/***************************************************************************** * Copyright (C) 2013 x265 project * * Authors: Chung Shin Yee * Min Chen * Steve Borho * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA. * * This program is also available under a commercial proprietary license. * For more information, contact us at license @ x265.com. *****************************************************************************/ #include "common.h" #include "frame.h" #include "framedata.h" #include "wavefront.h" #include "param.h" #include "encoder.h" #include "frameencoder.h" #include "common.h" #include "slicetype.h" #include "nal.h" namespace X265_NS { void weightAnalyse(Slice& slice, Frame& frame, x265_param& param); FrameEncoder::FrameEncoder() { m_prevOutputTime = x265_mdate(); m_isFrameEncoder = true; m_threadActive = true; m_slicetypeWaitTime = 0; m_activeWorkerCount = 0; m_completionCount = 0; m_bAllRowsStop = false; m_vbvResetTriggerRow = -1; m_outStreams = NULL; m_substreamSizes = NULL; m_nr = NULL; m_tld = NULL; m_rows = NULL; m_top = NULL; m_param = NULL; m_frame = NULL; m_cuGeoms = NULL; m_ctuGeomMap = NULL; m_localTldIdx = 0; memset(&m_rce, 0, sizeof(RateControlEntry)); } void FrameEncoder::destroy() { if (m_pool) { if (!m_jpId) { int numTLD = m_pool->m_numWorkers; if (!m_param->bEnableWavefront) numTLD += m_pool->m_numProviders; for (int i = 0; i < numTLD; i++) m_tld[i].destroy(); delete [] m_tld; } } else { m_tld->destroy(); delete m_tld; } delete[] m_rows; delete[] m_outStreams; X265_FREE(m_cuGeoms); X265_FREE(m_ctuGeomMap); X265_FREE(m_substreamSizes); X265_FREE(m_nr); m_frameFilter.destroy(); if (m_param->bEmitHRDSEI || !!m_param->interlaceMode) { delete m_rce.picTimingSEI; delete m_rce.hrdTiming; } } bool FrameEncoder::init(Encoder *top, int numRows, int numCols) { m_top = top; m_param = top->m_param; m_numRows = numRows; m_numCols = numCols; m_filterRowDelay = (m_param->bEnableSAO && m_param->bSaoNonDeblocked) ? 2 : (m_param->bEnableSAO || m_param->bEnableLoopFilter ? 1 : 0); m_filterRowDelayCus = m_filterRowDelay * numCols; m_rows = new CTURow[m_numRows]; bool ok = !!m_numRows; /* determine full motion search range */ int range = m_param->searchRange; /* fpel search */ range += !!(m_param->searchMethod < 2); /* diamond/hex range check lag */ range += NTAPS_LUMA / 2; /* subpel filter half-length */ range += 2 + MotionEstimate::hpelIterationCount(m_param->subpelRefine) / 2; /* subpel refine steps */ m_refLagRows = 1 + ((range + g_maxCUSize - 1) / g_maxCUSize); // NOTE: 2 times of numRows because both Encoder and Filter in same queue if (!WaveFront::init(m_numRows * 2)) { x265_log(m_param, X265_LOG_ERROR, "unable to initialize wavefront queue\n"); m_pool = NULL; } m_frameFilter.init(top, this, numRows); // initialize HRD parameters of SPS if (m_param->bEmitHRDSEI || !!m_param->interlaceMode) { m_rce.picTimingSEI = new SEIPictureTiming; m_rce.hrdTiming = new HRDTiming; ok &= m_rce.picTimingSEI && m_rce.hrdTiming; } if (m_param->noiseReductionIntra || m_param->noiseReductionInter || m_param->rc.vbvBufferSize) m_nr = X265_MALLOC(NoiseReduction, 1); if (m_nr) memset(m_nr, 0, sizeof(NoiseReduction)); else m_param->noiseReductionIntra = m_param->noiseReductionInter = 0; return ok; } /* Generate a complete list of unique geom sets for the current picture dimensions */ bool FrameEncoder::initializeGeoms() { /* Geoms only vary between CTUs in the presence of picture edges */ int maxCUSize = m_param->maxCUSize; int minCUSize = m_param->minCUSize; int heightRem = m_param->sourceHeight & (maxCUSize - 1); int widthRem = m_param->sourceWidth & (maxCUSize - 1); int allocGeoms = 1; // body if (heightRem && widthRem) allocGeoms = 4; // body, right, bottom, corner else if (heightRem || widthRem) allocGeoms = 2; // body, right or bottom m_ctuGeomMap = X265_MALLOC(uint32_t, m_numRows * m_numCols); m_cuGeoms = X265_MALLOC(CUGeom, allocGeoms * CUGeom::MAX_GEOMS); if (!m_cuGeoms || !m_ctuGeomMap) return false; // body CUData::calcCTUGeoms(maxCUSize, maxCUSize, maxCUSize, minCUSize, m_cuGeoms); memset(m_ctuGeomMap, 0, sizeof(uint32_t) * m_numRows * m_numCols); if (allocGeoms == 1) return true; int countGeoms = 1; if (widthRem) { // right CUData::calcCTUGeoms(widthRem, maxCUSize, maxCUSize, minCUSize, m_cuGeoms + countGeoms * CUGeom::MAX_GEOMS); for (uint32_t i = 0; i < m_numRows; i++) { uint32_t ctuAddr = m_numCols * (i + 1) - 1; m_ctuGeomMap[ctuAddr] = countGeoms * CUGeom::MAX_GEOMS; } countGeoms++; } if (heightRem) { // bottom CUData::calcCTUGeoms(maxCUSize, heightRem, maxCUSize, minCUSize, m_cuGeoms + countGeoms * CUGeom::MAX_GEOMS); for (uint32_t i = 0; i < m_numCols; i++) { uint32_t ctuAddr = m_numCols * (m_numRows - 1) + i; m_ctuGeomMap[ctuAddr] = countGeoms * CUGeom::MAX_GEOMS; } countGeoms++; if (widthRem) { // corner CUData::calcCTUGeoms(widthRem, heightRem, maxCUSize, minCUSize, m_cuGeoms + countGeoms * CUGeom::MAX_GEOMS); uint32_t ctuAddr = m_numCols * m_numRows - 1; m_ctuGeomMap[ctuAddr] = countGeoms * CUGeom::MAX_GEOMS; countGeoms++; } X265_CHECK(countGeoms == allocGeoms, "geometry match check failure\n"); } return true; } bool FrameEncoder::startCompressFrame(Frame* curFrame) { m_slicetypeWaitTime = x265_mdate() - m_prevOutputTime; m_frame = curFrame; m_param = curFrame->m_param; m_sliceType = curFrame->m_lowres.sliceType; curFrame->m_encData->m_frameEncoderID = m_jpId; curFrame->m_encData->m_jobProvider = this; curFrame->m_encData->m_slice->m_mref = m_mref; if (!m_cuGeoms) { if (!initializeGeoms()) return false; } m_enable.trigger(); return true; } void FrameEncoder::threadMain() { THREAD_NAME("Frame", m_jpId); if (m_pool) { m_pool->setCurrentThreadAffinity(); /* the first FE on each NUMA node is responsible for allocating thread * local data for all worker threads in that pool. If WPP is disabled, then * each FE also needs a TLD instance */ if (!m_jpId) { int numTLD = m_pool->m_numWorkers; if (!m_param->bEnableWavefront) numTLD += m_pool->m_numProviders; m_tld = new ThreadLocalData[numTLD]; for (int i = 0; i < numTLD; i++) { m_tld[i].analysis.initSearch(*m_param, m_top->m_scalingList); m_tld[i].analysis.create(m_tld); } for (int i = 0; i < m_pool->m_numProviders; i++) { if (m_pool->m_jpTable[i]->m_isFrameEncoder) /* ugh; over-allocation and other issues here */ { FrameEncoder *peer = dynamic_cast(m_pool->m_jpTable[i]); peer->m_tld = m_tld; } } } if (m_param->bEnableWavefront) m_localTldIdx = -1; // cause exception if used else m_localTldIdx = m_pool->m_numWorkers + m_jpId; } else { m_tld = new ThreadLocalData; m_tld->analysis.initSearch(*m_param, m_top->m_scalingList); m_tld->analysis.create(NULL); m_localTldIdx = 0; } m_done.trigger(); /* signal that thread is initialized */ m_enable.wait(); /* Encoder::encode() triggers this event */ while (m_threadActive) { compressFrame(); m_done.trigger(); /* FrameEncoder::getEncodedPicture() blocks for this event */ m_enable.wait(); } } void FrameEncoder::WeightAnalysis::processTasks(int /* workerThreadId */) { Frame* frame = master.m_frame; weightAnalyse(*frame->m_encData->m_slice, *frame, *master.m_param); } void FrameEncoder::compressFrame() { ProfileScopeEvent(frameThread); m_startCompressTime = x265_mdate(); m_totalActiveWorkerCount = 0; m_activeWorkerCountSamples = 0; m_totalWorkerElapsedTime = 0; m_totalNoWorkerTime = 0; m_countRowBlocks = 0; m_allRowsAvailableTime = 0; m_stallStartTime = 0; m_completionCount = 0; m_bAllRowsStop = false; m_vbvResetTriggerRow = -1; m_SSDY = m_SSDU = m_SSDV = 0; m_ssim = 0; m_ssimCnt = 0; memset(&(m_frame->m_encData->m_frameStats), 0, sizeof(m_frame->m_encData->m_frameStats)); /* Emit access unit delimiter unless this is the first frame and the user is * not repeating headers (since AUD is supposed to be the first NAL in the access * unit) */ Slice* slice = m_frame->m_encData->m_slice; if (m_param->bEnableAccessUnitDelimiters && (m_frame->m_poc || m_param->bRepeatHeaders)) { m_bs.resetBits(); m_entropyCoder.setBitstream(&m_bs); m_entropyCoder.codeAUD(*slice); m_bs.writeByteAlignment(); m_nalList.serialize(NAL_UNIT_ACCESS_UNIT_DELIMITER, m_bs); } if (m_frame->m_lowres.bKeyframe && m_param->bRepeatHeaders) m_top->getStreamHeaders(m_nalList, m_entropyCoder, m_bs); // Weighted Prediction parameters estimation. bool bUseWeightP = slice->m_sliceType == P_SLICE && slice->m_pps->bUseWeightPred; bool bUseWeightB = slice->m_sliceType == B_SLICE && slice->m_pps->bUseWeightedBiPred; if (bUseWeightP || bUseWeightB) { #if DETAILED_CU_STATS m_cuStats.countWeightAnalyze++; ScopedElapsedTime time(m_cuStats.weightAnalyzeTime); #endif WeightAnalysis wa(*this); if (m_pool && wa.tryBondPeers(*this, 1)) /* use an idle worker for weight analysis */ wa.waitForExit(); else weightAnalyse(*slice, *m_frame, *m_param); } else slice->disableWeights(); // Generate motion references int numPredDir = slice->isInterP() ? 1 : slice->isInterB() ? 2 : 0; for (int l = 0; l < numPredDir; l++) { for (int ref = 0; ref < slice->m_numRefIdx[l]; ref++) { WeightParam *w = NULL; if ((bUseWeightP || bUseWeightB) && slice->m_weightPredTable[l][ref][0].bPresentFlag) w = slice->m_weightPredTable[l][ref]; slice->m_refReconPicList[l][ref] = slice->m_refFrameList[l][ref]->m_reconPic; m_mref[l][ref].init(slice->m_refReconPicList[l][ref], w, *m_param); } } int numTLD; if (m_pool) numTLD = m_param->bEnableWavefront ? m_pool->m_numWorkers : m_pool->m_numWorkers + m_pool->m_numProviders; else numTLD = 1; /* Get the QP for this frame from rate control. This call may block until * frames ahead of it in encode order have called rateControlEnd() */ int qp = m_top->m_rateControl->rateControlStart(m_frame, &m_rce, m_top); m_rce.newQp = qp; if (m_nr) { if (qp > QP_MAX_SPEC && m_frame->m_param->rc.vbvBufferSize) { for (int i = 0; i < numTLD; i++) { m_tld[i].analysis.m_quant.m_frameNr[m_jpId].offset = m_top->m_offsetEmergency[qp - QP_MAX_SPEC - 1]; m_tld[i].analysis.m_quant.m_frameNr[m_jpId].residualSum = m_top->m_residualSumEmergency; m_tld[i].analysis.m_quant.m_frameNr[m_jpId].count = m_top->m_countEmergency; } } else { if (m_param->noiseReductionIntra || m_param->noiseReductionInter) { for (int i = 0; i < numTLD; i++) { m_tld[i].analysis.m_quant.m_frameNr[m_jpId].offset = m_tld[i].analysis.m_quant.m_frameNr[m_jpId].nrOffsetDenoise; m_tld[i].analysis.m_quant.m_frameNr[m_jpId].residualSum = m_tld[i].analysis.m_quant.m_frameNr[m_jpId].nrResidualSum; m_tld[i].analysis.m_quant.m_frameNr[m_jpId].count = m_tld[i].analysis.m_quant.m_frameNr[m_jpId].nrCount; } } else { for (int i = 0; i < numTLD; i++) m_tld[i].analysis.m_quant.m_frameNr[m_jpId].offset = NULL; } } } /* Clip slice QP to 0-51 spec range before encoding */ slice->m_sliceQp = x265_clip3(-QP_BD_OFFSET, QP_MAX_SPEC, qp); m_initSliceContext.resetEntropy(*slice); m_frameFilter.start(m_frame, m_initSliceContext, qp); /* ensure all rows are blocked prior to initializing row CTU counters */ WaveFront::clearEnabledRowMask(); /* reset entropy coders */ m_entropyCoder.load(m_initSliceContext); for (uint32_t i = 0; i < m_numRows; i++) m_rows[i].init(m_initSliceContext); uint32_t numSubstreams = m_param->bEnableWavefront ? slice->m_sps->numCuInHeight : 1; if (!m_outStreams) { m_outStreams = new Bitstream[numSubstreams]; m_substreamSizes = X265_MALLOC(uint32_t, numSubstreams); if (!m_param->bEnableSAO) for (uint32_t i = 0; i < numSubstreams; i++) m_rows[i].rowGoOnCoder.setBitstream(&m_outStreams[i]); } else for (uint32_t i = 0; i < numSubstreams; i++) m_outStreams[i].resetBits(); int prevBPSEI = m_rce.encodeOrder ? m_top->m_lastBPSEI : 0; if (m_frame->m_lowres.bKeyframe) { if (m_param->bEmitHRDSEI) { SEIBufferingPeriod* bpSei = &m_top->m_rateControl->m_bufPeriodSEI; // since the temporal layer HRD is not ready, we assumed it is fixed bpSei->m_auCpbRemovalDelayDelta = 1; bpSei->m_cpbDelayOffset = 0; bpSei->m_dpbDelayOffset = 0; // hrdFullness() calculates the initial CPB removal delay and offset m_top->m_rateControl->hrdFullness(bpSei); m_bs.resetBits(); bpSei->write(m_bs, *slice->m_sps); m_bs.writeByteAlignment(); m_nalList.serialize(NAL_UNIT_PREFIX_SEI, m_bs); m_top->m_lastBPSEI = m_rce.encodeOrder; } } if (m_param->bEmitHRDSEI || !!m_param->interlaceMode) { SEIPictureTiming *sei = m_rce.picTimingSEI; const VUI *vui = &slice->m_sps->vuiParameters; const HRDInfo *hrd = &vui->hrdParameters; int poc = slice->m_poc; if (vui->frameFieldInfoPresentFlag) { if (m_param->interlaceMode == 2) sei->m_picStruct = (poc & 1) ? 1 /* top */ : 2 /* bottom */; else if (m_param->interlaceMode == 1) sei->m_picStruct = (poc & 1) ? 2 /* bottom */ : 1 /* top */; else sei->m_picStruct = 0; sei->m_sourceScanType = 0; sei->m_duplicateFlag = false; } if (vui->hrdParametersPresentFlag) { // The m_aucpbremoval delay specifies how many clock ticks the // access unit associated with the picture timing SEI message has to // wait after removal of the access unit with the most recent // buffering period SEI message sei->m_auCpbRemovalDelay = X265_MIN(X265_MAX(1, m_rce.encodeOrder - prevBPSEI), (1 << hrd->cpbRemovalDelayLength)); sei->m_picDpbOutputDelay = slice->m_sps->numReorderPics + poc - m_rce.encodeOrder; } m_bs.resetBits(); sei->write(m_bs, *slice->m_sps); m_bs.writeByteAlignment(); m_nalList.serialize(NAL_UNIT_PREFIX_SEI, m_bs); } /* CQP and CRF (without capped VBV) doesn't use mid-frame statistics to * tune RateControl parameters for other frames. * Hence, for these modes, update m_startEndOrder and unlock RC for previous threads waiting in * RateControlEnd here, after the slice contexts are initialized. For the rest - ABR * and VBV, unlock only after rateControlUpdateStats of this frame is called */ if (m_param->rc.rateControlMode != X265_RC_ABR && !m_top->m_rateControl->m_isVbv) { m_top->m_rateControl->m_startEndOrder.incr(); if (m_rce.encodeOrder < m_param->frameNumThreads - 1) m_top->m_rateControl->m_startEndOrder.incr(); // faked rateControlEnd calls for negative frames } /* Analyze CTU rows, most of the hard work is done here. Frame is * compressed in a wave-front pattern if WPP is enabled. Row based loop * filters runs behind the CTU compression and reconstruction */ m_rows[0].active = true; if (m_param->bEnableWavefront) { for (uint32_t row = 0; row < m_numRows; row++) { // block until all reference frames have reconstructed the rows we need for (int l = 0; l < numPredDir; l++) { for (int ref = 0; ref < slice->m_numRefIdx[l]; ref++) { Frame *refpic = slice->m_refFrameList[l][ref]; uint32_t reconRowCount = refpic->m_reconRowCount.get(); while ((reconRowCount != m_numRows) && (reconRowCount < row + m_refLagRows)) reconRowCount = refpic->m_reconRowCount.waitForChange(reconRowCount); if ((bUseWeightP || bUseWeightB) && m_mref[l][ref].isWeighted) m_mref[l][ref].applyWeight(row + m_refLagRows, m_numRows); } } enableRowEncoder(row); /* clear external dependency for this row */ if (!row) { m_row0WaitTime = x265_mdate(); enqueueRowEncoder(0); /* clear internal dependency, start wavefront */ } tryWakeOne(); } m_allRowsAvailableTime = x265_mdate(); tryWakeOne(); /* ensure one thread is active or help-wanted flag is set prior to blocking */ static const int block_ms = 250; while (m_completionEvent.timedWait(block_ms)) tryWakeOne(); } else { for (uint32_t i = 0; i < m_numRows + m_filterRowDelay; i++) { // compress if (i < m_numRows) { // block until all reference frames have reconstructed the rows we need for (int l = 0; l < numPredDir; l++) { int list = l; for (int ref = 0; ref < slice->m_numRefIdx[list]; ref++) { Frame *refpic = slice->m_refFrameList[list][ref]; uint32_t reconRowCount = refpic->m_reconRowCount.get(); while ((reconRowCount != m_numRows) && (reconRowCount < i + m_refLagRows)) reconRowCount = refpic->m_reconRowCount.waitForChange(reconRowCount); if ((bUseWeightP || bUseWeightB) && m_mref[l][ref].isWeighted) m_mref[list][ref].applyWeight(i + m_refLagRows, m_numRows); } } if (!i) m_row0WaitTime = x265_mdate(); else if (i == m_numRows - 1) m_allRowsAvailableTime = x265_mdate(); processRowEncoder(i, m_tld[m_localTldIdx]); } // filter if (i >= m_filterRowDelay) m_frameFilter.processRow(i - m_filterRowDelay); } } if (m_param->rc.bStatWrite) { int totalI = 0, totalP = 0, totalSkip = 0; // accumulate intra,inter,skip cu count per frame for 2 pass for (uint32_t i = 0; i < m_numRows; i++) { m_frame->m_encData->m_frameStats.mvBits += m_rows[i].rowStats.mvBits; m_frame->m_encData->m_frameStats.coeffBits += m_rows[i].rowStats.coeffBits; m_frame->m_encData->m_frameStats.miscBits += m_rows[i].rowStats.miscBits; totalI += m_rows[i].rowStats.intra8x8Cnt; totalP += m_rows[i].rowStats.inter8x8Cnt; totalSkip += m_rows[i].rowStats.skip8x8Cnt; } int totalCuCount = totalI + totalP + totalSkip; m_frame->m_encData->m_frameStats.percent8x8Intra = (double)totalI / totalCuCount; m_frame->m_encData->m_frameStats.percent8x8Inter = (double)totalP / totalCuCount; m_frame->m_encData->m_frameStats.percent8x8Skip = (double)totalSkip / totalCuCount; } for (uint32_t i = 0; i < m_numRows; i++) { m_frame->m_encData->m_frameStats.cntIntraNxN += m_rows[i].rowStats.cntIntraNxN; m_frame->m_encData->m_frameStats.totalCu += m_rows[i].rowStats.totalCu; m_frame->m_encData->m_frameStats.totalCtu += m_rows[i].rowStats.totalCtu; m_frame->m_encData->m_frameStats.lumaDistortion += m_rows[i].rowStats.lumaDistortion; m_frame->m_encData->m_frameStats.chromaDistortion += m_rows[i].rowStats.chromaDistortion; m_frame->m_encData->m_frameStats.psyEnergy += m_rows[i].rowStats.psyEnergy; m_frame->m_encData->m_frameStats.resEnergy += m_rows[i].rowStats.resEnergy; for (uint32_t depth = 0; depth <= g_maxCUDepth; depth++) { m_frame->m_encData->m_frameStats.cntSkipCu[depth] += m_rows[i].rowStats.cntSkipCu[depth]; m_frame->m_encData->m_frameStats.cntMergeCu[depth] += m_rows[i].rowStats.cntMergeCu[depth]; for (int m = 0; m < INTER_MODES; m++) m_frame->m_encData->m_frameStats.cuInterDistribution[depth][m] += m_rows[i].rowStats.cuInterDistribution[depth][m]; for (int n = 0; n < INTRA_MODES; n++) m_frame->m_encData->m_frameStats.cuIntraDistribution[depth][n] += m_rows[i].rowStats.cuIntraDistribution[depth][n]; } } m_frame->m_encData->m_frameStats.avgLumaDistortion = (double)(m_frame->m_encData->m_frameStats.lumaDistortion) / m_frame->m_encData->m_frameStats.totalCtu; m_frame->m_encData->m_frameStats.avgChromaDistortion = (double)(m_frame->m_encData->m_frameStats.chromaDistortion) / m_frame->m_encData->m_frameStats.totalCtu; m_frame->m_encData->m_frameStats.avgPsyEnergy = (double)(m_frame->m_encData->m_frameStats.psyEnergy) / m_frame->m_encData->m_frameStats.totalCtu; m_frame->m_encData->m_frameStats.avgResEnergy = (double)(m_frame->m_encData->m_frameStats.resEnergy) / m_frame->m_encData->m_frameStats.totalCtu; m_frame->m_encData->m_frameStats.percentIntraNxN = (double)(m_frame->m_encData->m_frameStats.cntIntraNxN * 100) / m_frame->m_encData->m_frameStats.totalCu; for (uint32_t depth = 0; depth <= g_maxCUDepth; depth++) { m_frame->m_encData->m_frameStats.percentSkipCu[depth] = (double)(m_frame->m_encData->m_frameStats.cntSkipCu[depth] * 100) / m_frame->m_encData->m_frameStats.totalCu; m_frame->m_encData->m_frameStats.percentMergeCu[depth] = (double)(m_frame->m_encData->m_frameStats.cntMergeCu[depth] * 100) / m_frame->m_encData->m_frameStats.totalCu; for (int n = 0; n < INTRA_MODES; n++) m_frame->m_encData->m_frameStats.percentIntraDistribution[depth][n] = (double)(m_frame->m_encData->m_frameStats.cuIntraDistribution[depth][n] * 100) / m_frame->m_encData->m_frameStats.totalCu; uint64_t cuInterRectCnt = 0; // sum of Nx2N, 2NxN counts cuInterRectCnt += m_frame->m_encData->m_frameStats.cuInterDistribution[depth][1] + m_frame->m_encData->m_frameStats.cuInterDistribution[depth][2]; m_frame->m_encData->m_frameStats.percentInterDistribution[depth][0] = (double)(m_frame->m_encData->m_frameStats.cuInterDistribution[depth][0] * 100) / m_frame->m_encData->m_frameStats.totalCu; m_frame->m_encData->m_frameStats.percentInterDistribution[depth][1] = (double)(cuInterRectCnt * 100) / m_frame->m_encData->m_frameStats.totalCu; m_frame->m_encData->m_frameStats.percentInterDistribution[depth][2] = (double)(m_frame->m_encData->m_frameStats.cuInterDistribution[depth][3] * 