/* * HEVC video decoder * * Copyright (C) 2012 - 2013 Guillaume Martres * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/pixdesc.h" #include "bit_depth_template.c" #include "hevcpred.h" #ifndef USE_FUNC_PTR static HEVC_INLINE void FUNC(pred_planar)(uint8_t *_src, const uint8_t *_top, const uint8_t *_left, ptrdiff_t stride, int trafo_size); static void FUNC(pred_dc)(uint8_t *_src, const uint8_t *_top, const uint8_t *_left, ptrdiff_t stride, int log2_size, int c_idx); static HEVC_INLINE void FUNC(pred_angular)(uint8_t *_src, const uint8_t *_top, const uint8_t *_left, ptrdiff_t stride, int c_idx, int mode, int size, int disable_intra_boundary_filter BIT_DEPTH_PARAM); #endif #define POS(x, y) src[(x) + stride * (y)] #ifdef USE_FUNC_PTR static HEVC_INLINE void FUNC(intra_pred) #else void intra_pred #endif (HEVCContext *s, int x0, int y0, int log2_size, int c_idx) { #define PU(x) \ ((x) >> s->sps->log2_min_pu_size) #ifdef USE_PRED #define MVF(x, y) \ (s->ref->tab_mvf[(x) + (y) * min_pu_width].pred_flag) #else #define MVF(x, y) PF_INTRA #endif #define MVF_PU(x, y) \ MVF(PU(x0 + ((x) << hshift)), PU(y0 + ((y) << vshift))) #define IS_INTRA(x, y) \ (MVF_PU(x, y) == PF_INTRA) #define MIN_TB_ADDR_ZS(x, y) \ s->pps->min_tb_addr_zs[(y) * (s->sps->tb_mask+2) + (x)] #define EXTEND(ptr, val, len) \ do { \ pixel4 pix = PIXEL_SPLAT_X4(val); \ for (i = 0; i < (len); i += 4) \ AV_WN4P(ptr + i, pix); \ } while (0) #define EXTEND_RIGHT_CIP(ptr, start, length) \ for (i = start; i < (start) + (length); i += 4) \ if (!IS_INTRA(i, -1)) \ AV_WN4P(&ptr[i], a); \ else \ a = PIXEL_SPLAT_X4(ptr[i+3]) #define EXTEND_LEFT_CIP(ptr, start, length) \ for (i = start; i > (start) - (length); i--) \ if (!IS_INTRA(i - 1, -1)) \ ptr[i - 1] = ptr[i] #define EXTEND_UP_CIP(ptr, start, length) \ for (i = (start); i > (start) - (length); i -= 4) \ if (!IS_INTRA(-1, i - 3)) \ AV_WN4P(&ptr[i - 3], a); \ else \ a = PIXEL_SPLAT_X4(ptr[i - 3]) #define EXTEND_DOWN_CIP(ptr, start, length) \ for (i = start; i < (start) + (length); i += 4) \ if (!IS_INTRA(-1, i)) \ AV_WN4P(&ptr[i], a); \ else \ a = PIXEL_SPLAT_X4(ptr[i + 3]) HEVCLocalContext *lc = s->HEVClc; #ifdef USE_VAR_BIT_DEPTH int bit_depth = s->sps->bit_depth; #endif int i; int hshift = s->sps->hshift[c_idx]; int vshift = s->sps->vshift[c_idx]; int size = (1 << log2_size); int size_in_luma_h = size << hshift; int size_in_tbs_h = size_in_luma_h >> s->sps->log2_min_tb_size; int size_in_luma_v = size << vshift; int size_in_tbs_v = size_in_luma_v >> s->sps->log2_min_tb_size; int x = x0 >> hshift; int y = y0 >> vshift; int x_tb = (x0 >> s->sps->log2_min_tb_size) & s->sps->tb_mask; int y_tb = (y0 >> s->sps->log2_min_tb_size) & s->sps->tb_mask; int cur_tb_addr = MIN_TB_ADDR_ZS(x_tb, y_tb); ptrdiff_t stride = s->frame->linesize[c_idx] / sizeof(pixel); pixel *src = (pixel*)s->frame->data[c_idx] + x + y * stride; int min_pu_width = s->sps->min_pu_width; enum IntraPredMode mode = c_idx ? lc->tu.intra_pred_mode_c : lc->tu.intra_pred_mode; pixel4 a; pixel left_array[2 * MAX_TB_SIZE + 1]; pixel filtered_left_array[2 * MAX_TB_SIZE + 1]; pixel top_array[2 * MAX_TB_SIZE + 1]; pixel filtered_top_array[2 * MAX_TB_SIZE + 1]; pixel *left = left_array + 1; pixel *top = top_array + 1; pixel *filtered_left = filtered_left_array + 1; pixel *filtered_top = filtered_top_array + 1; int cand_bottom_left = lc->na.cand_bottom_left && cur_tb_addr > MIN_TB_ADDR_ZS( x_tb - 1, (y_tb + size_in_tbs_v) & s->sps->tb_mask); int cand_left = lc->na.cand_left; int cand_up_left = lc->na.cand_up_left; int cand_up = lc->na.cand_up; int cand_up_right = lc->na.cand_up_right && cur_tb_addr > MIN_TB_ADDR_ZS((x_tb + size_in_tbs_h) & s->sps->tb_mask, y_tb - 1); int bottom_left_size = (FFMIN(y0 + 2 * size_in_luma_v, s->sps->height) - (y0 + size_in_luma_v)) >> vshift; int top_right_size = (FFMIN(x0 + 2 * size_in_luma_h, s->sps->width) - (x0 + size_in_luma_h)) >> hshift; int disable_intra_boundary_filter; if (s->pps->constrained_intra_pred_flag == 1) { int size_in_luma_pu_v = PU(size_in_luma_v); int size_in_luma_pu_h = PU(size_in_luma_h); int on_pu_edge_x = !(x0 & ((1 << s->sps->log2_min_pu_size) - 1)); int on_pu_edge_y = !(y0 & ((1 << s->sps->log2_min_pu_size) - 1)); if (!size_in_luma_pu_h) size_in_luma_pu_h++; if (cand_bottom_left == 1 && on_pu_edge_x) { int x_left_pu = PU(x0 - 1); int y_bottom_pu = PU(y0 + size_in_luma_v); int max = FFMIN(size_in_luma_pu_v, s->sps->min_pu_height - y_bottom_pu); cand_bottom_left = 0; for (i = 0; i < max; i += 2) cand_bottom_left |= (MVF(x_left_pu, y_bottom_pu + i) == PF_INTRA); } if (cand_left == 1 && on_pu_edge_x) { int x_left_pu = PU(x0 - 1); int y_left_pu = PU(y0); int max = FFMIN(size_in_luma_pu_v, s->sps->min_pu_height - y_left_pu); cand_left = 0; for (i = 0; i < max; i += 2) cand_left |= (MVF(x_left_pu, y_left_pu + i) == PF_INTRA); } if (cand_up_left == 1) { int x_left_pu = PU(x0 - 1); int y_top_pu = PU(y0 - 1); cand_up_left = MVF(x_left_pu, y_top_pu) == PF_INTRA; } if (cand_up == 1 && on_pu_edge_y) { int x_top_pu = PU(x0); int y_top_pu = PU(y0 - 1); int max = FFMIN(size_in_luma_pu_h, s->sps->min_pu_width - x_top_pu); cand_up = 0; for (i = 0; i < max; i += 2) cand_up |= (MVF(x_top_pu + i, y_top_pu) == PF_INTRA); } if (cand_up_right == 1 && on_pu_edge_y) { int y_top_pu = PU(y0 - 1); int x_right_pu = PU(x0 + size_in_luma_h); int max = FFMIN(size_in_luma_pu_h, s->sps->min_pu_width - x_right_pu); cand_up_right = 0; for (i = 0; i < max; i += 2) cand_up_right |= (MVF(x_right_pu + i, y_top_pu) == PF_INTRA); } memset(left, 128, 2 * MAX_TB_SIZE*sizeof(pixel)); memset(top , 128, 2 * MAX_TB_SIZE*sizeof(pixel)); top[-1] = 128; } if (cand_up_left) { left[-1] = POS(-1, -1); top[-1] = left[-1]; } if (cand_up) memcpy(top, src - stride, size * sizeof(pixel)); if (cand_up_right) { memcpy(top + size, src - stride + size, size * sizeof(pixel)); EXTEND(top + size + top_right_size, POS(size + top_right_size - 1, -1), size - top_right_size); } if (cand_left) for (i = 0; i < size; i++) left[i] = POS(-1, i); if (cand_bottom_left) { for (i = size; i < size + bottom_left_size; i++) left[i] = POS(-1, i); EXTEND(left + size + bottom_left_size, POS(-1, size + bottom_left_size - 1), size - bottom_left_size); } if (s->pps->constrained_intra_pred_flag == 1) { if (cand_bottom_left || cand_left || cand_up_left || cand_up || cand_up_right) { int size_max_x = x0 + ((2 * size) << hshift) < s->sps->width ? 2 * size : (s->sps->width - x0) >> hshift; int size_max_y = y0 + ((2 * size) << vshift) < s->sps->height ? 2 * size : (s->sps->height - y0) >> vshift; int j = size + (cand_bottom_left? bottom_left_size: 0) -1; if (!cand_up_right) { size_max_x = x0 + ((size) << hshift) < s->sps->width ? size : (s->sps->width - x0) >> hshift; } if (!cand_bottom_left) { size_max_y = y0 + (( size) << vshift) < s->sps->height ? size : (s->sps->height - y0) >> vshift; } if (cand_bottom_left || cand_left || cand_up_left) { while (j > -1 && !IS_INTRA(-1, j)) j--; if (!IS_INTRA(-1, j)) { j = 0; while (j < size_max_x && !IS_INTRA(j, -1)) j++; EXTEND_LEFT_CIP(top, j, j + 1); left[-1] = top[-1]; } } else { j = 0; while (j < size_max_x && !IS_INTRA(j, -1)) j++; if (j > 0) if (x0 > 0) { EXTEND_LEFT_CIP(top, j, j + 1); } else { EXTEND_LEFT_CIP(top, j, j); top[-1] = top[0]; } left[-1] = top[-1]; } left[-1] = top[-1]; if (cand_bottom_left || cand_left) { a = PIXEL_SPLAT_X4(left[-1]); EXTEND_DOWN_CIP(left, 0, size_max_y); } if (!cand_left) EXTEND(left, left[-1], size); if (!cand_bottom_left) EXTEND(left + size, left[size - 1], size); if (x0 != 0 && y0 != 0) { a = PIXEL_SPLAT_X4(left[size_max_y - 1]); EXTEND_UP_CIP(left, size_max_y - 1, size_max_y); if (!IS_INTRA(-1, - 1)) left[-1] = left[0]; } else if (x0 == 0) { EXTEND(left, 0, size_max_y); } else { a = PIXEL_SPLAT_X4(left[size_max_y - 1]); EXTEND_UP_CIP(left, size_max_y - 1, size_max_y); } top[-1] = left[-1]; if (y0 != 0) { a = PIXEL_SPLAT_X4(left[-1]); EXTEND_RIGHT_CIP(top, 0, size_max_x); } } } // Infer the unavailable samples if (!cand_bottom_left) { if (cand_left) { EXTEND(left + size, left[size - 1], size); } else if (cand_up_left) { EXTEND(left, left[-1], 2 * size); cand_left = 1; } else if (cand_up) { left[-1] = top[0]; EXTEND(left, left[-1], 2 * size); cand_up_left = 1; cand_left = 1; } else if (cand_up_right) { EXTEND(top, top[size], size); left[-1] = top[size]; EXTEND(left, left[-1], 2 * size); cand_up = 1; cand_up_left = 1; cand_left = 1; } else { // No samples available left[-1] = (1 << (BIT_DEPTH - 1)); EXTEND(top, left[-1], 2 * size); EXTEND(left, left[-1], 2 * size); } } if (!cand_left) EXTEND(left, left[size], size); if (!cand_up_left) { left[-1] = left[0]; } if (!cand_up) EXTEND(top, left[-1], size); if (!cand_up_right) EXTEND(top + size, top[size - 1], size); top[-1] = left[-1]; // Filtering process if (!s->sps->intra_smoothing_disabled_flag && (c_idx == 0 || s->sps->chroma_format_idc == 3)) { if (mode != INTRA_DC && size != 4){ int intra_hor_ver_dist_thresh[] = { 7, 1, 0 }; int min_dist_vert_hor = FFMIN(FFABS((int)(mode - 26U)), FFABS((int)(mode - 10U))); if (min_dist_vert_hor > intra_hor_ver_dist_thresh[log2_size - 3]) { int threshold = 1 << (BIT_DEPTH - 5); if (s->sps->sps_strong_intra_smoothing_enable_flag && c_idx == 0 && log2_size == 5 && FFABS(top[-1] + top[63] - 2 * top[31]) < threshold && FFABS(left[-1] + left[63] - 2 * left[31]) < threshold) { // We can't just overwrite values in top because it could be // a pointer into src filtered_top[-1] = top[-1]; filtered_top[63] = top[63]; for (i = 0; i < 63; i++) filtered_top[i] = ((64 - (i + 1)) * top[-1] + (i + 1) * top[63] + 32) >> 6; for (i = 0; i < 63; i++) left[i] = ((64 - (i + 1)) * left[-1] + (i + 1) * left[63] + 32) >> 6; top = filtered_top; } else { filtered_left[2 * size - 1] = left[2 * size - 1]; filtered_top[2 * size - 1] = top[2 * size - 1]; for (i = 2 * size - 2; i >= 0; i--) filtered_left[i] = (left[i + 1] + 2 * left[i] + left[i - 1] + 2) >> 2; filtered_top[-1] = filtered_left[-1] = (left[0] + 2 * left[-1] + top[0] + 2) >> 2; for (i = 2 * size - 2; i >= 0; i--) filtered_top[i] = (top[i + 1] + 2 * top[i] + top[i - 1] + 2) >> 2; left = filtered_left; top = filtered_top; } } } } switch (mode) { case INTRA_PLANAR: #ifdef USE_FUNC_PTR s->hpc.pred_planar[log2_size - 2]((uint8_t *)src, (uint8_t *)top, (uint8_t *)left, stride); #else FUNC(pred_planar)((uint8_t *)src, (uint8_t *)top, (uint8_t *)left, stride, log2_size); #endif break; case INTRA_DC: #ifdef USE_FUNC_PTR s->hpc.pred_dc((uint8_t *)src, (uint8_t *)top, (uint8_t *)left, stride, log2_size, c_idx); #else FUNC(pred_dc)((uint8_t *)src, (uint8_t *)top, (uint8_t *)left, stride, log2_size, c_idx); #endif break; default: disable_intra_boundary_filter = (s->sps->implicit_rdpcm_enabled_flag && lc->cu.cu_transquant_bypass_flag); #ifdef USE_FUNC_PTR s->hpc.pred_angular[log2_size - 2]((uint8_t *)src, (uint8_t *)top, (uint8_t *)left, stride, c_idx, mode, disable_intra_boundary_filter BIT_DEPTH_ARG); #else FUNC(pred_angular)((uint8_t *)src, (uint8_t *)top, (uint8_t *)left, stride, c_idx, mode, 1 << log2_size, disable_intra_boundary_filter BIT_DEPTH_ARG); #endif break; } } #ifdef USE_FUNC_PTR #define INTRA_PRED(size) \ static void FUNC(intra_pred_ ## size)(HEVCContext *s, int x0, int y0, int c_idx) \ { \ FUNC(intra_pred)(s, x0, y0, size, c_idx); \ } INTRA_PRED(2) INTRA_PRED(3) INTRA_PRED(4) INTRA_PRED(5) #undef