlice->getSPS()->getChromaFormatIdc());
m_pcEncTop->getTrQuant()->setUseScalingList(true);
}
else if(m_pcEncTop->getUseScalingListId() == SCALING_LIST_FILE_READ)
{
pcSlice->setDefaultScalingList ();
if(pcSlice->getScalingList()->xParseScalingList(m_pcCfg->getScalingListFile()))
{
Bool bParsedScalingList=false; // Use of boolean so that assertion outputs useful string
assert(bParsedScalingList);
exit(1);
}
pcSlice->getScalingList()->checkDcOfMatrix();
m_pcEncTop->getSPS()->setScalingListPresentFlag(pcSlice->checkDefaultScalingList());
m_pcEncTop->getPPS()->setScalingListPresentFlag(false);
m_pcEncTop->getTrQuant()->setScalingList(pcSlice->getScalingList(), pcSlice->getSPS()->getChromaFormatIdc());
m_pcEncTop->getTrQuant()->setUseScalingList(true);
}
else
{
printf("error : ScalingList == %d no support\n",m_pcEncTop->getUseScalingListId());
assert(0);
}
if(pcSlice->getSliceType()==B_SLICE&&m_pcCfg->getGOPEntry(iGOPid).m_sliceType=='P')
{
pcSlice->setSliceType(P_SLICE);
}
if(pcSlice->getSliceType()==B_SLICE&&m_pcCfg->getGOPEntry(iGOPid).m_sliceType=='I')
{
pcSlice->setSliceType(I_SLICE);
}
// Set the nal unit type
pcSlice->setNalUnitType(getNalUnitType(pocCurr, m_iLastIDR, isField));
if(pcSlice->getTemporalLayerNonReferenceFlag())
{
if (pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_TRAIL_R &&
!(m_iGopSize == 1 && pcSlice->getSliceType() == I_SLICE))
// Add this condition to avoid POC issues with encoder_intra_main.cfg configuration (see #1127 in bug tracker)
{
pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_TRAIL_N);
}
if(pcSlice->getNalUnitType()==NAL_UNIT_CODED_SLICE_RADL_R)
{
pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_RADL_N);
}
if(pcSlice->getNalUnitType()==NAL_UNIT_CODED_SLICE_RASL_R)
{
pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_RASL_N);
}
}
#if EFFICIENT_FIELD_IRAP
if ( pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_LP
|| pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_RADL
|| pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_N_LP
|| pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_W_RADL
|| pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_N_LP
|| pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_CRA ) // IRAP picture
{
m_associatedIRAPType = pcSlice->getNalUnitType();
m_associatedIRAPPOC = pocCurr;
}
pcSlice->setAssociatedIRAPType(m_associatedIRAPType);
pcSlice->setAssociatedIRAPPOC(m_associatedIRAPPOC);
#endif
// Do decoding refresh marking if any
pcSlice->decodingRefreshMarking(m_pocCRA, m_bRefreshPending, rcListPic);
m_pcEncTop->selectReferencePictureSet(pcSlice, pocCurr, iGOPid);
pcSlice->getRPS()->setNumberOfLongtermPictures(0);
#if !EFFICIENT_FIELD_IRAP
if ( pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_LP
|| pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_RADL
|| pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_N_LP
|| pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_W_RADL
|| pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_N_LP
|| pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_CRA ) // IRAP picture
{
m_associatedIRAPType = pcSlice->getNalUnitType();
m_associatedIRAPPOC = pocCurr;
}
pcSlice->setAssociatedIRAPType(m_associatedIRAPType);
pcSlice->setAssociatedIRAPPOC(m_associatedIRAPPOC);
#endif
#if ALLOW_RECOVERY_POINT_AS_RAP
if ((pcSlice->checkThatAllRefPicsAreAvailable(rcListPic, pcSlice->getRPS(), false, m_iLastRecoveryPicPOC, m_pcCfg->getDecodingRefreshType() == 3) != 0) || (pcSlice->isIRAP())
#if EFFICIENT_FIELD_IRAP
|| (isField && pcSlice->getAssociatedIRAPType() >= NAL_UNIT_CODED_SLICE_BLA_W_LP && pcSlice->getAssociatedIRAPType() <= NAL_UNIT_CODED_SLICE_CRA && pcSlice->getAssociatedIRAPPOC() == pcSlice->getPOC()+1)
#endif
)
{
pcSlice->createExplicitReferencePictureSetFromReference(rcListPic, pcSlice->getRPS(), pcSlice->isIRAP(), m_iLastRecoveryPicPOC, m_pcCfg->getDecodingRefreshType() == 3);
}
#else
if ((pcSlice->checkThatAllRefPicsAreAvailable(rcListPic, pcSlice->getRPS(), false) != 0) || (pcSlice->isIRAP()))
{
pcSlice->createExplicitReferencePictureSetFromReference(rcListPic, pcSlice->getRPS(), pcSlice->isIRAP());
}
#endif
pcSlice->applyReferencePictureSet(rcListPic, pcSlice->getRPS());
if(pcSlice->getTLayer() > 0
&& !( pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_RADL_N // Check if not a leading picture
|| pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_RADL_R
|| pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_RASL_N
|| pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_RASL_R )
)
{
if(pcSlice->isTemporalLayerSwitchingPoint(rcListPic) || pcSlice->getSPS()->getTemporalIdNestingFlag())
{
if(pcSlice->getTemporalLayerNonReferenceFlag())
{
pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_TSA_N);
}
else
{
pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_TSA_R);
}
}
else if(pcSlice->isStepwiseTemporalLayerSwitchingPointCandidate(rcListPic))
{
Bool isSTSA=true;
for(Int ii=iGOPid+1;(ii<m_pcCfg->getGOPSize() && isSTSA==true);ii++)
{
Int lTid= m_pcCfg->getGOPEntry(ii).m_temporalId;
if(lTid==pcSlice->getTLayer())
{
TComReferencePictureSet* nRPS = pcSlice->getSPS()->getRPSList()->getReferencePictureSet(ii);
for(Int jj=0;jj<nRPS->getNumberOfPictures();jj++)
{
if(nRPS->getUsed(jj))
{
Int tPoc=m_pcCfg->getGOPEntry(ii).m_POC+nRPS->getDeltaPOC(jj);
Int kk=0;
for(kk=0;kk<m_pcCfg->getGOPSize();kk++)
{
if(m_pcCfg->getGOPEntry(kk).m_POC==tPoc)
break;
}
Int tTid=m_pcCfg->getGOPEntry(kk).m_temporalId;
if(tTid >= pcSlice->getTLayer())
{
isSTSA=false;
break;
}
}
}
}
}
if(isSTSA==true)
{
if(pcSlice->getTemporalLayerNonReferenceFlag())
{
pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_STSA_N);
}
else
{
pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_STSA_R);
}
}
}
}
arrangeLongtermPicturesInRPS(pcSlice, rcListPic);
TComRefPicListModification* refPicListModification = pcSlice->getRefPicListModification();
refPicListModification->setRefPicListModificationFlagL0(0);
refPicListModification->setRefPicListModificationFlagL1(0);
pcSlice->setNumRefIdx(REF_PIC_LIST_0,min(m_pcCfg->getGOPEntry(iGOPid).m_numRefPicsActive,pcSlice->getRPS()->getNumberOfPictures()));
pcSlice->setNumRefIdx(REF_PIC_LIST_1,min(m_pcCfg->getGOPEntry(iGOPid).m_numRefPicsActive,pcSlice->getRPS()->getNumberOfPictures()));
#if ADAPTIVE_QP_SELECTION
pcSlice->setTrQuant( m_pcEncTop->getTrQuant() );
#endif
// Set reference list
pcSlice->setRefPicList ( rcListPic );
// Slice info. refinement
if ( (pcSlice->getSliceType() == B_SLICE) && (pcSlice->getNumRefIdx(REF_PIC_LIST_1) == 0) )
{
pcSlice->setSliceType ( P_SLICE );
}
if (pcSlice->getSliceType() == B_SLICE)
{
pcSlice->setColFromL0Flag(1-uiColDir);
Bool bLowDelay = true;
Int iCurrPOC = pcSlice->getPOC();
Int iRefIdx = 0;
for (iRefIdx = 0; iRefIdx < pcSlice->getNumRefIdx(REF_PIC_LIST_0) && bLowDelay; iRefIdx++)
{
if ( pcSlice->getRefPic(REF_PIC_LIST_0, iRefIdx)->getPOC() > iCurrPOC )
{
bLowDelay = false;
}
}
for (iRefIdx = 0; iRefIdx < pcSlice->getNumRefIdx(REF_PIC_LIST_1) && bLowDelay; iRefIdx++)
{
if ( pcSlice->getRefPic(REF_PIC_LIST_1, iRefIdx)->getPOC() > iCurrPOC )
{
bLowDelay = false;
}
}
pcSlice->setCheckLDC(bLowDelay);
}
else
{
pcSlice->setCheckLDC(true);
}
uiColDir = 1-uiColDir;
//-------------------------------------------------------------
pcSlice->setRefPOCList();
pcSlice->setList1IdxToList0Idx();
if (m_pcEncTop->getTMVPModeId() == 2)
{
if (iGOPid == 0) // first picture in SOP (i.e. forward B)
{
pcSlice->setEnableTMVPFlag(0);
}
else
{
// Note: pcSlice->getColFromL0Flag() is assumed to be always 0 and getcolRefIdx() is always 0.