100) / m_frame->m_encData->m_frameStats.totalCu; } m_bs.resetBits(); m_entropyCoder.load(m_initSliceContext); m_entropyCoder.setBitstream(&m_bs); m_entropyCoder.codeSliceHeader(*slice, *m_frame->m_encData); // finish encode of each CTU row, only required when SAO is enabled if (m_param->bEnableSAO) encodeSlice(); // serialize each row, record final lengths in slice header uint32_t maxStreamSize = m_nalList.serializeSubstreams(m_substreamSizes, numSubstreams, m_outStreams); // complete the slice header by writing WPP row-starts m_entropyCoder.setBitstream(&m_bs); if (slice->m_pps->bEntropyCodingSyncEnabled) m_entropyCoder.codeSliceHeaderWPPEntryPoints(*slice, m_substreamSizes, maxStreamSize); m_bs.writeByteAlignment(); m_nalList.serialize(slice->m_nalUnitType, m_bs); if (m_param->decodedPictureHashSEI) { if (m_param->decodedPictureHashSEI == 1) { m_seiReconPictureDigest.m_method = SEIDecodedPictureHash::MD5; for (int i = 0; i < 3; i++) MD5Final(&m_state[i], m_seiReconPictureDigest.m_digest[i]); } else if (m_param->decodedPictureHashSEI == 2) { m_seiReconPictureDigest.m_method = SEIDecodedPictureHash::CRC; for (int i = 0; i < 3; i++) crcFinish(m_crc[i], m_seiReconPictureDigest.m_digest[i]); } else if (m_param->decodedPictureHashSEI == 3) { m_seiReconPictureDigest.m_method = SEIDecodedPictureHash::CHECKSUM; for (int i = 0; i < 3; i++) checksumFinish(m_checksum[i], m_seiReconPictureDigest.m_digest[i]); } m_bs.resetBits(); m_seiReconPictureDigest.write(m_bs, *slice->m_sps); m_bs.writeByteAlignment(); m_nalList.serialize(NAL_UNIT_SUFFIX_SEI, m_bs); } uint64_t bytes = 0; for (uint32_t i = 0; i < m_nalList.m_numNal; i++) { int type = m_nalList.m_nal[i].type; // exclude SEI if (type != NAL_UNIT_PREFIX_SEI && type != NAL_UNIT_SUFFIX_SEI) { bytes += m_nalList.m_nal[i].sizeBytes; // and exclude start code prefix bytes -= (!i || type == NAL_UNIT_SPS || type == NAL_UNIT_PPS) ? 4 : 3; } } m_accessUnitBits = bytes << 3; m_endCompressTime = x265_mdate(); /* rateControlEnd may also block for earlier frames to call rateControlUpdateStats */ if (m_top->m_rateControl->rateControlEnd(m_frame, m_accessUnitBits, &m_rce) < 0) m_top->m_aborted = true; /* Decrement referenced frame reference counts, allow them to be recycled */ for (int l = 0; l < numPredDir; l++) { for (int ref = 0; ref < slice->m_numRefIdx[l]; ref++) { Frame *refpic = slice->m_refFrameList[l][ref]; ATOMIC_DEC(&refpic->m_countRefEncoders); } } if (m_nr) { bool nrEnabled = (m_rce.newQp < QP_MAX_SPEC || !m_param->rc.vbvBufferSize) && (m_param->noiseReductionIntra || m_param->noiseReductionInter); if (nrEnabled) { /* Accumulate NR statistics from all worker threads */ for (int i = 0; i < numTLD; i++) { NoiseReduction* nr = &m_tld[i].analysis.m_quant.m_frameNr[m_jpId]; for (int cat = 0; cat < MAX_NUM_TR_CATEGORIES; cat++) { for (int coeff = 0; coeff < MAX_NUM_TR_COEFFS; coeff++) m_nr->nrResidualSum[cat][coeff] += nr->nrResidualSum[cat][coeff]; m_nr->nrCount[cat] += nr->nrCount[cat]; } } noiseReductionUpdate(); /* Copy updated NR coefficients back to all worker threads */ for (int i = 0; i < numTLD; i++) { NoiseReduction* nr = &m_tld[i].analysis.m_quant.m_frameNr[m_jpId]; memcpy(nr->nrOffsetDenoise, m_nr->nrOffsetDenoise, sizeof(uint16_t)* MAX_NUM_TR_CATEGORIES * MAX_NUM_TR_COEFFS); memset(nr->nrCount, 0, sizeof(uint32_t)* MAX_NUM_TR_CATEGORIES); memset(nr->nrResidualSum, 0, sizeof(uint32_t)* MAX_NUM_TR_CATEGORIES * MAX_NUM_TR_COEFFS); } } } #if DETAILED_CU_STATS /* Accumulate CU statistics from each worker thread, we could report * per-frame stats here, but currently we do not. */ for (int i = 0; i < numTLD; i++) m_cuStats.accumulate(m_tld[i].analysis.m_stats[m_jpId]); #endif m_endFrameTime = x265_mdate(); } void FrameEncoder::encodeSlice() { Slice* slice = m_frame->m_encData->m_slice; const uint32_t widthInLCUs = slice->m_sps->numCuInWidth; const uint32_t lastCUAddr = (slice->m_endCUAddr + NUM_4x4_PARTITIONS - 1) / NUM_4x4_PARTITIONS; const uint32_t numSubstreams = m_param->bEnableWavefront ? slice->m_sps->numCuInHeight : 1; SAOParam* saoParam = slice->m_sps->bUseSAO ? m_frame->m_encData->m_saoParam : NULL; for (uint32_t cuAddr = 0; cuAddr < lastCUAddr; cuAddr++) { uint32_t col = cuAddr % widthInLCUs; uint32_t lin = cuAddr / widthInLCUs; uint32_t subStrm = lin % numSubstreams; CUData* ctu = m_frame->m_encData->getPicCTU(cuAddr); m_entropyCoder.setBitstream(&m_outStreams[subStrm]); // Synchronize cabac probabilities with upper-right CTU if it's available and we're at the start of a line. if (m_param->bEnableWavefront && !col && lin) { m_entropyCoder.copyState(m_initSliceContext); m_entropyCoder.loadContexts(m_rows[lin - 1].bufferedEntropy); } if (saoParam) { if (saoParam->bSaoFlag[0] || saoParam->bSaoFlag[1]) { int mergeLeft = col && saoParam->ctuParam[0][cuAddr].mergeMode == SAO_MERGE_LEFT; int mergeUp = lin && saoParam->ctuParam[0][cuAddr].mergeMode == SAO_MERGE_UP; if (col) m_entropyCoder.codeSaoMerge(mergeLeft); if (lin && !mergeLeft) m_entropyCoder.codeSaoMerge(mergeUp); if (!mergeLeft && !mergeUp) { if (saoParam->bSaoFlag[0]) m_entropyCoder.codeSaoOffset(saoParam->ctuParam[0][cuAddr], 0); if (saoParam->bSaoFlag[1]) { m_entropyCoder.codeSaoOffset(saoParam->ctuParam[1][cuAddr], 1); m_entropyCoder.codeSaoOffset(saoParam->ctuParam[2][cuAddr], 2); } } } else { for (int i = 0; i < 3; i++) saoParam->ctuParam[i][cuAddr].reset(); } } // final coding (bitstream generation) for this CU m_entropyCoder.encodeCTU(*ctu, m_cuGeoms[m_ctuGeomMap[cuAddr]]); if (m_param->bEnableWavefront) { if (col == 1) // Store probabilities of second CTU in line into buffer m_rows[lin].bufferedEntropy.loadContexts(m_entropyCoder); if (col == widthInLCUs - 1) m_entropyCoder.finishSlice(); } } if (!m_param->bEnableWavefront) m_entropyCoder.finishSlice(); } void FrameEncoder::processRow(int row, int threadId) { int64_t startTime = x265_mdate(); if (ATOMIC_INC(&m_activeWorkerCount) == 1 && m_stallStartTime) m_totalNoWorkerTime += x265_mdate() - m_stallStartTime; const uint32_t realRow = row >> 1; const uint32_t typeNum = row & 1; if (!typeNum) processRowEncoder(realRow, m_tld[threadId]); else { m_frameFilter.processRow(realRow); // NOTE: Active next row if (realRow != m_numRows - 1) enqueueRowFilter(realRow + 1); } if (ATOMIC_DEC(&m_activeWorkerCount) == 0) m_stallStartTime = x265_mdate(); m_totalWorkerElapsedTime += x265_mdate() - startTime; // not thread safe, but good enough } // Called by worker threads void FrameEncoder::processRowEncoder(int intRow, ThreadLocalData& tld) { uint32_t row = (uint32_t)intRow; CTURow& curRow = m_rows[row]; tld.analysis.m_param = m_param; if (m_param->bEnableWavefront) { ScopedLock self(curRow.lock); if (!curRow.active) /* VBV restart is in progress, exit out */ return; if (curRow.busy) { /* On multi-socket Windows servers, we have seen problems with * ATOMIC_CAS which resulted in multiple worker threads processing * the same CU row, which often resulted in bad pointer accesses. We * believe the problem is fixed, but are leaving this check in place * to prevent crashes in case it is not */ x265_log(m_param, X265_LOG_WARNING, "internal error - simultaneous row access detected. Please report HW to x265-devel@videolan.org\n"); return; } curRow.busy = true; } /* When WPP is enabled, every row has its own row coder instance. Otherwise * they share row 0 */ Entropy& rowCoder = m_param->bEnableWavefront ? m_rows[row].rowGoOnCoder : m_rows[0].rowGoOnCoder; FrameData& curEncData = *m_frame->m_encData; Slice *slice = curEncData.m_slice; const uint32_t numCols = m_numCols; const uint32_t lineStartCUAddr = row * numCols; bool bIsVbv = m_param->rc.vbvBufferSize > 0 && m_param->rc.vbvMaxBitrate > 0; uint32_t maxBlockCols = (m_frame->m_fencPic->m_picWidth + (16 - 1)) / 16; uint32_t maxBlockRows = (m_frame->m_fencPic->m_picHeight + (16 - 1)) / 16; uint32_t noOfBlocks = g_maxCUSize / 16; while (curRow.completed < numCols) { ProfileScopeEvent(encodeCTU); uint32_t col = curRow.completed; const uint32_t cuAddr = lineStartCUAddr + col; CUData* ctu = curEncData.getPicCTU(cuAddr); ctu->initCTU(*m_frame, cuAddr, slice->m_sliceQp); if (bIsVbv) { if (!row) { curEncData.m_rowStat[row].diagQp = curEncData.m_avgQpRc; curEncData.m_rowStat[row].diagQpScale = x265_qp2qScale(curEncData.m_avgQpRc); } FrameData::RCStatCU& cuStat = curEncData.m_cuStat[cuAddr]; if (row >= col && row && m_vbvResetTriggerRow != intRow) cuStat.baseQp = curEncData.m_cuStat[cuAddr - numCols + 1].baseQp; else cuStat.baseQp = curEncData.m_rowStat[row].diagQp; /* TODO: use defines from slicetype.h for lowres block size */ uint32_t block_y = (ctu->m_cuPelY >> g_maxLog2CUSize) * noOfBlocks; uint32_t block_x = (ctu->m_cuPelX >> g_maxLog2CUSize) * noOfBlocks; cuStat.vbvCost = 0; cuStat.intraVbvCost = 0; for (uint32_t h = 0; h < noOfBlocks && block_y < maxBlockRows; h++, block_y++) { uint32_t idx = block_x + (block_y * maxBlockCols); for (uint32_t w = 0; w < noOfBlocks && (block_x + w) < maxBlockCols; w++, idx++) { cuStat.vbvCost += m_frame->m_lowres.lowresCostForRc[idx] & LOWRES_COST_MASK; cuStat.intraVbvCost += m_frame->m_lowres.intraCost[idx]; } } } else curEncData.m_cuStat[cuAddr].baseQp = curEncData.m_avgQpRc; if (m_param->bEnableWavefront && !col && row) { // Load SBAC coder context from previous row and initialize row state. rowCoder.copyState(m_initSliceContext); rowCoder.loadContexts(m_rows[row - 1].bufferedEntropy); } // Does all the CU analysis, returns best top level mode decision Mode& best = tld.analysis.compressCTU(*ctu, *m_frame, m_cuGeoms[m_ctuGeomMap[cuAddr]], rowCoder); // take a sample of the current active worker count ATOMIC_ADD(&m_totalActiveWorkerCount, m_activeWorkerCount); ATOMIC_INC(&m_activeWorkerCountSamples); /* advance top-level row coder to include the context of this CTU. * if SAO is disabled, rowCoder writes the final CTU bitstream */ rowCoder.encodeCTU(*ctu, m_cuGeoms[m_ctuGeomMap[cuAddr]]); if (m_param->bEnableWavefront && col == 1) // Save CABAC state for next row curRow.bufferedEntropy.loadContexts(rowCoder); // Completed