/***************************************************************************** * Copyright (C) 2013 x265 project * * Authors: Sumalatha Polureddy * Aarthi Priya Thirumalai * Xun Xu, PPLive Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA. * * This program is also available under a commercial proprietary license. * For more information, contact us at license @ x265.com. *****************************************************************************/ #include "common.h" #include "param.h" #include "frame.h" #include "framedata.h" #include "picyuv.h" #include "encoder.h" #include "slicetype.h" #include "ratecontrol.h" #include "sei.h" #define BR_SHIFT 6 #define CPB_SHIFT 4 using namespace X265_NS; /* Amortize the partial cost of I frames over the next N frames */ const int RateControl::s_slidingWindowFrames = 20; const char *RateControl::s_defaultStatFileName = "x265_2pass.log"; namespace { #define CMP_OPT_FIRST_PASS(opt, param_val)\ {\ bErr = 0;\ p = strstr(opts, opt "=");\ char* q = strstr(opts, "no-"opt);\ if (p && sscanf(p, opt "=%d" , &i) && param_val != i)\ bErr = 1;\ else if (!param_val && !q && !p)\ bErr = 1;\ else if (param_val && (q || !strstr(opts, opt)))\ bErr = 1;\ if (bErr)\ {\ x265_log(m_param, X265_LOG_ERROR, "different " opt " setting than first pass (%d vs %d)\n", param_val, i);\ return false;\ }\ } inline int calcScale(uint32_t x) { static uint8_t lut[16] = {4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0}; int y, z = (((x & 0xffff) - 1) >> 27) & 16; x >>= z; z += y = (((x & 0xff) - 1) >> 28) & 8; x >>= y; z += y = (((x & 0xf) - 1) >> 29) & 4; x >>= y; return z + lut[x&0xf]; } inline int calcLength(uint32_t x) { static uint8_t lut[16] = {4, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0}; int y, z = (((x >> 16) - 1) >> 27) & 16; x >>= z ^ 16; z += y = ((x - 0x100) >> 28) & 8; x >>= y ^ 8; z += y = ((x - 0x10) >> 29) & 4; x >>= y ^ 4; return z + lut[x]; } inline void reduceFraction(int* n, int* d) { int a = *n; int b = *d; int c; if (!a || !b) return; c = a % b; while (c) { a = b; b = c; c = a % b; } *n /= b; *d /= b; } inline char *strcatFilename(const char *input, const char *suffix) { char *output = X265_MALLOC(char, strlen(input) + strlen(suffix) + 1); if (!output) { x265_log(NULL, X265_LOG_ERROR, "unable to allocate memory for filename\n"); return NULL; } strcpy(output, input); strcat(output, suffix); return output; } inline double qScale2bits(RateControlEntry *rce, double qScale) { if (qScale < 0.1) qScale = 0.1; return (rce->coeffBits + .1) * pow(rce->qScale / qScale, 1.1) + rce->mvBits * pow(X265_MAX(rce->qScale, 1) / X265_MAX(qScale, 1), 0.5) + rce->miscBits; } inline void copyRceData(RateControlEntry* rce, RateControlEntry* rce2Pass) { rce->coeffBits = rce2Pass->coeffBits; rce->mvBits = rce2Pass->mvBits; rce->miscBits = rce2Pass->miscBits; rce->iCuCount = rce2Pass->iCuCount; rce->pCuCount = rce2Pass->pCuCount; rce->skipCuCount = rce2Pass->skipCuCount; rce->keptAsRef = rce2Pass->keptAsRef; rce->qScale = rce2Pass->qScale; rce->newQScale = rce2Pass->newQScale; rce->expectedBits = rce2Pass->expectedBits; rce->expectedVbv = rce2Pass->expectedVbv; rce->blurredComplexity = rce2Pass->blurredComplexity; rce->sliceType = rce2Pass->sliceType; } } // end anonymous namespace /* Returns the zone for the current frame */ x265_zone* RateControl::getZone() { for (int i = m_param->rc.zoneCount - 1; i >= 0; i--) { x265_zone *z = &m_param->rc.zones[i]; if (m_framesDone + 1 >= z->startFrame && m_framesDone < z->endFrame) return z; } return NULL; } RateControl::RateControl(x265_param& p) { m_param = &p; int lowresCuWidth = ((m_param->sourceWidth / 2) + X265_LOWRES_CU_SIZE - 1) >> X265_LOWRES_CU_BITS; int lowresCuHeight = ((m_param->sourceHeight / 2) + X265_LOWRES_CU_SIZE - 1) >> X265_LOWRES_CU_BITS; m_ncu = lowresCuWidth * lowresCuHeight; if (m_param->rc.cuTree) m_qCompress = 1; else m_qCompress = m_param->rc.qCompress; // validate for param->rc, maybe it is need to add a function like x265_parameters_valiate() m_residualFrames = 0; m_partialResidualFrames = 0; m_residualCost = 0; m_partialResidualCost = 0; m_rateFactorMaxIncrement = 0; m_rateFactorMaxDecrement = 0; m_fps = (double)m_param->fpsNum / m_param->fpsDenom; m_startEndOrder.set(0); m_bTerminated = false; m_finalFrameCount = 0; m_numEntries = 0; m_isSceneTransition = false; if (m_param->rc.rateControlMode == X265_RC_CRF) { m_param->rc.qp = (int)m_param->rc.rfConstant; m_param->rc.bitrate = 0; double baseCplx = m_ncu * (m_param->bframes ? 120 : 80); double mbtree_offset = m_param->rc.cuTree ? (1.0 - m_param->rc.qCompress) * 13.5 : 0; m_rateFactorConstant = pow(baseCplx, 1 - m_qCompress) / x265_qp2qScale(m_param->rc.rfConstant + mbtree_offset); if (m_param->rc.rfConstantMax) { m_rateFactorMaxIncrement = m_param->rc.rfConstantMax - m_param->rc.rfConstant; if (m_rateFactorMaxIncrement <= 0) { x265_log(m_param, X265_LOG_WARNING, "CRF max must be greater than CRF\n"); m_rateFactorMaxIncrement = 0; } } if (m_param->rc.rfConstantMin) m_rateFactorMaxDecrement = m_param->rc.rfConstant - m_param->rc.rfConstantMin; } m_isAbr = m_param->rc.rateControlMode != X265_RC_CQP && !m_param->rc.bStatRead; m_2pass = m_param->rc.rateControlMode == X265_RC_ABR && m_param->rc.bStatRead; m_bitrate = m_param->rc.bitrate * 1000; m_frameDuration = (double)m_param->fpsDenom / m_param->fpsNum; m_qp = m_param->rc.qp; m_lastRceq = 1; /* handles the cmplxrsum when the previous frame cost is zero */ m_shortTermCplxSum = 0; m_shortTermCplxCount = 0; m_lastNonBPictType = I_SLICE; m_isAbrReset = false; m_lastAbrResetPoc = -1; m_statFileOut = NULL; m_cutreeStatFileOut = m_cutreeStatFileIn = NULL; m_rce2Pass = NULL; m_lastBsliceSatdCost = 0; // vbv initialization m_param->rc.vbvBufferSize = x265_clip3(0, 2000000, m_param->rc.vbvBufferSize); m_param->rc.vbvMaxBitrate = x265_clip3(0, 2000000, m_param->rc.vbvMaxBitrate); m_param->rc.vbvBufferInit = x265_clip3(0.0, 2000000.0, m_param->rc.vbvBufferInit); m_singleFrameVbv = 0; m_rateTolerance = 1.0; if (m_param->rc.vbvBufferSize) { if (m_param->rc.rateControlMode == X265_RC_CQP) { x265_log(m_param, X265_LOG_WARNING, "VBV is incompatible with constant QP, ignored.