pcSlice->setEnableTMVPFlag(1);
}
pcSlice->getSPS()->setTMVPFlagsPresent(1);
}
else if (m_pcEncTop->getTMVPModeId() == 1)
{
pcSlice->getSPS()->setTMVPFlagsPresent(1);
pcSlice->setEnableTMVPFlag(1);
}
else
{
pcSlice->getSPS()->setTMVPFlagsPresent(0);
pcSlice->setEnableTMVPFlag(0);
}
/////////////////////////////////////////////////////////////////////////////////////////////////// Compress a slice
// Slice compression
if (m_pcCfg->getUseASR())
{
m_pcSliceEncoder->setSearchRange(pcSlice);
}
Bool bGPBcheck=false;
if ( pcSlice->getSliceType() == B_SLICE)
{
if ( pcSlice->getNumRefIdx(RefPicList( 0 ) ) == pcSlice->getNumRefIdx(RefPicList( 1 ) ) )
{
bGPBcheck=true;
Int i;
for ( i=0; i < pcSlice->getNumRefIdx(RefPicList( 1 ) ); i++ )
{
if ( pcSlice->getRefPOC(RefPicList(1), i) != pcSlice->getRefPOC(RefPicList(0), i) )
{
bGPBcheck=false;
break;
}
}
}
}
if(bGPBcheck)
{
pcSlice->setMvdL1ZeroFlag(true);
}
else
{
pcSlice->setMvdL1ZeroFlag(false);
}
pcPic->getSlice(pcSlice->getSliceIdx())->setMvdL1ZeroFlag(pcSlice->getMvdL1ZeroFlag());
pcPic->getPicSym()->initTiles(pcSlice->getPPS());
pcPic->getPicSym()->initCtuTsRsAddrMaps();
Double lambda = 0.0;
Int actualHeadBits = 0;
Int actualTotalBits = 0;
Int estimatedBits = 0;
Int tmpBitsBeforeWriting = 0;
if ( m_pcCfg->getUseRateCtrl() )
{
Int frameLevel = m_pcRateCtrl->getRCSeq()->getGOPID2Level( iGOPid );
if ( pcPic->getSlice(0)->getSliceType() == I_SLICE )
{
frameLevel = 0;
}
m_pcRateCtrl->initRCPic( frameLevel );
estimatedBits = m_pcRateCtrl->getRCPic()->getTargetBits();
Int sliceQP = m_pcCfg->getInitialQP();
if ( ( pcSlice->getPOC() == 0 && m_pcCfg->getInitialQP() > 0 ) || ( frameLevel == 0 && m_pcCfg->getForceIntraQP() ) ) // QP is specified
{
Int NumberBFrames = ( m_pcCfg->getGOPSize() - 1 );
Double dLambda_scale = 1.0 - Clip3( 0.0, 0.5, 0.05*(Double)NumberBFrames );
Double dQPFactor = 0.57*dLambda_scale;
Int SHIFT_QP = 12;
Int bitdepth_luma_qp_scale = 0;
Double qp_temp = (Double) sliceQP + bitdepth_luma_qp_scale - SHIFT_QP;
lambda = dQPFactor*pow( 2.0, qp_temp/3.0 );
}
else if ( frameLevel == 0 ) // intra case, but use the model
{
m_pcSliceEncoder->calCostSliceI(pcPic);
if ( m_pcCfg->getIntraPeriod() != 1 ) // do not refine allocated bits for all intra case
{
Int bits = m_pcRateCtrl->getRCSeq()->getLeftAverageBits();
bits = m_pcRateCtrl->getRCPic()->getRefineBitsForIntra( bits );
if ( bits < 200 )
{
bits = 200;
}
m_pcRateCtrl->getRCPic()->setTargetBits( bits );
}
list<TEncRCPic*> listPreviousPicture = m_pcRateCtrl->getPicList();
m_pcRateCtrl->getRCPic()->getLCUInitTargetBits();
lambda = m_pcRateCtrl->getRCPic()->estimatePicLambda( listPreviousPicture, pcSlice->getSliceType());
sliceQP = m_pcRateCtrl->getRCPic()->estimatePicQP( lambda, listPreviousPicture );
}
else // normal case
{
list<TEncRCPic*> listPreviousPicture = m_pcRateCtrl->getPicList();
lambda = m_pcRateCtrl->getRCPic()->estimatePicLambda( listPreviousPicture, pcSlice->getSliceType());
sliceQP = m_pcRateCtrl->getRCPic()->estimatePicQP( lambda, listPreviousPicture );
}
sliceQP = Clip3( -pcSlice->getSPS()->getQpBDOffset(CHANNEL_TYPE_LUMA), MAX_QP, sliceQP );
m_pcRateCtrl->getRCPic()->setPicEstQP( sliceQP );
m_pcSliceEncoder->resetQP( pcPic, sliceQP, lambda );
}
UInt uiNumSliceSegments = 1;
// Allocate some coders, now the number of tiles are known.
const Int numSubstreams = pcSlice->getPPS()->getNumSubstreams();
std::vector<TComOutputBitstream> substreamsOut(numSubstreams);
// now compress (trial encode) the various slice segments (slices, and dependent slices)
{
const UInt numberOfCtusInFrame=pcPic->getPicSym()->getNumberOfCtusInFrame();
pcSlice->setSliceCurStartCtuTsAddr( 0 );
pcSlice->setSliceSegmentCurStartCtuTsAddr( 0 );
for(UInt nextCtuTsAddr = 0; nextCtuTsAddr < numberOfCtusInFrame; )
{
m_pcSliceEncoder->precompressSlice( pcPic );
m_pcSliceEncoder->compressSlice ( pcPic );
const UInt curSliceSegmentEnd = pcSlice->getSliceSegmentCurEndCtuTsAddr();
if (curSliceSegmentEnd < numberOfCtusInFrame)
{
const Bool bNextSegmentIsDependentSlice=curSliceSegmentEnd<pcSlice->getSliceCurEndCtuTsAddr();
const UInt sliceBits=pcSlice->getSliceBits();
pcPic->allocateNewSlice();
// prepare for next slice
pcPic->setCurrSliceIdx ( uiNumSliceSegments );
m_pcSliceEncoder->setSliceIdx ( uiNumSliceSegments );
pcSlice = pcPic->getSlice ( uiNumSliceSegments );
pcSlice->copySliceInfo ( pcPic->getSlice(uiNumSliceSegments-1) );
pcSlice->setSliceIdx ( uiNumSliceSegments );
if (bNextSegmentIsDependentSlice)
{
pcSlice->setSliceBits(sliceBits);
}
else
{
pcSlice->setSliceCurStartCtuTsAddr ( curSliceSegmentEnd );
pcSlice->setSliceBits(0);
}
pcSlice->setDependentSliceSegmentFlag(bNextSegmentIsDependentSlice);
pcSlice->setSliceSegmentCurStartCtuTsAddr ( curSliceSegmentEnd );
uiNumSliceSegments ++;
}
nextCtuTsAddr = curSliceSegmentEnd;
}
}
pcSlice = pcPic->getSlice(0);
// SAO parameter estimation using non-deblocked pixels for CTU bottom and right boundary areas
if( pcSlice->getSPS()->getUseSAO() && m_pcCfg->getSaoCtuBoundary() )
{
m_pcSAO->getPreDBFStatistics(pcPic);
}
//-- Loop filter
Bool bLFCrossTileBoundary = pcSlice->getPPS()->getLoopFilterAcrossTilesEnabledFlag();
m_pcLoopFilter->setCfg(bLFCrossTileBoundary);
if ( m_pcCfg->getDeblockingFilterMetric() )
{
dblMetric(pcPic, uiNumSliceSegments);
}
m_pcLoopFilter->loopFilterPic( pcPic );
/////////////////////////////////////////////////////////////////////////////////////////////////// File writing
// Set entropy coder
m_pcEntropyCoder->setEntropyCoder ( m_pcCavlcCoder, pcSlice );
/* write various header sets. */
if ( m_bSeqFirst )
{
OutputNALUnit nalu(NAL_UNIT_VPS);
m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
m_pcEntropyCoder->encodeVPS(m_pcEncTop->getVPS());
writeRBSPTrailingBits(nalu.m_Bitstream);
accessUnit.push_back(new NALUnitEBSP(nalu));
actualTotalBits += UInt(accessUnit.back()->m_nalUnitData.str().size()) * 8;
nalu = NALUnit(NAL_UNIT_SPS);
m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
if (m_bSeqFirst)
{
pcSlice->getSPS()->setNumLongTermRefPicSPS(m_numLongTermRefPicSPS);
assert (m_numLongTermRefPicSPS <= MAX_NUM_LONG_TERM_REF_PICS);
for (Int k = 0; k < m_numLongTermRefPicSPS; k++)
{
pcSlice->getSPS()->setLtRefPicPocLsbSps(k, m_ltRefPicPocLsbSps[k]);
pcSlice->getSPS()->setUsedByCurrPicLtSPSFlag(k, m_ltRefPicUsedByCurrPicFlag[k]);
}
}
if( m_pcCfg->getPictureTimingSEIEnabled() || m_pcCfg->getDecodingUnitInfoSEIEnabled() )
{
UInt maxCU = m_pcCfg->getSliceArgument() >> ( pcSlice->getSPS()->getMaxCUDepth() << 1);
UInt numDU = ( m_pcCfg->getSliceMode() == FIXED_NUMBER_OF_CTU ) ? ( pcPic->getNumberOfCtusInFrame() / maxCU ) : ( 0 );
if( pcPic->getNumberOfCtusInFrame() % maxCU != 0 || numDU == 0 )
{
numDU ++;
}
pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->setNumDU( numDU );
pcSlice->getSPS()->setHrdParameters( m_pcCfg->getFrameRate(), numDU, m_pcCfg->getTargetBitrate(), ( m_pcCfg->getIntraPeriod() > 0 ) );
}
if( m_pcCfg->getBufferingPeriodSEIEnabled() || m_pcCfg->getPictureTimingSEIEnabled() || m_pcCfg->getDecodingUnitInfoSEIEnabled() )
{
pcSlice->getSPS()->getVuiParameters()->setHrdParametersPresentFlag( true );
}
m_pcEntropyCoder->encodeSPS(pcSlice->getSPS());
writeRBSPTrailingBits(nalu.m_Bitstream);
accessUnit.push_back(new NALUnitEBSP(nalu));
actualTotalBits += UInt(accessUnit.back()->m_nalUnitData.str().size()) * 8;
nalu = NALUnit(NAL_UNIT_PPS);
m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
m_pcEntropyCoder->encodePPS(pcSlice->getPPS());
writeRBSPTrailingBits(nalu.m_Bitstream);
accessUnit.push_back(new NALUnitEBSP(nalu));
actualTotalBits += UInt(accessUnit.back()->m_nalUnitData.str().size()) * 8;
xCreateLeadingSEIMessages(accessUnit, pcSlice->getSPS());
m_bSeqFirst = false;
}
if (writeSOP) // write SOP description SEI (if enabled) at the beginning of GOP
{
Int SOPcurrPOC = pocCurr;
OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI);
m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice);
m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
SEISOPDescription SOPDescriptionSEI;
SOPDescriptionSEI.m_sopSeqParameterSetId = pcSlice->getSPS()->getSPSId();
UInt i = 0;
UInt prevEntryId = iGOPid;
for (Int j = iGOPid; j < m_iGopSize; j++)
{
Int deltaPOC = m_pcCfg->getGOPEntry(j).m_POC - m_pcCfg->getGOPEntry(prevEntryId).m_POC;
if ((SOPcurrPOC + deltaPOC) < m_pcCfg->getFramesToBeEncoded())
{
SOPcurrPOC += deltaPOC;
SOPDescriptionSEI.m_sopDescVclNaluType[i] = getNalUnitType(SOPcurrPOC, m_iLastIDR, isField);
SOPDescriptionSEI.m_sopDescTemporalId[i] = m_pcCfg->getGOPEntry(j).m_temporalId;
SOPDescriptionSEI.m_sopDescStRpsIdx[i] = m_pcEncTop->getReferencePictureSetIdxForSOP(pcSlice, SOPcurrPOC, j);
SOPDescriptionSEI.m_sopDescPocDelta[i] = deltaPOC;
prevEntryId = j;
i++;
}
}
SOPDescriptionSEI.m_numPicsInSopMinus1 = i - 1;
m_seiWriter.writeSEImessage( nalu.m_Bitstream, SOPDescriptionSEI, pcSlice->getSPS());
writeRBSPTrailingBits(nalu.m_Bitstream);
accessUnit.push_back(new NALUnitEBSP(nalu));
writeSOP = false;
}
if( ( m_pcCfg->getPictureTimingSEIEnabled() || m_pcCfg->getDecodingUnitInfoSEIEnabled() ) &&
( pcSlice->getSPS()->getVuiParametersPresentFlag() ) &&
( ( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getNalHrdParametersPresentFlag() )
|| ( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getVclHrdParametersPresentFlag() ) ) )
{
if( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getSubPicCpbParamsPresentFlag() )
{
UInt numDU = pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getNumDU();
pictureTimingSEI.m_numDecodingUnitsMinus1 = ( numDU - 1 );
pictureTimingSEI.m_duCommonCpbRemovalDelayFlag = false;
if( pictureTimingSEI.m_numNalusInDuMinus1 == NULL )
{
pictureTimingSEI.m_numNalusInDuMinus1 = new UInt[ numDU ];
}
if( pictureTimingSEI.m_duCpbRemovalDelayMinus1 == NULL )
{
pictureTimingSEI.m_duCpbRemovalDelayMinus1 = new UInt[ numDU ];
}
if( accumBitsDU == NULL )
{
accumBitsDU = new UInt[ numDU ];
}
if( accumNalsDU == NULL )
{
accumNalsDU = new UInt[ numDU ];
}
}
pictureTimingSEI.m_auCpbRemovalDelay = std::min<Int>(std::max<Int>(1, m_totalCoded - m_lastBPSEI), static_cast<Int>(pow(2, static_cast<Double>(pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getCpbRemovalDelayLengthMinus1()+1)))); // Syntax element signalled as minus, hence the .