CU processing curRow.completed++; FrameStats frameLog; curEncData.m_rowStat[row].sumQpAq += collectCTUStatistics(*ctu, &frameLog); // copy no. of intra, inter Cu cnt per row into frame stats for 2 pass if (m_param->rc.bStatWrite) { curRow.rowStats.mvBits += best.mvBits; curRow.rowStats.coeffBits += best.coeffBits; curRow.rowStats.miscBits += best.totalBits - (best.mvBits + best.coeffBits); for (uint32_t depth = 0; depth <= g_maxCUDepth; depth++) { /* 1 << shift == number of 8x8 blocks at current depth */ int shift = 2 * (g_maxCUDepth - depth); int cuSize = g_maxCUSize >> depth; if (cuSize == 8) curRow.rowStats.intra8x8Cnt += (int)(frameLog.cntIntra[depth] + frameLog.cntIntraNxN); else curRow.rowStats.intra8x8Cnt += (int)(frameLog.cntIntra[depth] << shift); curRow.rowStats.inter8x8Cnt += (int)(frameLog.cntInter[depth] << shift); curRow.rowStats.skip8x8Cnt += (int)((frameLog.cntSkipCu[depth] + frameLog.cntMergeCu[depth]) << shift); } } curRow.rowStats.totalCtu++; curRow.rowStats.lumaDistortion += best.lumaDistortion; curRow.rowStats.chromaDistortion += best.chromaDistortion; curRow.rowStats.psyEnergy += best.psyEnergy; curRow.rowStats.resEnergy += best.resEnergy; curRow.rowStats.cntIntraNxN += frameLog.cntIntraNxN; curRow.rowStats.totalCu += frameLog.totalCu; for (uint32_t depth = 0; depth <= g_maxCUDepth; depth++) { curRow.rowStats.cntSkipCu[depth] += frameLog.cntSkipCu[depth]; curRow.rowStats.cntMergeCu[depth] += frameLog.cntMergeCu[depth]; for (int m = 0; m < INTER_MODES; m++) curRow.rowStats.cuInterDistribution[depth][m] += frameLog.cuInterDistribution[depth][m]; for (int n = 0; n < INTRA_MODES; n++) curRow.rowStats.cuIntraDistribution[depth][n] += frameLog.cuIntraDistribution[depth][n]; } curEncData.m_cuStat[cuAddr].totalBits = best.totalBits; x265_emms(); if (bIsVbv) { // Update encoded bits, satdCost, baseQP for each CU curEncData.m_rowStat[row].diagSatd += curEncData.m_cuStat[cuAddr].vbvCost; curEncData.m_rowStat[row].diagIntraSatd += curEncData.m_cuStat[cuAddr].intraVbvCost; curEncData.m_rowStat[row].encodedBits += curEncData.m_cuStat[cuAddr].totalBits; curEncData.m_rowStat[row].sumQpRc += curEncData.m_cuStat[cuAddr].baseQp; curEncData.m_rowStat[row].numEncodedCUs = cuAddr; // If current block is at row diagonal checkpoint, call vbv ratecontrol. if (row == col && row) { double qpBase = curEncData.m_cuStat[cuAddr].baseQp; int reEncode = m_top->m_rateControl->rowDiagonalVbvRateControl(m_frame, row, &m_rce, qpBase); qpBase = x265_clip3((double)QP_MIN, (double)QP_MAX_MAX, qpBase); curEncData.m_rowStat[row].diagQp = qpBase; curEncData.m_rowStat[row].diagQpScale = x265_qp2qScale(qpBase); if (reEncode < 0) { x265_log(m_param, X265_LOG_DEBUG, "POC %d row %d - encode restart required for VBV, to %.2f from %.2f\n", m_frame->m_poc, row, qpBase, curEncData.m_cuStat[cuAddr].baseQp); // prevent the WaveFront::findJob() method from providing new jobs m_vbvResetTriggerRow = row; m_bAllRowsStop = true; for (uint32_t r = m_numRows - 1; r >= row; r--) { CTURow& stopRow = m_rows[r]; if (r != row) { /* if row was active (ready to be run) clear active bit and bitmap bit for this row */ stopRow.lock.acquire(); while (stopRow.active) { if (dequeueRow(r * 2)) stopRow.active = false; else { /* we must release the row lock to allow the thread to exit */ stopRow.lock.release(); GIVE_UP_TIME(); stopRow.lock.acquire(); } } stopRow.lock.release(); bool bRowBusy = true; do { stopRow.lock.acquire(); bRowBusy = stopRow.busy; stopRow.lock.release(); if (bRowBusy) { GIVE_UP_TIME(); } } while (bRowBusy); } m_outStreams[r].resetBits(); stopRow.completed = 0; memset(&stopRow.rowStats, 0, sizeof(stopRow.rowStats)); curEncData.m_rowStat[r].numEncodedCUs = 0; curEncData.m_rowStat[r].encodedBits = 0; curEncData.m_rowStat[r].diagSatd = 0; curEncData.m_rowStat[r].diagIntraSatd = 0; curEncData.m_rowStat[r].sumQpRc = 0; curEncData.m_rowStat[r].sumQpAq = 0; } m_bAllRowsStop = false; } } } /* SAO parameter estimation using non-deblocked pixels for CTU bottom and right boundary areas */ if (m_param->bEnableSAO && m_param->bSaoNonDeblocked) m_frameFilter.m_sao.calcSaoStatsCu_BeforeDblk(m_frame, col, row); if (m_param->bEnableWavefront && curRow.completed >= 2 && row < m_numRows - 1 && (!m_bAllRowsStop || intRow + 1 < m_vbvResetTriggerRow)) { /* activate next row */ ScopedLock below(m_rows[row + 1].lock); if (m_rows[row + 1].active == false && m_rows[row + 1].completed + 2 <= curRow.completed) { m_rows[row + 1].active = true; enqueueRowEncoder(row + 1); tryWakeOne(); /* wake up a sleeping thread or set the help wanted flag */ } } ScopedLock self(curRow.lock); if ((m_bAllRowsStop && intRow > m_vbvResetTriggerRow) || (row > 0 && curRow.completed < numCols - 1 && m_rows[row - 1].completed < m_rows[row].completed + 2)) { curRow.active = false; curRow.busy = false; ATOMIC_INC(&m_countRowBlocks); return; } } /** this row of CTUs has been compressed **/ /* If encoding with ABR, update update bits and complexity in rate control * after a number of rows so the next frame's rateControlStart