INTRA_PRED #endif static HEVC_INLINE void FUNC(pred_planar)(uint8_t *_src, const uint8_t *_top, const uint8_t *_left, ptrdiff_t stride, int trafo_size) { int x, y; pixel *src = (pixel *)_src; const pixel *top = (const pixel *)_top; const pixel *left = (const pixel *)_left; int size = 1 << trafo_size; for (y = 0; y < size; y++) for (x = 0; x < size; x++) POS(x, y) = ((size - 1 - x) * left[y] + (x + 1) * top[size] + (size - 1 - y) * top[x] + (y + 1) * left[size] + size) >> (trafo_size + 1); } #ifdef USE_FUNC_PTR #define PRED_PLANAR(size)\ static void FUNC(pred_planar_ ## size)(uint8_t *src, const uint8_t *top, \ const uint8_t *left, ptrdiff_t stride) \ { \ FUNC(pred_planar)(src, top, left, stride, size + 2); \ } PRED_PLANAR(0) PRED_PLANAR(1) PRED_PLANAR(2) PRED_PLANAR(3) #undef PRED_PLANAR #endif static void FUNC(pred_dc)(uint8_t *_src, const uint8_t *_top, const uint8_t *_left, ptrdiff_t stride, int log2_size, int c_idx) { int i, j, x, y; int size = (1 << log2_size); pixel *src = (pixel *)_src; const pixel *top = (const pixel *)_top; const pixel *left = (const pixel *)_left; int dc = size; pixel4 a; for (i = 0; i < size; i++) dc += left[i] + top[i]; dc >>= log2_size + 1; a = PIXEL_SPLAT_X4(dc); for (i = 0; i < size; i++) for (j = 0; j < size; j+=4) AV_WN4P(&POS(j, i), a); if (c_idx == 0 && size < 32) { POS(0, 0) = (left[0] + 2 * dc + top[0] + 2) >> 2; for (x = 1; x < size; x++) POS(x, 0) = (top[x] + 3 * dc + 2) >> 2; for (y = 1; y < size; y++) POS(0, y) = (left[y] + 3 * dc + 2) >> 2; } } static HEVC_INLINE void FUNC(pred_angular)(uint8_t *_src, const uint8_t *_top, const uint8_t *_left, ptrdiff_t stride, int c_idx, int mode, int size, int disable_intra_boundary_filter BIT_DEPTH_PARAM) { int x, y; pixel *src = (pixel *)_src; const pixel *top = (const pixel *)_top; const pixel *left = (const pixel *)_left; static const int8_t intra_pred_angle[] = { 32, 26, 21, 17, 13, 9, 5, 2, 0, -2, -5, -9, -13, -17, -21, -26, -32, -26, -21, -17, -13, -9, -5, -2, 0, 2, 5, 9, 13, 17, 21, 26, 32 }; static const int16_t inv_angle[] = { -4096, -1638, -910, -630, -482, -390, -315, -256, -315, -390, -482, -630, -910, -1638, -4096 }; int angle = intra_pred_angle[mode - 2]; pixel ref_array[3 * MAX_TB_SIZE + 4]; pixel *ref_tmp = ref_array + size; const pixel *ref; int last = (size * angle) >> 5; if (mode >= 18) { ref = top - 1; if (angle < 0 && last < -1) { for (x = 0; x <= size; x += 4) AV_WN4P(&ref_tmp[x], AV_RN4P(&top[x - 1])); for (x = last; x <= -1; x++) ref_tmp[x] = left[-1 + ((x * inv_angle[mode - 11] + 128) >> 8)]; ref = ref_tmp; } for (y = 0; y < size; y++) { int idx = ((y + 1) * angle) >> 5; int fact = ((y + 1) * angle) & 31; if (fact) { for (x = 0; x < size; x += 4) { POS(x , y) = ((32 - fact) * ref[x + idx + 1] + fact * ref[x + idx + 2] + 16) >> 5; POS(x + 1, y) = ((32 - fact) * ref[x + 1 + idx + 1] + fact * ref[x + 1 + idx + 2] + 16) >> 5; POS(x + 2, y) = ((32 - fact) * ref[x + 2 + idx + 1] + fact * ref[x + 2 + idx + 2] + 16) >> 5; POS(x + 3, y) = ((32 - fact) * ref[x + 3 + idx + 1] + fact * ref[x + 3 + idx + 2] + 16) >> 5; } } else { for (x = 0; x < size; x += 4) AV_WN4P(&POS(x, y), AV_RN4P(&ref[x + idx + 1])); } } if (mode == 26 && c_idx == 0 && size < 32 && !disable_intra_boundary_filter) { for (y = 0; y < size; y++) POS(0, y) = av_clip_pixel(top[0] + ((left[y] - left[-1]) >> 1)); } } else { ref = left - 1; if (angle < 0 && last < -1) { for (x = 0; x <= size; x += 4) AV_WN4P(&ref_tmp[x], AV_RN4P(&left[x - 1])); for (x = last; x <= -1; x++) ref_tmp[x] = top[-1 + ((x * inv_angle[mode - 11] + 128) >> 8)]; ref = ref_tmp; } for (x = 0; x < size; x++) { int idx = ((x + 1) * angle) >> 5; int fact = ((x + 1) * angle) & 31; if (fact) { for (y = 0; y < size; y++) { POS(x, y) = ((32 - fact) * ref[y + idx + 1] + fact * ref[y + idx + 2] + 16) >> 5; } } else { for (y = 0; y < size; y++) POS(x, y) = ref[y + idx + 1]; } } if (mode == 10 && c_idx == 0 && size < 32 && !disable_intra_boundary_filter) { for (x = 0; x < size; x += 4) { POS(x, 0) = av_clip_pixel(left[0] + ((top[x ] - top[-1]) >> 1)); POS(x + 1, 0) = av_clip_pixel(left[0] + ((top[x + 1] - top[-1]) >> 1)); POS(x + 2, 0) = av_clip_pixel(left[0] + ((top[x + 2] - top[-1]) >> 1)); POS(x + 3, 0) = av_clip_pixel(left[0] + ((top[x + 3] - top[-1]) >> 1)); } } } } #ifdef USE_FUNC_PTR static void FUNC(pred_angular_0)(uint8_t *src, const uint8_t *top, const uint8_t *left, ptrdiff_t stride, int c_idx, int mode, int disable_intra_boundary_filter BIT_DEPTH_PARAM) { FUNC(pred_angular)(src, top, left, stride, c_idx, mode, 1 << 2, disable_intra_boundary_filter BIT_DEPTH_ARG); } static void FUNC(pred_angular_1)(uint8_t *src, const uint8_t *top, const uint8_t *left, ptrdiff_t stride, int c_idx, int mode, int disable_intra_boundary_filter BIT_DEPTH_PARAM) { FUNC(pred_angular)(src, top, left, stride, c_idx, mode, 1 << 3, disable_intra_boundary_filter BIT_DEPTH_ARG); } static void FUNC(pred_angular_2)(uint8_t *src, const uint8_t *top, const uint8_t *left, ptrdiff_t stride, int c_idx, int mode, int disable_intra_boundary_filter BIT_DEPTH_PARAM) { FUNC(pred_angular)(src, top, left, stride, c_idx, mode, 1 << 4, disable_intra_boundary_filter BIT_DEPTH_ARG); } static void FUNC(pred_angular_3)(uint8_t *src, const uint8_t *top, const uint8_t *left, ptrdiff_t stride, int c_idx, int mode, int disable_intra_boundary_filter BIT_DEPTH_PARAM) { FUNC(pred_angular)(src, top, left, stride, c_idx, mode, 1 << 5, disable_intra_boundary_filter BIT_DEPTH_ARG); } #endif #undef EXTEND_LEFT_CIP #undef EXTEND_RIGHT_CIP #undef EXTEND_UP_CIP #undef EXTEND_DOWN_CIP #undef IS_INTRA #undef MVF_PU #undef MVF #undef PU #undef EXTEND #undef MIN_TB_ADDR_ZS #undef POS