pictureTimingSEI.m_picDpbOutputDelay = pcSlice->getSPS()->getNumReorderPics(pcSlice->getSPS()->getMaxTLayers()-1) + pcSlice->getPOC() - m_totalCoded;
#if EFFICIENT_FIELD_IRAP
if(IRAPGOPid > 0 && IRAPGOPid < m_iGopSize)
{
// if pictures have been swapped there is likely one more picture delay on their tid. Very rough approximation
pictureTimingSEI.m_picDpbOutputDelay ++;
}
#endif
Int factor = pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getTickDivisorMinus2() + 2;
pictureTimingSEI.m_picDpbOutputDuDelay = factor * pictureTimingSEI.m_picDpbOutputDelay;
if( m_pcCfg->getDecodingUnitInfoSEIEnabled() )
{
picSptDpbOutputDuDelay = factor * pictureTimingSEI.m_picDpbOutputDelay;
}
}
if( ( m_pcCfg->getBufferingPeriodSEIEnabled() ) && ( pcSlice->getSliceType() == I_SLICE ) &&
( pcSlice->getSPS()->getVuiParametersPresentFlag() ) &&
( ( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getNalHrdParametersPresentFlag() )
|| ( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getVclHrdParametersPresentFlag() ) ) )
{
OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI);
m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice);
m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
SEIBufferingPeriod sei_buffering_period;
UInt uiInitialCpbRemovalDelay = (90000/2); // 0.5 sec
sei_buffering_period.m_initialCpbRemovalDelay [0][0] = uiInitialCpbRemovalDelay;
sei_buffering_period.m_initialCpbRemovalDelayOffset[0][0] = uiInitialCpbRemovalDelay;
sei_buffering_period.m_initialCpbRemovalDelay [0][1] = uiInitialCpbRemovalDelay;
sei_buffering_period.m_initialCpbRemovalDelayOffset[0][1] = uiInitialCpbRemovalDelay;
Double dTmp = (Double)pcSlice->getSPS()->getVuiParameters()->getTimingInfo()->getNumUnitsInTick() / (Double)pcSlice->getSPS()->getVuiParameters()->getTimingInfo()->getTimeScale();
UInt uiTmp = (UInt)( dTmp * 90000.0 );
uiInitialCpbRemovalDelay -= uiTmp;
uiInitialCpbRemovalDelay -= uiTmp / ( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getTickDivisorMinus2() + 2 );
sei_buffering_period.m_initialAltCpbRemovalDelay [0][0] = uiInitialCpbRemovalDelay;
sei_buffering_period.m_initialAltCpbRemovalDelayOffset[0][0] = uiInitialCpbRemovalDelay;
sei_buffering_period.m_initialAltCpbRemovalDelay [0][1] = uiInitialCpbRemovalDelay;
sei_buffering_period.m_initialAltCpbRemovalDelayOffset[0][1] = uiInitialCpbRemovalDelay;
sei_buffering_period.m_rapCpbParamsPresentFlag = 0;
//for the concatenation, it can be set to one during splicing.
sei_buffering_period.m_concatenationFlag = 0;
//since the temporal layer HRD is not ready, we assumed it is fixed
sei_buffering_period.m_auCpbRemovalDelayDelta = 1;
sei_buffering_period.m_cpbDelayOffset = 0;
sei_buffering_period.m_dpbDelayOffset = 0;
m_seiWriter.writeSEImessage( nalu.m_Bitstream, sei_buffering_period, pcSlice->getSPS());
writeRBSPTrailingBits(nalu.m_Bitstream);
{
UInt seiPositionInAu = xGetFirstSeiLocation(accessUnit);
UInt offsetPosition = m_activeParameterSetSEIPresentInAU; // Insert BP SEI after APS SEI
AccessUnit::iterator it = accessUnit.begin();
for(Int j = 0; j < seiPositionInAu + offsetPosition; j++)
{
it++;
}
accessUnit.insert(it, new NALUnitEBSP(nalu));
m_bufferingPeriodSEIPresentInAU = true;
}
if (m_pcCfg->getScalableNestingSEIEnabled())
{
OutputNALUnit naluTmp(NAL_UNIT_PREFIX_SEI);
m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice);
m_pcEntropyCoder->setBitstream(&naluTmp.m_Bitstream);
scalableNestingSEI.m_nestedSEIs.clear();
scalableNestingSEI.m_nestedSEIs.push_back(&sei_buffering_period);
m_seiWriter.writeSEImessage( naluTmp.m_Bitstream, scalableNestingSEI, pcSlice->getSPS());
writeRBSPTrailingBits(naluTmp.m_Bitstream);
UInt seiPositionInAu = xGetFirstSeiLocation(accessUnit);
UInt offsetPosition = m_activeParameterSetSEIPresentInAU + m_bufferingPeriodSEIPresentInAU + m_pictureTimingSEIPresentInAU; // Insert BP SEI after non-nested APS, BP and PT SEIs
AccessUnit::iterator it = accessUnit.begin();
for(Int j = 0; j < seiPositionInAu + offsetPosition; j++)
{
it++;
}
accessUnit.insert(it, new NALUnitEBSP(naluTmp));
m_nestedBufferingPeriodSEIPresentInAU = true;
}
m_lastBPSEI = m_totalCoded;
m_cpbRemovalDelay = 0;
}
m_cpbRemovalDelay ++;
if(pcSlice->getSPS()->getVuiParametersPresentFlag() && m_pcCfg->getChromaSamplingFilterHintEnabled() && ( pcSlice->getSliceType() == I_SLICE ))
{
SEIChromaSamplingFilterHint *seiChromaSamplingFilterHint = xCreateSEIChromaSamplingFilterHint(m_pcCfg->getChromaLocInfoPresentFlag(), m_pcCfg->getChromaSamplingHorFilterIdc(), m_pcCfg->getChromaSamplingVerFilterIdc());
OutputNALUnit naluTmp(NAL_UNIT_PREFIX_SEI);
m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice);
m_pcEntropyCoder->setBitstream(&naluTmp.m_Bitstream);
m_seiWriter.writeSEImessage(naluTmp.m_Bitstream, *seiChromaSamplingFilterHint, pcSlice->getSPS());
writeRBSPTrailingBits(naluTmp.m_Bitstream);
accessUnit.push_back(new NALUnitEBSP(naluTmp));
delete seiChromaSamplingFilterHint;
}
if( ( m_pcEncTop->getRecoveryPointSEIEnabled() ) && ( pcSlice->getSliceType() == I_SLICE ) )
{
if( m_pcEncTop->getGradualDecodingRefreshInfoEnabled() && !pcSlice->getRapPicFlag() )
{
// Gradual decoding refresh SEI
OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI);
m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice);
m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
SEIGradualDecodingRefreshInfo seiGradualDecodingRefreshInfo;
seiGradualDecodingRefreshInfo.m_gdrForegroundFlag = true; // Indicating all "foreground"
m_seiWriter.writeSEImessage( nalu.m_Bitstream, seiGradualDecodingRefreshInfo, pcSlice->getSPS() );
writeRBSPTrailingBits(nalu.m_Bitstream);
accessUnit.push_back(new NALUnitEBSP(nalu));
}
// Recovery point SEI
OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI);
m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice);
m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
SEIRecoveryPoint sei_recovery_point;
sei_recovery_point.m_recoveryPocCnt = 0;
sei_recovery_point.m_exactMatchingFlag = ( pcSlice->getPOC() == 0 ) ? (true) : (false);
sei_recovery_point.m_brokenLinkFlag = false;
#if ALLOW_RECOVERY_POINT_AS_RAP
if(m_pcCfg->getDecodingRefreshType() == 3)
{
m_iLastRecoveryPicPOC = pocCurr;
}
#endif
m_seiWriter.writeSEImessage( nalu.m_Bitstream, sei_recovery_point, pcSlice->getSPS() );
writeRBSPTrailingBits(nalu.m_Bitstream);
accessUnit.push_back(new NALUnitEBSP(nalu));
}
if( m_pcEncTop->getNoDisplaySEITLayer() )
{
if( pcSlice->getTLayer() >= m_pcEncTop->getNoDisplaySEITLayer() )
{
// No display SEI
OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI);
m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice);
m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
SEINoDisplay seiNoDisplay;
seiNoDisplay.m_noDisplay = true;
m_seiWriter.writeSEImessage( nalu.m_Bitstream, seiNoDisplay, pcSlice->getSPS() );
writeRBSPTrailingBits(nalu.m_Bitstream);
accessUnit.push_back(new NALUnitEBSP(nalu));
}
}
/* use the main bitstream buffer for storing the marshalled picture */
m_pcEntropyCoder->setBitstream(NULL);
pcSlice = pcPic->getSlice(0);
if (pcSlice->getSPS()->getUseSAO())
{
Bool sliceEnabled[MAX_NUM_COMPONENT];
TComBitCounter tempBitCounter;
tempBitCounter.resetBits();
m_pcEncTop->getRDGoOnSbacCoder()->setBitstream(&tempBitCounter);
m_pcSAO->initRDOCabacCoder(m_pcEncTop->getRDGoOnSbacCoder(), pcSlice);
m_pcSAO->SAOProcess(pcPic, sliceEnabled, pcPic->getSlice(0)->getLambdas()
#if SAO_ENCODE_ALLOW_USE_PREDEBLOCK
, m_pcCfg->getSaoCtuBoundary()
#endif
);
m_pcSAO->PCMLFDisableProcess(pcPic);
m_pcEncTop->getRDGoOnSbacCoder()->setBitstream(NULL);
//assign SAO slice header
for(Int s=0; s< uiNumSliceSegments; s++)
{
pcPic->getSlice(s)->setSaoEnabledFlag(CHANNEL_TYPE_LUMA, sliceEnabled[COMPONENT_Y]);
assert(sliceEnabled[COMPONENT_Cb] == sliceEnabled[COMPONENT_Cr]);
pcPic->getSlice(s)->setSaoEnabledFlag(CHANNEL_TYPE_CHROMA, sliceEnabled[COMPONENT_Cb]);
}
}
// pcSlice is currently slice 0.