has more * accurate data for estimation. At the start of the encode we update stats * after half the frame is encoded, but after this initial period we update * after refLagRows (the number of rows reference frames must have completed * before referencees may begin encoding) */ uint32_t rowCount = 0; if (m_param->rc.rateControlMode == X265_RC_ABR || bIsVbv) { if ((uint32_t)m_rce.encodeOrder <= 2 * (m_param->fpsNum / m_param->fpsDenom)) rowCount = X265_MIN((m_numRows + 1) / 2, m_numRows - 1); else rowCount = X265_MIN(m_refLagRows, m_numRows - 1); if (row == rowCount) { m_rce.rowTotalBits = 0; if (bIsVbv) for (uint32_t i = 0; i < rowCount; i++) m_rce.rowTotalBits += curEncData.m_rowStat[i].encodedBits; else for (uint32_t cuAddr = 0; cuAddr < rowCount * numCols; cuAddr++) m_rce.rowTotalBits += curEncData.m_cuStat[cuAddr].totalBits; m_top->m_rateControl->rateControlUpdateStats(&m_rce); } } /* flush row bitstream (if WPP and no SAO) or flush frame if no WPP and no SAO */ if (!m_param->bEnableSAO && (m_param->bEnableWavefront || row == m_numRows - 1)) rowCoder.finishSlice(); if (m_param->bEnableWavefront) { /* trigger row-wise loop filters */ if (row >= m_filterRowDelay) { enableRowFilter(row - m_filterRowDelay); /* NOTE: Activate filter if first row (row 0) */ if (row == m_filterRowDelay) enqueueRowFilter(0); tryWakeOne(); } if (row == m_numRows - 1) { for (uint32_t i = m_numRows - m_filterRowDelay; i < m_numRows; i++) enableRowFilter(i); tryWakeOne(); } } tld.analysis.m_param = NULL; curRow.busy = false; if (ATOMIC_INC(&m_completionCount) == 2 * (int)m_numRows) m_completionEvent.trigger(); } /* collect statistics about CU coding decisions, return total QP */ int FrameEncoder::collectCTUStatistics(const CUData& ctu, FrameStats* log) { int totQP = 0; if (ctu.m_slice->m_sliceType == I_SLICE) { uint32_t depth = 0; for (uint32_t absPartIdx = 0; absPartIdx < ctu.m_numPartitions; absPartIdx += ctu.m_numPartitions >> (depth * 2)) { depth = ctu.m_cuDepth[absPartIdx]; log->totalCu++; log->cntIntra[depth]++; totQP += ctu.m_qp[absPartIdx] * (ctu.m_numPartitions >> (depth * 2)); if (ctu.m_predMode[absPartIdx] == MODE_NONE) { log->totalCu--; log->cntIntra[depth]--; } else if (ctu.m_partSize[absPartIdx] != SIZE_2Nx2N) { /* TODO: log intra modes at absPartIdx +0 to +3 */ X265_CHECK(ctu.m_log2CUSize[absPartIdx] == 3 && ctu.m_slice->m_sps->quadtreeTULog2MinSize < 3, "Intra NxN found at improbable depth\n"); log->cntIntraNxN++; log->cntIntra[depth]--; } else if (ctu.m_lumaIntraDir[absPartIdx] > 1) log->cuIntraDistribution[depth][ANGULAR_MODE_ID]++; else log->cuIntraDistribution[depth][ctu.m_lumaIntraDir[absPartIdx]]++; } } else { uint32_t depth = 0; for (uint32_t absPartIdx = 0; absPartIdx < ctu.m_numPartitions; absPartIdx += ctu.m_numPartitions >> (depth * 2)) { depth = ctu.m_cuDepth[absPartIdx]; log->totalCu++; totQP += ctu.m_qp[absPartIdx] * (ctu.m_numPartitions >> (depth * 2)); if (ctu.m_predMode[absPartIdx] == MODE_NONE) log->totalCu--; else if (ctu.isSkipped(absPartIdx)) { if (ctu.m_mergeFlag[0]) log->cntMergeCu[depth]++; else log->cntSkipCu[depth]++; } else if (ctu.isInter(absPartIdx)) { log->cntInter[depth]++; if (ctu.m_partSize[absPartIdx] < AMP_ID) log->cuInterDistribution[depth][ctu.m_partSize[absPartIdx]]++; else log->cuInterDistribution[depth][AMP_ID]++; } else if (ctu.isIntra(absPartIdx)) { log->cntIntra[depth]++; if (ctu.m_partSize[absPartIdx] != SIZE_2Nx2N) { X265_CHECK(ctu.m_log2CUSize[absPartIdx] == 3 && ctu.m_slice->m_sps->quadtreeTULog2MinSize < 3, "Intra NxN found at improbable depth\n"); log->cntIntraNxN++; log->cntIntra[depth]--; /* TODO: log intra modes at absPartIdx +0 to +3 */ } else if (ctu.m_lumaIntraDir[absPartIdx] > 1) log->cuIntraDistribution[depth][ANGULAR_MODE_ID]++; else log->cuIntraDistribution[depth][ctu.m_lumaIntraDir[absPartIdx]]++; } } } return totQP; } /* DCT-domain noise reduction / adaptive deadzone from libavcodec */ void FrameEncoder::noiseReductionUpdate() { static const uint32_t maxBlocksPerTrSize[4] = {1 << 18, 1 << 16, 1 << 14, 1 << 12}; for (int cat = 0; cat < MAX_NUM_TR_CATEGORIES; cat++) { int trSize = cat & 3; int coefCount = 1 << ((trSize + 2) * 2); if (m_nr->nrCount[cat] > maxBlocksPerTrSize[trSize]) { for (int i = 0; i < coefCount; i++) m_nr->nrResidualSum[cat][i] >>= 1; m_nr->nrCount[cat] >>= 1; } int nrStrength = cat < 8 ? m_param->noiseReductionIntra : m_param->noiseReductionInter; uint64_t scaledCount = (uint64_t)nrStrength * m_nr->nrCount[cat]; for (int i = 0; i < coefCount; i++) { uint64_t value = scaledCount + m_nr->nrResidualSum[cat][i] / 2; uint64_t denom = m_nr->nrResidualSum[cat][i] + 1; m_nr->nrOffsetDenoise[cat][i] = (uint16_t)(value / denom); } // Don't denoise DC coefficients m_nr->nrOffsetDenoise[cat][0] = 0; } } Frame *FrameEncoder::getEncodedPicture(NALList& output) { if (m_frame) { /* block here until worker thread completes */ m_done.wait(); Frame *ret = m_frame; m_frame = NULL; output.takeContents(m_nalList); m_prevOutputTime = x265_mdate(); return ret; } return NULL; } }