Int64 binCountsInNalUnits = 0; // For implementation of cabac_zero_word stuffing (section 7.4.3.10)
Int64 numBytesInVclNalUnits = 0; // For implementation of cabac_zero_word stuffing (section 7.4.3.10)
for( UInt sliceSegmentStartCtuTsAddr = 0, sliceIdxCount=0; sliceSegmentStartCtuTsAddr < pcPic->getPicSym()->getNumberOfCtusInFrame(); sliceIdxCount++, sliceSegmentStartCtuTsAddr=pcSlice->getSliceSegmentCurEndCtuTsAddr() )
{
pcSlice = pcPic->getSlice(sliceIdxCount);
if(sliceIdxCount > 0 && pcSlice->getSliceType()!= I_SLICE)
{
pcSlice->checkColRefIdx(sliceIdxCount, pcPic);
}
pcPic->setCurrSliceIdx(sliceIdxCount);
m_pcSliceEncoder->setSliceIdx(sliceIdxCount);
pcSlice->setRPS(pcPic->getSlice(0)->getRPS());
pcSlice->setRPSidx(pcPic->getSlice(0)->getRPSidx());
for ( UInt ui = 0 ; ui < numSubstreams; ui++ )
{
substreamsOut[ui].clear();
}
m_pcEntropyCoder->setEntropyCoder ( m_pcCavlcCoder, pcSlice );
m_pcEntropyCoder->resetEntropy ();
/* start slice NALunit */
OutputNALUnit nalu( pcSlice->getNalUnitType(), pcSlice->getTLayer() );
m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
pcSlice->setNoRaslOutputFlag(false);
if (pcSlice->isIRAP())
{
if (pcSlice->getNalUnitType() >= NAL_UNIT_CODED_SLICE_BLA_W_LP && pcSlice->getNalUnitType() <= NAL_UNIT_CODED_SLICE_IDR_N_LP)
{
pcSlice->setNoRaslOutputFlag(true);
}
//the inference for NoOutputPriorPicsFlag
// KJS: This cannot happen at the encoder
if (!m_bFirst && pcSlice->isIRAP() && pcSlice->getNoRaslOutputFlag())
{
if (pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_CRA)
{
pcSlice->setNoOutputPriorPicsFlag(true);
}
}
}
tmpBitsBeforeWriting = m_pcEntropyCoder->getNumberOfWrittenBits();
m_pcEntropyCoder->encodeSliceHeader(pcSlice);
actualHeadBits += ( m_pcEntropyCoder->getNumberOfWrittenBits() - tmpBitsBeforeWriting );
pcSlice->setFinalized(true);
#if ENVIRONMENT_VARIABLE_DEBUG_AND_TEST
g_bFinalEncode = true;
#endif
pcSlice->clearSubstreamSizes( );
{
UInt numBinsCoded = 0;
m_pcSliceEncoder->encodeSlice(pcPic, &(substreamsOut[0]), numBinsCoded);
binCountsInNalUnits+=numBinsCoded;
}
#if ENVIRONMENT_VARIABLE_DEBUG_AND_TEST
g_bFinalEncode = false;
#endif
{
// Construct the final bitstream by concatenating substreams.
// The final bitstream is either nalu.m_Bitstream or pcBitstreamRedirect;
// Complete the slice header info.
m_pcEntropyCoder->setEntropyCoder ( m_pcCavlcCoder, pcSlice );
m_pcEntropyCoder->setBitstream(&nalu.m_Bitstream);
m_pcEntropyCoder->encodeTilesWPPEntryPoint( pcSlice );
// Append substreams...
TComOutputBitstream *pcOut = pcBitstreamRedirect;
const Int numZeroSubstreamsAtStartOfSlice = pcPic->getSubstreamForCtuAddr(pcSlice->getSliceSegmentCurStartCtuTsAddr(), false, pcSlice);
const Int numSubstreamsToCode = pcSlice->getNumberOfSubstreamSizes()+1;
for ( UInt ui = 0 ; ui < numSubstreamsToCode; ui++ )
{
pcOut->addSubstream(&(substreamsOut[ui+numZeroSubstreamsAtStartOfSlice]));
}
}
// If current NALU is the first NALU of slice (containing slice header) and more NALUs exist (due to multiple dependent slices) then buffer it.
// If current NALU is the last NALU of slice and a NALU was buffered, then (a) Write current NALU (b) Update an write buffered NALU at approproate location in NALU list.
Bool bNALUAlignedWrittenToList = false; // used to ensure current NALU is not written more than once to the NALU list.
xAttachSliceDataToNalUnit(nalu, pcBitstreamRedirect);
accessUnit.push_back(new NALUnitEBSP(nalu));
actualTotalBits += UInt(accessUnit.back()->m_nalUnitData.str().size()) * 8;
numBytesInVclNalUnits += Int64(accessUnit.back()->m_nalUnitData.str().size());
bNALUAlignedWrittenToList = true;
if (!bNALUAlignedWrittenToList)
{
nalu.m_Bitstream.writeAlignZero();
accessUnit.push_back(new NALUnitEBSP(nalu));
}
if( ( m_pcCfg->getPictureTimingSEIEnabled() || m_pcCfg->getDecodingUnitInfoSEIEnabled() ) &&
( pcSlice->getSPS()->getVuiParametersPresentFlag() ) &&
( ( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getNalHrdParametersPresentFlag() )
|| ( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getVclHrdParametersPresentFlag() ) ) &&
( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getSubPicCpbParamsPresentFlag() ) )
{
UInt numNalus = 0;
UInt numRBSPBytes = 0;
for (AccessUnit::const_iterator it = accessUnit.begin(); it != accessUnit.end(); it++)
{
UInt numRBSPBytes_nal = UInt((*it)->m_nalUnitData.str().size());
if ((*it)->m_nalUnitType != NAL_UNIT_PREFIX_SEI && (*it)->m_nalUnitType != NAL_UNIT_SUFFIX_SEI)
{
numRBSPBytes += numRBSPBytes_nal;
numNalus ++;
}
}
accumBitsDU[ pcSlice->getSliceIdx() ] = ( numRBSPBytes << 3 );
accumNalsDU[ pcSlice->getSliceIdx() ] = numNalus; // SEI not counted for bit count; hence shouldn't be counted for # of NALUs - only for consistency
}
} // end iteration over slices
// cabac_zero_words processing
{
const Int log2subWidthCxsubHeightC = (pcPic->getComponentScaleX(COMPONENT_Cb)+pcPic->getComponentScaleY(COMPONENT_Cb));
const Int minCuWidth = pcPic->getMinCUWidth();
const Int minCuHeight = pcPic->getMinCUHeight();
const Int paddedWidth = ((pcSlice->getSPS()->getPicWidthInLumaSamples() + minCuWidth - 1) / minCuWidth) * minCuWidth;
const Int paddedHeight= ((pcSlice->getSPS()->getPicHeightInLumaSamples() + minCuHeight - 1) / minCuHeight) * minCuHeight;
const Int rawBits = paddedWidth * paddedHeight *
(g_bitDepth[CHANNEL_TYPE_LUMA] + 2*(g_bitDepth[CHANNEL_TYPE_CHROMA]>>log2subWidthCxsubHeightC));
const Int64 threshold = (32LL/3)*numBytesInVclNalUnits + (rawBits/32);
if (binCountsInNalUnits >= threshold)
{
// need to add additional cabac zero words (each one accounts for 3 bytes (=00 00 03)) to increase numBytesInVclNalUnits
const Int64 targetNumBytesInVclNalUnits = ((binCountsInNalUnits - (rawBits/32))*3+31)/32;
const Int64 numberOfAdditionalBytesNeeded=targetNumBytesInVclNalUnits - numBytesInVclNalUnits;
if (numberOfAdditionalBytesNeeded>0) // It should be!
{
const Int64 numberOfAdditionalCabacZeroWords=(numberOfAdditionalBytesNeeded+2)/3;
const Int64 numberOfAdditionalCabacZeroBytes=numberOfAdditionalCabacZeroWords*3;
if (m_pcCfg->getCabacZeroWordPaddingEnabled())
{
std::vector<Char> zeroBytesPadding(numberOfAdditionalCabacZeroBytes, Char(0));
for(Int64 i=0; i<numberOfAdditionalCabacZeroWords; i++)
{
zeroBytesPadding[i*3+2]=3; // 00 00 03
}
accessUnit.back()->m_nalUnitData.write(&(zeroBytesPadding[0]), numberOfAdditionalCabacZeroBytes);
printf("Adding %lld bytes of padding\n", numberOfAdditionalCabacZeroWords*3);
}
else
{
printf("Standard would normally require adding %lld bytes of padding\n", numberOfAdditionalCabacZeroWords*3);
}
}
}
}
pcPic->compressMotion();
//-- For time output for each slice
Double dEncTime = (Double)(clock()-iBeforeTime) / CLOCKS_PER_SEC;
std::string digestStr;
if (m_pcCfg->getDecodedPictureHashSEIEnabled())
{
/* calculate MD5sum for entire reconstructed picture */
SEIDecodedPictureHash sei_recon_picture_digest;
if(m_pcCfg->getDecodedPictureHashSEIEnabled() == 1)
{
sei_recon_picture_digest.method = SEIDecodedPictureHash::MD5;
UInt numChar=calcMD5(*pcPic->getPicYuvRec(), sei_recon_picture_digest.m_digest);
digestStr = digestToString(sei_recon_picture_digest.m_digest, numChar);
}
else if(m_pcCfg->getDecodedPictureHashSEIEnabled() == 2)
{
sei_recon_picture_digest.method = SEIDecodedPictureHash::CRC;
UInt numChar=calcCRC(*pcPic->getPicYuvRec(), sei_recon_picture_digest.m_digest);
digestStr = digestToString(sei_recon_picture_digest.m_digest, numChar);
}
else if(m_pcCfg->getDecodedPictureHashSEIEnabled() == 3)
{
sei_recon_picture_digest.method = SEIDecodedPictureHash::CHECKSUM;
UInt numChar=calcChecksum(*pcPic->getPicYuvRec(), sei_recon_picture_digest.m_digest);
digestStr = digestToString(sei_recon_picture_digest.m_digest, numChar);
}
OutputNALUnit nalu(NAL_UNIT_SUFFIX_SEI, pcSlice->getTLayer());
/* write the SEI messages */
m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice);
m_seiWriter.writeSEImessage(nalu.m_Bitstream, sei_recon_picture_digest, pcSlice->getSPS());
writeRBSPTrailingBits(nalu.m_Bitstream);
accessUnit.insert(accessUnit.end(), new NALUnitEBSP(nalu));
}
if (m_pcCfg->getTemporalLevel0IndexSEIEnabled())
{
SEITemporalLevel0Index sei_temporal_level0_index;
if (pcSlice->getRapPicFlag())
{
m_tl0Idx = 0;
m_rapIdx = (m_rapIdx + 1) & 0xFF;
}
else
{
m_tl0Idx = (m_tl0Idx + (pcSlice->getTLayer() ? 0 : 1)) & 0xFF;
}
sei_temporal_level0_index.tl0Idx = m_tl0Idx;
sei_temporal_level0_index.rapIdx = m_rapIdx;
OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI);
/* write the SEI messages */
m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice);
m_seiWriter.writeSEImessage(nalu.m_Bitstream, sei_temporal_level0_index, pcSlice->getSPS());
writeRBSPTrailingBits(nalu.m_Bitstream);
/* insert the SEI message NALUnit before any Slice NALUnits */
AccessUnit::iterator it = find_if(accessUnit.begin(), accessUnit.end(), mem_fun(&NALUnit::isSlice));
accessUnit.insert(it, new NALUnitEBSP(nalu));
}
m_pcCfg->setEncodedFlag(iGOPid, true);
xCalculateAddPSNR( pcPic, pcPic->getPicYuvRec(), accessUnit, dEncTime, snr_conversion, printFrameMSE );
//In case of field coding, compute the interlaced PSNR for both fields
if(isField)
{
Bool bothFieldsAreEncoded = false;
Int correspondingFieldPOC = pcPic->getPOC();
Int currentPicGOPPoc = m_pcCfg->getGOPEntry(iGOPid).m_POC;
if(pcPic->getPOC() == 0)
{
// particular case for POC 0 and 1.
// If they are not encoded first and separately from other pictures, we need to change this
// POC 0 is always encoded first then POC 1 is encoded
bothFieldsAreEncoded = false;
}
else if(pcPic->getPOC() == 1)
{
// if we are at POC 1, POC 0 has been encoded for sure
correspondingFieldPOC = 0;
bothFieldsAreEncoded = true;
}
else
{
if(pcPic->getPOC()%2 == 1)
{
correspondingFieldPOC -= 1; // all odd POC are associated with the preceding even POC (e.g poc 1 is associated to poc 0)
currentPicGOPPoc -= 1;
}
else
{
correspondingFieldPOC += 1; // all even POC are associated with the following odd POC (e.g poc 0 is associated to poc 1)
currentPicGOPPoc += 1;
}
for(Int i = 0; i < m_iGopSize; i ++)
{
if(m_pcCfg->getGOPEntry(i).m_POC == currentPicGOPPoc)
{
bothFieldsAreEncoded = m_pcCfg->getGOPEntry(i).m_isEncoded;
break;
}
}
}
if(bothFieldsAreEncoded)
{
//get complementary top field
TComList<TComPic*>::iterator iterPic = rcListPic.begin();
while ((*iterPic)->getPOC() != correspondingFieldPOC)
{
iterPic ++;
}
TComPic* correspondingFieldPic = *(iterPic);
if( (pcPic->isTopField() && isTff) || (!pcPic->isTopField() && !isTff))
{
xCalculateInterlacedAddPSNR(pcPic, correspondingFieldPic, pcPic->getPicYuvRec(), correspondingFieldPic->getPicYuvRec(), accessUnit, dEncTime, snr_conversion, printFrameMSE );
}
else
{
xCalculateInterlacedAddPSNR(correspondingFieldPic, pcPic, correspondingFieldPic->getPicYuvRec(), pcPic->getPicYuvRec(), accessUnit, dEncTime, snr_conversion, printFrameMSE );
}
}
}
#if VERBOSE_FRAME
if (!digestStr.empty())
{
if(m_pcCfg->getDecodedPictureHashSEIEnabled() == 1)
{
printf(" [MD5:%s]", digestStr.c_str());
}
else if(m_pcCfg->getDecodedPictureHashSEIEnabled() == 2)
{
printf(" [CRC:%s]", digestStr.c_str());
}
else if(m_pcCfg->getDecodedPictureHashSEIEnabled() == 3)
{
printf(" [Checksum:%s]", digestStr.c_str());
}
}
#endif
if ( m_pcCfg->getUseRateCtrl() )
{
Double avgQP = m_pcRateCtrl->getRCPic()->calAverageQP();
Double avgLambda = m_pcRateCtrl->getRCPic()->calAverageLambda();
if ( avgLambda < 0.0 )
{
avgLambda = lambda;
}
m_pcRateCtrl->getRCPic()->updateAfterPicture( actualHeadBits, actualTotalBits, avgQP, avgLambda, pcSlice->getSliceType());
m_pcRateCtrl->getRCPic()->addToPictureLsit( m_pcRateCtrl->getPicList() );
m_pcRateCtrl->getRCSeq()->updateAfterPic( actualTotalBits );
if ( pcSlice->getSliceType() != I_SLICE )
{
m_pcRateCtrl->getRCGOP()->updateAfterPicture( actualTotalBits );
}
else // for intra picture, the estimated bits are used to update the current status in the GOP
{
m_pcRateCtrl->getRCGOP()->updateAfterPicture( estimatedBits );
}
}
if( ( m_pcCfg->getPictureTimingSEIEnabled() || m_pcCfg->getDecodingUnitInfoSEIEnabled() ) &&
( pcSlice->getSPS()->getVuiParametersPresentFlag() ) &&
( ( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getNalHrdParametersPresentFlag() )
|| ( pcSlice->getSPS()->getVuiParameters()->getHrdParameters()->getVclHrdParametersPresentFlag() ) ) )
{
TComVUI *vui = pcSlice->getSPS()->getVuiParameters();
TComHRD *hrd = vui->getHrdParameters();
if( hrd->getSubPicCpbParamsPresentFlag() )
{
Int i;
UInt64 ui64Tmp;
UInt uiPrev = 0;
UInt numDU = ( pictureTimingSEI.m_numDecodingUnitsMinus1 + 1 );
UInt *pCRD = &pictureTimingSEI.m_duCpbRemovalDelayMinus1[0];
UInt maxDiff = ( hrd->getTickDivisorMinus2() + 2 ) - 1;
for( i = 0; i < numDU; i ++ )
{
pictureTimingSEI.m_numNalusInDuMinus1[ i ] = ( i == 0 ) ? ( accumNalsDU[ i ] - 1 ) : ( accumNalsDU[ i ] - accumNalsDU[ i - 1] - 1 );
}
if( numDU == 1 )
{
pCRD[ 0 ] = 0; /* don't care */
}
else
{
pCRD[ numDU - 1 ] = 0;/* by definition */
UInt tmp = 0;
UInt accum = 0;
for( i = ( numDU - 2 ); i >= 0; i -- )
{
ui64Tmp = ( ( ( accumBitsDU[ numDU - 1 ] - accumBitsDU[ i ] ) * ( vui->getTimingInfo()->getTimeScale() / vui->getTimingInfo()->getNumUnitsInTick() ) * ( hrd->getTickDivisorMinus2() + 2 ) ) / ( m_pcCfg->getTargetBitrate() ) );
if( (UInt)ui64Tmp > maxDiff )
{
tmp ++;
}
}
uiPrev = 0;
UInt flag = 0;
for( i = ( numDU - 2 ); i >= 0; i -- )
{
flag = 0;
ui64Tmp = ( ( ( accumBitsDU[ numDU - 1 ] - accumBitsDU[ i ] ) * ( vui->getTimingInfo()->getTimeScale() / vui->getTimingInfo()->getNumUnitsInTick() ) * ( hrd->getTickDivisorMinus2() + 2 ) ) / ( m_pcCfg->getTargetBitrate() ) );
if( (UInt)ui64Tmp > maxDiff )
{
if(uiPrev >= maxDiff - tmp)
{
ui64Tmp = uiPrev + 1;
flag = 1;
}
else ui64Tmp = maxDiff - tmp + 1;
}
pCRD[ i ] = (UInt)ui64Tmp - uiPrev - 1;
if( (Int)pCRD[ i ] < 0 )
{
pCRD[ i ] = 0;
}
else if (tmp > 0 && flag == 1)
{
tmp --;
}
accum += pCRD[ i ] + 1;
uiPrev = accum;
}
}
}
if( m_pcCfg->getPictureTimingSEIEnabled() )
{
{
OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI, pcSlice->getTLayer());
m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice);
pictureTimingSEI.m_picStruct = (isField && pcSlice->getPic()->isTopField())? 1 : isField? 2 : 0;
m_seiWriter.writeSEImessage(nalu.m_Bitstream, pictureTimingSEI, pcSlice->getSPS());
writeRBSPTrailingBits(nalu.m_Bitstream);
UInt seiPositionInAu = xGetFirstSeiLocation(accessUnit);
UInt offsetPosition = m_activeParameterSetSEIPresentInAU
+ m_bufferingPeriodSEIPresentInAU; // Insert PT SEI after APS and BP SEI
AccessUnit::iterator it = accessUnit.begin();
for(Int j = 0; j < seiPositionInAu + offsetPosition; j++)
{
it++;
}
accessUnit.insert(it, new NALUnitEBSP(nalu));
m_pictureTimingSEIPresentInAU = true;
}
if ( m_pcCfg->getScalableNestingSEIEnabled() ) // put picture timing SEI into scalable nesting SEI
{
OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI, pcSlice->getTLayer());
m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice);
scalableNestingSEI.m_nestedSEIs.clear();
scalableNestingSEI.m_nestedSEIs.push_back(&pictureTimingSEI);
m_seiWriter.writeSEImessage(nalu.m_Bitstream, scalableNestingSEI, pcSlice->getSPS());
writeRBSPTrailingBits(nalu.m_Bitstream);
UInt seiPositionInAu = xGetFirstSeiLocation(accessUnit);
UInt offsetPosition = m_activeParameterSetSEIPresentInAU
+ m_bufferingPeriodSEIPresentInAU + m_pictureTimingSEIPresentInAU + m_nestedBufferingPeriodSEIPresentInAU; // Insert PT SEI after APS and BP SEI
AccessUnit::iterator it = accessUnit.begin();
for(Int j = 0; j < seiPositionInAu + offsetPosition; j++)
{
it++;
}
accessUnit.insert(it, new NALUnitEBSP(nalu));
m_nestedPictureTimingSEIPresentInAU = true;
}
}
if( m_pcCfg->getDecodingUnitInfoSEIEnabled() && hrd->getSubPicCpbParamsPresentFlag() )
{
m_pcEntropyCoder->setEntropyCoder(m_pcCavlcCoder, pcSlice);
for( Int i = 0; i < ( pictureTimingSEI.m_numDecodingUnitsMinus1 + 1 ); i ++ )
{
OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI, pcSlice->getTLayer());
SEIDecodingUnitInfo tempSEI;
tempSEI.m_decodingUnitIdx = i;
tempSEI.m_duSptCpbRemovalDelay = pictureTimingSEI.m_duCpbRemovalDelayMinus1[i] + 1;
tempSEI.m_dpbOutputDuDelayPresentFlag = false;
tempSEI.m_picSptDpbOutputDuDelay = picSptDpbOutputDuDelay;
// Insert the first one in the right location, before the first slice
if(i == 0)
{
// Insert before the first slice.
m_seiWriter.writeSEImessage(nalu.m_Bitstream, tempSEI, pcSlice->getSPS());
writeRBSPTrailingBits(nalu.m_Bitstream);
UInt seiPositionInAu = xGetFirstSeiLocation(accessUnit);
UInt offsetPosition = m_activeParameterSetSEIPresentInAU
+ m_bufferingPeriodSEIPresentInAU
+ m_pictureTimingSEIPresentInAU; // Insert DU info SEI after APS, BP and PT SEI
AccessUnit::iterator it = accessUnit.begin();
for(Int j = 0; j < seiPositionInAu + offsetPosition; j++)
{
it++;
}
accessUnit.insert(it, new NALUnitEBSP(nalu));
}
else
{
// For the second decoding unit onwards we know how many NALUs are present
AccessUnit::iterator it = accessUnit.begin();
for (Int ctr = 0; it != accessUnit.end(); it++)
{
if(ctr == accumNalsDU[ i - 1 ])
{
// Insert before the first slice.
m_seiWriter.writeSEImessage(nalu.m_Bitstream, tempSEI, pcSlice->getSPS());
writeRBSPTrailingBits(nalu.m_Bitstream);
accessUnit.insert(it, new NALUnitEBSP(nalu));
break;
}
if ((*it)->m_nalUnitType != NAL_UNIT_PREFIX_SEI && (*it)->m_nalUnitType != NAL_UNIT_SUFFIX_SEI)
{
ctr++;
}
}
}
}
}
}
xResetNonNestedSEIPresentFlags();
xResetNestedSEIPresentFlags();
pcPic->getPicYuvRec()->copyToPic(pcPicYuvRecOut);
pcPic->setReconMark ( true );
m_bFirst = false;
m_iNumPicCoded++;
m_totalCoded ++;
/* logging: insert a newline at end of picture period */
#if VERBOSE_FRAME
printf("\n");
fflush(stdout);
#endif
#if EFFICIENT_FIELD_IRAP
if(IRAPtoReorder)
{
if(swapIRAPForward)
{
if(iGOPid == IRAPGOPid)
{
iGOPid = IRAPGOPid +1;
IRAPtoReorder = false;
}
else if(iGOPid == IRAPGOPid +1)
{
iGOPid --;
}
}
else
{
if(iGOPid == IRAPGOPid)
{
iGOPid = IRAPGOPid -1;
}
else if(iGOPid == IRAPGOPid -1)
{
iGOPid = IRAPGOPid;
IRAPtoReorder = false;
}
}
}
#endif
} // iGOPid-loop
delete pcBitstreamRedirect;
if( accumBitsDU != NULL) delete accumBitsDU;
if( accumNalsDU != NULL) delete accumNalsDU;
assert ( (m_iNumPicCoded == iNumPicRcvd) );
}
Void TEncGOP::printOutSummary(UInt uiNumAllPicCoded, Bool isField, const Bool printMSEBasedSNR, const Bool printSequenceMSE)
{
assert (uiNumAllPicCoded == m_gcAnalyzeAll.getNumPic());
//--CFG_KDY
const Int rateMultiplier=(isField?2:1);
m_gcAnalyzeAll.setFrmRate( m_pcCfg->getFrameRate()*rateMultiplier );
m_gcAnalyzeI.setFrmRate( m_pcCfg->getFrameRate()*rateMultiplier );
m_gcAnalyzeP.setFrmRate( m_pcCfg->getFrameRate()*rateMultiplier );
m_gcAnalyzeB.setFrmRate( m_pcCfg->getFrameRate()*rateMultiplier );
const ChromaFormat chFmt = m_pcCfg->getChromaFormatIdc();
//-- all
printf( "\n\nSUMMARY --------------------------------------------------------\n" );
m_gcAnalyzeAll.printOut('a', chFmt, printMSEBasedSNR, printSequenceMSE);
printf( "\n\nI Slices--------------------------------------------------------\n" );
m_gcAnalyzeI.printOut('i', chFmt, printMSEBasedSNR, printSequenceMSE);
printf( "\n\nP Slices--------------------------------------------------------\n" );
m_gcAnalyzeP.printOut('p', chFmt, printMSEBasedSNR, printSequenceMSE);
printf( "\n\nB Slices--------------------------------------------------------\n" );
m_gcAnalyzeB.printOut('b', chFmt, printMSEBasedSNR, printSequenceMSE);
#if _SUMMARY_OUT_
m_gcAnalyzeAll.printSummary(chFmt, printSequenceMSE);
#endif
#if _SUMMARY_PIC_
m_gcAnalyzeI.printSummary(chFmt, printSequenceMSE,'I');
m_gcAnalyzeP.printSummary(chFmt, printSequenceMSE,'P');
m_gcAnalyzeB.printSummary(chFmt, printSequenceMSE,'B');
#endif
if(isField)
{
//-- interlaced summary
m_gcAnalyzeAll_in.setFrmRate( m_pcCfg->getFrameRate());
m_gcAnalyzeAll_in.setBits(m_gcAnalyzeAll.getBits());
// prior to the above statement, the interlace analyser does not contain the correct total number of bits.
printf( "\n\nSUMMARY INTERLACED ---------------------------------------------\n" );
m_gcAnalyzeAll_in.printOut('a', chFmt, printMSEBasedSNR, printSequenceMSE);
#if _SUMMARY_OUT_
m_gcAnalyzeAll_in.printSummary(chFmt, printSequenceMSE);
#endif
}
printf("\nRVM: %.3lf\n" , xCalculateRVM());
}
Void TEncGOP::preLoopFilterPicAll( TComPic* pcPic, UInt64& ruiDist )
{
Bool bCalcDist = false;
m_pcLoopFilter->setCfg(m_pcCfg->getLFCrossTileBoundaryFlag());
m_pcLoopFilter->loopFilterPic( pcPic );
if (!bCalcDist)
ruiDist = xFindDistortionFrame(pcPic->getPicYuvOrg(), pcPic->getPicYuvRec());
}
// ====================================================================================================================
// Protected member functions
// ====================================================================================================================
Void TEncGOP::xInitGOP( Int iPOCLast, Int iNumPicRcvd, TComList<TComPic*>& rcListPic, TComList<TComPicYuv*>& rcListPicYuvRecOut, Bool isField )
{
assert( iNumPicRcvd > 0 );
// Exception for the first frames
if ( ( isField && (iPOCLast == 0 || iPOCLast == 1) ) || (!isField && (iPOCLast == 0)) )
{
m_iGopSize = 1;
}
else
{
m_iGopSize = m_pcCfg->getGOPSize();
}
assert (m_iGopSize > 0);
return;
}
Void TEncGOP::xGetBuffer( TComList<TComPic*>& rcListPic,
TComList<TComPicYuv*>& rcListPicYuvRecOut,
Int iNumPicRcvd,
Int iTimeOffset,
TComPic*& rpcPic,
TComPicYuv*& rpcPicYuvRecOut,
Int pocCurr,
Bool isField)
{
Int i;
// Rec. output
TComList<TComPicYuv*>::iterator iterPicYuvRec = rcListPicYuvRecOut.end();
if (isField && pocCurr > 1 && m_iGopSize!=1)
{
iTimeOffset--;
}
for ( i = 0; i < (iNumPicRcvd - iTimeOffset + 1); i++ )
{
iterPicYuvRec--;
}
rpcPicYuvRecOut = *(iterPicYuvRec);
// Current pic.
TComList<TComPic*>::iterator iterPic = rcListPic.begin();
while (iterPic != rcListPic.end())
{
rpcPic = *(iterPic);
rpcPic->setCurrSliceIdx(0);
if (rpcPic->getPOC() == pocCurr)
{
break;
}
iterPic++;
}
assert (rpcPic != NULL);
assert (rpcPic->getPOC() == pocCurr);
return;
}
UInt64 TEncGOP::xFindDistortionFrame (TComPicYuv* pcPic0, TComPicYuv* pcPic1)
{
UInt64 uiTotalDiff = 0;
for(Int chan=0; chan<pcPic0 ->getNumberValidComponents(); chan++)
{
const ComponentID ch=ComponentID(chan);
Pel* pSrc0 = pcPic0 ->getAddr(ch);
Pel* pSrc1 = pcPic1 ->getAddr(ch);
UInt uiShift = 2 * DISTORTION_PRECISION_ADJUSTMENT(g_bitDepth[toChannelType(ch)]-8);
const Int iStride = pcPic0->getStride(ch);
const Int iWidth = pcPic0->getWidth(ch);
const Int iHeight = pcPic0->getHeight(ch);
for(Int y = 0; y < iHeight; y++ )
{
for(Int x = 0; x < iWidth; x++ )
{
Intermediate_Int iTemp = pSrc0[x] - pSrc1[x];
uiTotalDiff += UInt64((iTemp*iTemp) >> uiShift);
}
pSrc0 += iStride;
pSrc1 += iStride;
}
}
return uiTotalDiff;
}
#if VERBOSE_RATE
static const Char* nalUnitTypeToString(NalUnitType type)
{
switch (type)
{
case NAL_UNIT_CODED_SLICE_TRAIL_R: return "TRAIL_R";
case NAL_UNIT_CODED_SLICE_TRAIL_N: return "TRAIL_N";
case NAL_UNIT_CODED_SLICE_TSA_R: return "TSA_R";
case NAL_UNIT_CODED_SLICE_TSA_N: return "TSA_N";
case NAL_UNIT_CODED_SLICE_STSA_R: return "STSA_R";
case NAL_UNIT_CODED_SLICE_STSA_N: return "STSA_N";
case NAL_UNIT_CODED_SLICE_BLA_W_LP: return "BLA_W_LP";
case NAL_UNIT_CODED_SLICE_BLA_W_RADL: return "BLA_W_RADL";
case NAL_UNIT_CODED_SLICE_BLA_N_LP: return "BLA_N_LP";
case NAL_UNIT_CODED_SLICE_IDR_W_RADL: return "IDR_W_RADL";
case NAL_UNIT_CODED_SLICE_IDR_N_LP: return "IDR_N_LP";
case NAL_UNIT_CODED_SLICE_CRA: return "CRA";
case NAL_UNIT_CODED_SLICE_RADL_R: return "RADL_R";
case NAL_UNIT_CODED_SLICE_RADL_N: return "RADL_N";
case NAL_UNIT_CODED_SLICE_RASL_R: return "RASL_R";
case NAL_UNIT_CODED_SLICE_RASL_N: return "RASL_N";
case NAL_UNIT_VPS: return "VPS";
case NAL_UNIT_SPS: return "SPS";
case NAL_UNIT_PPS: return "PPS";
case NAL_UNIT_ACCESS_UNIT_DELIMITER: return "AUD";
case NAL_UNIT_EOS: return "EOS";
case NAL_UNIT_EOB: return "EOB";
case NAL_UNIT_FILLER_DATA: return "FILLER";
case NAL_UNIT_PREFIX_SEI: return "SEI";
case NAL_UNIT_SUFFIX_SEI: return "SEI";
default: return "UNK";
}
}
#endif
Void TEncGOP::xCalculateAddPSNR( TComPic* pcPic, TComPicYuv* pcPicD, const AccessUnit& accessUnit, Double dEncTime, const InputColourSpaceConversion conversion, const Bool printFrameMSE )
{
Double dPSNR[MAX_NUM_COMPONENT];
for(Int i=0; i<MAX_NUM_COMPONENT; i++)
{
dPSNR[i]=0.0;
}
TComPicYuv cscd;
if (conversion!=IPCOLOURSPACE_UNCHANGED)
{
cscd.create(pcPicD->getWidth(COMPONENT_Y), pcPicD->getHeight(COMPONENT_Y), pcPicD->getChromaFormat(), g_uiMaxCUWidth, g_uiMaxCUHeight, g_uiMaxCUDepth);
TVideoIOYuv::ColourSpaceConvert(*pcPicD, cscd, conversion, g_bitDepth, false);
}
TComPicYuv &picd=(conversion==IPCOLOURSPACE_UNCHANGED)?*pcPicD : cscd;
//===== calculate PSNR =====
Double MSEyuvframe[MAX_NUM_COMPONENT] = {0, 0, 0};
for(Int chan=0; chan<pcPicD->getNumberValidComponents(); chan++)
{
const ComponentID ch=ComponentID(chan);
const Pel* pOrg = (conversion!=IPCOLOURSPACE_UNCHANGED) ? pcPic ->getPicYuvTrueOrg()->getAddr(ch) : pcPic ->getPicYuvOrg()->getAddr(ch);
Pel* pRec = picd.getAddr(ch);
const Int iStride = pcPicD->getStride(ch);
const Int iWidth = pcPicD->getWidth (ch) - (m_pcEncTop->getPad(0) >> pcPic->getComponentScaleX(ch));
const Int iHeight = pcPicD->getHeight(ch) - ((m_pcEncTop->getPad(1) >> (pcPic->isField()?1:0)) >> pcPic->getComponentScaleY(ch));
Int iSize = iWidth*iHeight;
UInt64 uiSSDtemp=0;
for(Int y = 0; y < iHeight; y++ )
{
for(Int x = 0; x < iWidth; x++ )
{
Intermediate_Int iDiff = (Intermediate_Int)( pOrg[x] - pRec[x] );
uiSSDtemp += iDiff * iDiff;
}
pOrg += iStride;
pRec += iStride;
}
const Int maxval = 255 << (g_bitDepth[toChannelType(ch)] - 8);
const Double fRefValue = (Double) maxval * maxval * iSize;
dPSNR[ch] = ( uiSSDtemp ? 10.0 * log10( fRefValue / (Double)uiSSDtemp ) : 999.99 );
MSEyuvframe[ch] = (Double)uiSSDtemp/(iSize);
}
/* calculate the size of the access unit, excluding:
* - any AnnexB contributions (start_code_prefix, zero_byte, etc.,)
* - SEI NAL units
*/
UInt numRBSPBytes = 0;
for (AccessUnit::const_iterator it = accessUnit.begin(); it != accessUnit.end(); it++)
{
UInt numRBSPBytes_nal = UInt((*it)->m_nalUnitData.str().size());
#if VERBOSE_RATE
printf("*** %6s numBytesInNALunit: %u\n", nalUnitTypeToString((*it)->m_nalUnitType), numRBSPBytes_nal);
#endif
if ((*it)->m_nalUnitType != NAL_UNIT_PREFIX_SEI && (*it)->m_nalUnitType != NAL_UNIT_SUFFIX_SEI)
{
numRBSPBytes += numRBSPBytes_nal;
}
}
UInt uibits = numRBSPBytes * 8;
m_vRVM_RP.push_back( uibits );
//===== add PSNR =====
m_gcAnalyzeAll.addResult (dPSNR, (Double)uibits, MSEyuvframe);
TComSlice* pcSlice = pcPic->getSlice(0);
if (pcSlice->isIntra())
{
m_gcAnalyzeI.addResult (dPSNR, (Double)uibits, MSEyuvframe);
}
if (pcSlice->isInterP())
{
m_gcAnalyzeP.addResult (dPSNR, (Double)uibits, MSEyuvframe);
}
if (pcSlice->isInterB())
{
m_gcAnalyzeB.addResult (dPSNR, (Double)uibits, MSEyuvframe);
}
Char c = (pcSlice->isIntra() ? 'I' : pcSlice->isInterP() ? 'P' : 'B');
if (!pcSlice->isReferenced()) c += 32;
#if VERBOSE_FRAME
#if ADAPTIVE_QP_SELECTION
printf("POC %4d TId: %1d ( %c-SLICE, nQP %d QP %d ) %10d bits",
pcSlice->getPOC(),
pcSlice->getTLayer(),
c,
pcSlice->getSliceQpBase(),
pcSlice->getSliceQp(),
uibits );
#else
printf("POC %4d TId: %1d ( %c-SLICE, QP %d ) %10d bits",
pcSlice->getPOC()-pcSlice->getLastIDR(),
pcSlice->getTLayer(),
c,
pcSlice->getSliceQp(),
uibits );
#endif
printf(" [Y %6.4lf dB U %6.4lf dB V %6.4lf dB]", dPSNR[COMPONENT_Y], dPSNR[COMPONENT_Cb], dPSNR[COMPONENT_Cr] );
if (printFrameMSE)
{
printf(" [Y MSE %6.4lf U MSE %6.4lf V MSE %6.4lf]", MSEyuvframe[COMPONENT_Y], MSEyuvframe[COMPONENT_Cb], MSEyuvframe[COMPONENT_Cr] );
}
printf(" [ET %5.0f ]", dEncTime );
for (Int iRefList = 0; iRefList < 2; iRefList++)
{
printf(" [L%d ", iRefList);
for (Int iRefIndex = 0; iRefIndex < pcSlice->getNumRefIdx(RefPicList(iRefList)); iRefIndex++)
{
printf ("%d ", pcSlice->getRefPOC(RefPicList(iRefList), iRefIndex)-pcSlice->getLastIDR());
}
printf("]");
}
#endif /* VERBOSE_FRAME */
cscd.destroy();
}
Void TEncGOP::xCalculateInterlacedAddPSNR( TComPic* pcPicOrgFirstField, TComPic* pcPicOrgSecondField,
TComPicYuv* pcPicRecFirstField, TComPicYuv* pcPicRecSecondField,
const AccessUnit& accessUnit, Double dEncTime, const InputColourSpaceConversion conversion, const Bool printFrameMSE )
{
Double dPSNR[MAX_NUM_COMPONENT];
TComPic *apcPicOrgFields[2]={pcPicOrgFirstField, pcPicOrgSecondField};
TComPicYuv *apcPicRecFields[2]={pcPicRecFirstField, pcPicRecSecondField};
for(Int i=0; i<MAX_NUM_COMPONENT; i++)
{
dPSNR[i]=0.0;
}
TComPicYuv cscd[2 /* first/second field */];
if (conversion!=IPCOLOURSPACE_UNCHANGED)
{
for(UInt fieldNum=0; fieldNum<2; fieldNum++)
{
TComPicYuv &reconField=*(apcPicRecFields[fieldNum]);
cscd[fieldNum].create(reconField.getWidth(COMPONENT_Y), reconField.getHeight(COMPONENT_Y), reconField.getChromaFormat(), g_uiMaxCUWidth, g_uiMaxCUHeight, g_uiMaxCUDepth);
TVideoIOYuv::ColourSpaceConvert(reconField, cscd[fieldNum], conversion, g_bitDepth, false);
apcPicRecFields[fieldNum]=cscd+fieldNum;
}
}
//===== calculate PSNR =====
Double MSEyuvframe[MAX_NUM_COMPONENT] = {0, 0, 0};
assert(apcPicRecFields[0]->getChromaFormat()==apcPicRecFields[1]->getChromaFormat());
const UInt numValidComponents=apcPicRecFields[0]->getNumberValidComponents();
for(Int chan=0; chan<numValidComponents; chan++)
{
const ComponentID ch=ComponentID(chan);
assert(apcPicRecFields[0]->getWidth(ch)==apcPicRecFields[1]->getWidth(ch));
assert(apcPicRecFields[0]->getHeight(ch)==apcPicRecFields[1]->getHeight(ch));
UInt64 uiSSDtemp=0;
const Int iWidth = apcPicRecFields[0]->getWidth (ch) - (m_pcEncTop->getPad(0) >> apcPicRecFields[0]->getComponentScaleX(ch));
const Int iHeight = apcPicRecFields[0]->getHeight(ch) - ((m_pcEncTop->getPad(1) >> 1) >> apcPicRecFields[0]->getComponentScaleY(ch));
Int iSize = iWidth*iHeight;
for(UInt fieldNum=0; fieldNum<2; fieldNum++)
{
TComPic *pcPic=apcPicOrgFields[fieldNum];
TComPicYuv *pcPicD=apcPicRecFields[fieldNum];
const Pel* pOrg = (conversion!=IPCOLOURSPACE_UNCHANGED) ? pcPic ->getPicYuvTrueOrg()->getAddr(ch) : pcPic ->getPicYuvOrg()->getAddr(ch);
Pel* pRec = pcPicD->getAddr(ch);
const Int iStride = pcPicD->getStride(ch);
for(Int y = 0; y < iHeight; y++ )
{
for(Int x = 0; x < iWidth; x++ )
{
Intermediate_Int iDiff = (Intermediate_Int)( pOrg[x] - pRec[x] );
uiSSDtemp += iDiff * iDiff;
}
pOrg += iStride;
pRec += iStride;
}
}
const Int maxval = 255 << (g_bitDepth[toChannelType(ch)] - 8);
const Double fRefValue = (Double) maxval * maxval * iSize*2;
dPSNR[ch] = ( uiSSDtemp ? 10.0 * log10( fRefValue / (Double)uiSSDtemp ) : 999.99 );
MSEyuvframe[ch] = (Double)uiSSDtemp/(iSize*2);
}
UInt uibits = 0; // the number of bits for the pair is not calculated here - instead the overall total is used elsewhere.
//===== add PSNR =====
m_gcAnalyzeAll_in.addResult (dPSNR, (Double)uibits, MSEyuvframe);
printf("\n Interlaced frame %d: [Y %6.4lf dB U %6.4lf dB V %6.4lf dB]", pcPicOrgSecondField->getPOC()/2 , dPSNR[COMPONENT_Y], dPSNR[COMPONENT_Cb], dPSNR[COMPONENT_Cr] );
if (printFrameMSE)
{
printf(" [Y MSE %6.4lf U MSE %6.4lf V MSE %6.4lf]", MSEyuvframe[COMPONENT_Y], MSEyuvframe[COMPONENT_Cb], MSEyuvframe[COMPONENT_Cr] );
}
for(UInt fieldNum=0; fieldNum<2; fieldNum++)
{
cscd[fieldNum].destroy();
}
}
/** Function for deciding the nal_unit_type.
* \param pocCurr POC of the current picture
* \returns the nal unit type of the picture
* This function checks the configuration and returns the appropriate nal_unit_type for the picture.
*/
NalUnitType TEncGOP::getNalUnitType(Int pocCurr, Int lastIDR, Bool isField)
{
if (pocCurr == 0)
{
return NAL_UNIT_CODED_SLICE_IDR_W_RADL;
}
#if EFFICIENT_FIELD_IRAP
if(isField && pocCurr == 1)
{
// to avoid the picture becoming an IRAP
return NAL_UNIT_CODED_SLICE_TRAIL_R;
}
#endif
#if ALLOW_RECOVERY_POINT_AS_RAP
if(m_pcCfg->getDecodingRefreshType() != 3 && (pocCurr - isField) % m_pcCfg->getIntraPeriod() == 0)
#else
if ((pocCurr - isField) % m_pcCfg->getIntraPeriod() == 0)
#endif
{
if (m_pcCfg->getDecodingRefreshType() == 1)
{
return NAL_UNIT_CODED_SLICE_CRA;
}
else if (m_pcCfg->getDecodingRefreshType() == 2)
{
return NAL_UNIT_CODED_SLICE_IDR_W_RADL;
}
}
if(m_pocCRA>0)
{
if(pocCurr<m_pocCRA)
{
// All leading pictures are being marked as TFD pictures here since current encoder uses all
// reference pictures while encoding leading pictures. An encoder can ensure that a leading
// picture can be still decodable when random accessing to a CRA/CRANT/BLA/BLANT picture by
// controlling the reference pictures used for encoding that leading picture. Such a leading
// picture need not be marked as a TFD picture.
return NAL_UNIT_CODED_SLICE_RASL_R;
}
}
if (lastIDR>0)
{
if (pocCurr < lastIDR)
{
return NAL_UNIT_CODED_SLICE_RADL_R;
}
}
return NAL_UNIT_CODED_SLICE_TRAIL_R;
}
Double TEncGOP::xCalculateRVM()
{
Double dRVM = 0;
if( m_pcCfg->getGOPSize() == 1 && m_pcCfg->getIntraPeriod() != 1 && m_pcCfg->getFramesToBeEncoded() > RVM_VCEGAM10_M * 2 )
{
// calculate RVM only for lowdelay configurations
std::vector<Double> vRL , vB;
size_t N = m_vRVM_RP.size();
vRL.resize( N );
vB.resize( N );
Int i;
Double dRavg = 0 , dBavg = 0;
vB[RVM_VCEGAM10_M] = 0;
for( i = RVM_VCEGAM10_M + 1 ; i < N - RVM_VCEGAM10_M + 1 ; i++ )
{
vRL[i] = 0;
for( Int j = i - RVM_VCEGAM10_M ; j <= i + RVM_VCEGAM10_M - 1 ; j++ )
vRL[i] += m_vRVM_RP[j];
vRL[i] /= ( 2 * RVM_VCEGAM10_M );
vB[i] = vB[i-1] + m_vRVM_RP[i] - vRL[i];
dRavg += m_vRVM_RP[i];
dBavg += vB[i];
}
dRavg /= ( N - 2 * RVM_VCEGAM10_M );
dBavg /= ( N - 2 * RVM_VCEGAM10_M );
Double dSigamB = 0;
for( i = RVM_VCEGAM10_M + 1 ; i < N - RVM_VCEGAM10_M + 1 ; i++ )
{
Double tmp = vB[i] - dBavg;
dSigamB += tmp * tmp;
}
dSigamB = sqrt( dSigamB / ( N - 2 * RVM_VCEGAM10_M ) );
Double f = sqrt( 12.0 * ( RVM_VCEGAM10_M - 1 ) / ( RVM_VCEGAM10_M + 1 ) );
dRVM = dSigamB / dRavg * f;
}
return( dRVM );
}
/** Attaches the input bitstream to the stream in the output NAL unit
Updates rNalu to contain concatenated bitstream. rpcBitstreamRedirect is cleared at the end of this function call.
* \param codedSliceData contains the coded slice data (bitstream) to be concatenated to rNalu
* \param rNalu target NAL unit
*/
Void TEncGOP::xAttachSliceDataToNalUnit (OutputNALUnit& rNalu, TComOutputBitstream* codedSliceData)
{
// Byte-align
rNalu.m_Bitstream.writeByteAlignment(); // Slice header byte-alignment
// Perform bitstream concatenation
if (codedSliceData->getNumberOfWrittenBits() > 0)
{
rNalu.m_Bitstream.addSubstream(codedSliceData);
}
m_pcEntropyCoder->setBitstream(&rNalu.m_Bitstream);
codedSliceData->clear();
}
// Function will arrange the long-term pictures in the decreasing order of poc_lsb_lt,
// and among the pictures with the same lsb, it arranges them in increasing delta_poc_msb_cycle_lt value
Void TEncGOP::arrangeLongtermPicturesInRPS(TComSlice *pcSlice, TComList<TComPic*>& rcListPic)
{
TComReferencePictureSet *rps = pcSlice->getRPS();
if(!rps->getNumberOfLongtermPictures())
{
return;
}
// Arrange long-term reference pictures in the correct order of LSB and MSB,
// and assign values for pocLSBLT and MSB present flag
Int longtermPicsPoc[MAX_NUM_REF_PICS], longtermPicsLSB[MAX_NUM_REF_PICS], indices[MAX_NUM_REF_PICS];
Int longtermPicsMSB[MAX_NUM_REF_PICS];
Bool mSBPresentFlag[MAX_NUM_REF_PICS];
::memset(longtermPicsPoc, 0, sizeof(longtermPicsPoc)); // Store POC values of LTRP
::memset(longtermPicsLSB, 0, sizeof(longtermPicsLSB)); // Store POC LSB values of LTRP
::memset(longtermPicsMSB, 0, sizeof(longtermPicsMSB)); // Store POC LSB values of LTRP
::memset(indices , 0, sizeof(indices)); // Indices to aid in tracking sorted LTRPs
::memset(mSBPresentFlag , 0, sizeof(mSBPresentFlag)); // Indicate if MSB needs to be present
// Get the long-term reference pictures
Int offset = rps->getNumberOfNegativePictures() + rps->getNumberOfPositivePictures();
Int i, ctr = 0;
Int maxPicOrderCntLSB = 1 << pcSlice->getSPS()->getBitsForPOC();
for(i = rps->getNumberOfPictures() - 1; i >= offset; i--, ctr++)
{
longtermPicsPoc[ctr] = rps->getPOC(i); // LTRP POC
longtermPicsLSB[ctr] = getLSB(longtermPicsPoc[ctr], maxPicOrderCntLSB); // LTRP POC LSB
indices[ctr] = i;
longtermPicsMSB[ctr] = longtermPicsPoc[ctr] - longtermPicsLSB[ctr];
}
Int numLongPics = rps->getNumberOfLongtermPictures();
assert(ctr == numLongPics);
// Arrange pictures in decreasing order of MSB;
for(i = 0; i < numLongPics; i++)
{
for(Int j = 0; j < numLongPics - 1; j++)
{
if(longtermPicsMSB[j] < longtermPicsMSB[j+1])
{
std::swap(longtermPicsPoc[j], longtermPicsPoc[j+1]);
std::swap(longtermPicsLSB[j], longtermPicsLSB[j+1]);
std::swap(longtermPicsMSB[j], longtermPicsMSB[j+1]);
std::swap(indices[j] , indices[j+1] );
}
}
}
for(i = 0; i < numLongPics; i++)
{
// Check if MSB present flag should be enabled.
// Check if the buffer contains any pictures that have the same LSB.
TComList<TComPic*>::iterator iterPic = rcListPic.begin();
TComPic* pcPic;
while ( iterPic != rcListPic.end() )
{
pcPic = *iterPic;
if( (getLSB(pcPic->getPOC(), maxPicOrderCntLSB) == longtermPicsLSB[i]) && // Same LSB
(pcPic->getSlice(0)->isReferenced()) && // Reference picture
(pcPic->getPOC() != longtermPicsPoc[i]) ) // Not the LTRP itself
{
mSBPresentFlag[i] = true;
break;
}
iterPic++;
}
}
// tempArray for usedByCurr flag
Bool tempArray[MAX_NUM_REF_PICS]; ::memset(tempArray, 0, sizeof(tempArray));
for(i = 0; i < numLongPics; i++)
{
tempArray[i] = rps->getUsed(indices[i]);
}
// Now write the final values;
ctr = 0;
Int currMSB = 0, currLSB = 0;
// currPicPoc = currMSB + currLSB
currLSB = getLSB(pcSlice->getPOC(), maxPicOrderCntLSB);
currMSB = pcSlice->getPOC() - currLSB;
for(i = rps->getNumberOfPictures() - 1; i >= offset; i--, ctr++)
{
rps->setPOC (i, longtermPicsPoc[ctr]);
rps->setDeltaPOC (i, - pcSlice->getPOC() + longtermPicsPoc[ctr]);
rps->setUsed (i, tempArray[ctr]);
rps->setPocLSBLT (i, longtermPicsLSB[ctr]);
rps->setDeltaPocMSBCycleLT (i, (currMSB - (longtermPicsPoc[ctr] - longtermPicsLSB[ctr])) / maxPicOrderCntLSB);
rps->setDeltaPocMSBPresentFlag(i, mSBPresentFlag[ctr]);
assert(rps->getDeltaPocMSBCycleLT(i) >= 0); // Non-negative value
}
for(i = rps->getNumberOfPictures() - 1, ctr = 1; i >= offset; i--, ctr++)
{
for(Int j = rps->getNumberOfPictures() - 1 - ctr; j >= offset; j--)
{
// Here at the encoder we know that we have set the full POC value for the LTRPs, hence we
// don't have to check the MSB present flag values for this constraint.
assert( rps->getPOC(i) != rps->getPOC(j) ); // If assert fails, LTRP entry repeated in RPS!!!
}
}
}
/** Function for finding the position to insert the first of APS and non-nested BP, PT, DU info SEI messages.
* \param accessUnit Access Unit of the current picture
* This function finds the position to insert the first of APS and non-nested BP, PT, DU info SEI messages.
*/
Int TEncGOP::xGetFirstSeiLocation(AccessUnit &accessUnit)
{
// Find the location of the first SEI message
Int seiStartPos = 0;
for(AccessUnit::iterator it = accessUnit.begin(); it != accessUnit.end(); it++, seiStartPos++)
{
if ((*it)->isSei() || (*it)->isVcl())
{
break;
}
}
// assert(it != accessUnit.end()); // Triggers with some legit configurations
return seiStartPos;
}
Void TEncGOP::dblMetric( TComPic* pcPic, UInt uiNumSlices )
{
TComPicYuv* pcPicYuvRec = pcPic->getPicYuvRec();
Pel* Rec = pcPicYuvRec->getAddr(COMPONENT_Y);
Pel* tempRec = Rec;
Int stride = pcPicYuvRec->getStride(COMPONENT_Y);
UInt log2maxTB = pcPic->getSlice(0)->getSPS()->getQuadtreeTULog2MaxSize();
UInt maxTBsize = (1<<log2maxTB);
const UInt minBlockArtSize = 8;
const UInt picWidth = pcPicYuvRec->getWidth(COMPONENT_Y);
const UInt picHeight = pcPicYuvRec->getHeight(COMPONENT_Y);
const UInt noCol = (picWidth>>log2maxTB);
const UInt noRows = (picHeight>>log2maxTB);
assert(noCol > 1);
assert(noRows > 1);
UInt64 *colSAD = (UInt64*)malloc(noCol*sizeof(UInt64));
UInt64 *rowSAD = (UInt64*)malloc(noRows*sizeof(UInt64));
UInt colIdx = 0;
UInt rowIdx = 0;
Pel p0, p1, p2, q0, q1, q2;
Int qp = pcPic->getSlice(0)->getSliceQp();
Int bitdepthScale = 1 << (g_bitDepth[CHANNEL_TYPE_LUMA]-8);
Int beta = TComLoopFilter::getBeta( qp ) * bitdepthScale;
const Int thr2 = (beta>>2);
const Int thr1 = 2*bitdepthScale;
UInt a = 0;
memset(colSAD, 0, noCol*sizeof(UInt64));
memset(rowSAD, 0, noRows*sizeof(UInt64));
if (maxTBsize > minBlockArtSize)
{
// Analyze vertical artifact edges
for(Int c = maxTBsize; c < picWidth; c += maxTBsize)
{
for(Int r = 0; r < picHeight; r++)
{
p2 = Rec[c-3];
p1 = Rec[c-2];
p0 = Rec[c-1];
q0 = Rec[c];
q1 = Rec[c+1];
q2 = Rec[c+2];
a = ((abs(p2-(p1<<1)+p0)+abs(q0-(q1<<1)+q2))<<1);
if ( thr1 < a && a < thr2)
{
colSAD[colIdx] += abs(p0 - q0);
}
Rec += stride;
}
colIdx++;
Rec = tempRec;
}
// Analyze horizontal artifact edges
for(Int r = maxTBsize; r < picHeight; r += maxTBsize)
{
for(Int c = 0; c < picWidth; c++)
{
p2 = Rec[c + (r-3)*stride];
p1 = Rec[c + (r-2)*stride];
p0 = Rec[c + (r-1)*stride];
q0 = Rec[c + r*stride];
q1 = Rec[c + (r+1)*stride];
q2 = Rec[c + (r+2)*stride];
a = ((abs(p2-(p1<<1)+p0)+abs(q0-(q1<<1)+q2))<<1);
if (thr1 < a && a < thr2)
{
rowSAD[rowIdx] += abs(p0 - q0);
}
}
rowIdx++;
}
}
UInt64 colSADsum = 0;
UInt64 rowSADsum = 0;
for(Int c = 0; c < noCol-1; c++)
{
colSADsum += colSAD[c];
}
for(Int r = 0; r < noRows-1; r++)
{
rowSADsum += rowSAD[r];
}
colSADsum <<= 10;
rowSADsum <<= 10;
colSADsum /= (noCol-1);
colSADsum /= picHeight;
rowSADsum /= (noRows-1);
rowSADsum /= picWidth;
UInt64 avgSAD = ((colSADsum + rowSADsum)>>1);
avgSAD >>= (g_bitDepth[CHANNEL_TYPE_LUMA]-8);
if ( avgSAD > 2048 )
{
avgSAD >>= 9;
Int offset = Clip3(2,6,(Int)avgSAD);
for (Int i=0; i<uiNumSlices; i++)
{
pcPic->getSlice(i)->setDeblockingFilterOverrideFlag(true);
pcPic->getSlice(i)->setDeblockingFilterDisable(false);
pcPic->getSlice(i)->setDeblockingFilterBetaOffsetDiv2( offset );
pcPic->getSlice(i)->setDeblockingFilterTcOffsetDiv2( offset );
}
}
else
{
for (Int i=0; i<uiNumSlices; i++)
{
pcPic->getSlice(i)->setDeblockingFilterOverrideFlag(false);
pcPic->getSlice(i)->setDeblockingFilterDisable( pcPic->getSlice(i)->getPPS()->getPicDisableDeblockingFilterFlag() );
pcPic->getSlice(i)->setDeblockingFilterBetaOffsetDiv2( pcPic->getSlice(i)->getPPS()->getDeblockingFilterBetaOffsetDiv2() );
pcPic->getSlice(i)->setDeblockingFilterTcOffsetDiv2( pcPic->getSlice(i)->getPPS()->getDeblockingFilterTcOffsetDiv2() );
}
}
free(colSAD);
free(rowSAD);
}
//! \}