\n"); m_param->rc.vbvBufferSize = 0; m_param->rc.vbvMaxBitrate = 0; } else if (m_param->rc.vbvMaxBitrate == 0) { if (m_param->rc.rateControlMode == X265_RC_ABR) { x265_log(m_param, X265_LOG_WARNING, "VBV maxrate unspecified, assuming CBR\n"); m_param->rc.vbvMaxBitrate = m_param->rc.bitrate; } else { x265_log(m_param, X265_LOG_WARNING, "VBV bufsize set but maxrate unspecified, ignored\n"); m_param->rc.vbvBufferSize = 0; } } else if (m_param->rc.vbvMaxBitrate < m_param->rc.bitrate && m_param->rc.rateControlMode == X265_RC_ABR) { x265_log(m_param, X265_LOG_WARNING, "max bitrate less than average bitrate, assuming CBR\n"); m_param->rc.bitrate = m_param->rc.vbvMaxBitrate; } } else if (m_param->rc.vbvMaxBitrate) { x265_log(m_param, X265_LOG_WARNING, "VBV maxrate specified, but no bufsize, ignored\n"); m_param->rc.vbvMaxBitrate = 0; } m_isVbv = m_param->rc.vbvMaxBitrate > 0 && m_param->rc.vbvBufferSize > 0; if (m_param->bEmitHRDSEI && !m_isVbv) { x265_log(m_param, X265_LOG_WARNING, "NAL HRD parameters require VBV parameters, ignored\n"); m_param->bEmitHRDSEI = 0; } m_isCbr = m_param->rc.rateControlMode == X265_RC_ABR && m_isVbv && !m_2pass && m_param->rc.vbvMaxBitrate <= m_param->rc.bitrate; if (m_param->rc.bStrictCbr && !m_isCbr) { x265_log(m_param, X265_LOG_WARNING, "strict CBR set without CBR mode, ignored\n"); m_param->rc.bStrictCbr = 0; } if(m_param->rc.bStrictCbr) m_rateTolerance = 0.7; m_bframeBits = 0; m_leadingNoBSatd = 0; m_ipOffset = 6.0 * X265_LOG2(m_param->rc.ipFactor); m_pbOffset = 6.0 * X265_LOG2(m_param->rc.pbFactor); /* Adjust the first frame in order to stabilize the quality level compared to the rest */ #define ABR_INIT_QP_MIN (24) #define ABR_INIT_QP_MAX (40) #define ABR_SCENECUT_INIT_QP_MIN (12) #define CRF_INIT_QP (int)m_param->rc.rfConstant for (int i = 0; i < 3; i++) m_lastQScaleFor[i] = x265_qp2qScale(m_param->rc.rateControlMode == X265_RC_CRF ? CRF_INIT_QP : ABR_INIT_QP_MIN); if (m_param->rc.rateControlMode == X265_RC_CQP) { if (m_qp && !m_param->bLossless) { m_qpConstant[P_SLICE] = m_qp; m_qpConstant[I_SLICE] = x265_clip3(QP_MIN, QP_MAX_MAX, (int)(m_qp - m_ipOffset + 0.5)); m_qpConstant[B_SLICE] = x265_clip3(QP_MIN, QP_MAX_MAX, (int)(m_qp + m_pbOffset + 0.5)); } else { m_qpConstant[P_SLICE] = m_qpConstant[I_SLICE] = m_qpConstant[B_SLICE] = m_qp; } } /* qpstep - value set as encoder specific */ m_lstep = pow(2, m_param->rc.qpStep / 6.0); for (int i = 0; i < 2; i++) m_cuTreeStats.qpBuffer[i] = NULL; } bool RateControl::init(const SPS& sps) { if (m_isVbv) { /* We don't support changing the ABR bitrate right now, * so if the stream starts as CBR, keep it CBR. */ if (m_param->rc.vbvBufferSize < (int)(m_param->rc.vbvMaxBitrate / m_fps)) { m_param->rc.vbvBufferSize = (int)(m_param->rc.vbvMaxBitrate / m_fps); x265_log(m_param, X265_LOG_WARNING, "VBV buffer size cannot be smaller than one frame, using %d kbit\n", m_param->rc.vbvBufferSize); } int vbvBufferSize = m_param->rc.vbvBufferSize * 1000; int vbvMaxBitrate = m_param->rc.vbvMaxBitrate * 1000; if (m_param->bEmitHRDSEI) { const HRDInfo* hrd = &sps.vuiParameters.hrdParameters; vbvBufferSize = hrd->cpbSizeValue << (hrd->cpbSizeScale + CPB_SHIFT); vbvMaxBitrate = hrd->bitRateValue << (hrd->bitRateScale + BR_SHIFT); } m_bufferRate = vbvMaxBitrate / m_fps; m_vbvMaxRate = vbvMaxBitrate; m_bufferSize = vbvBufferSize; m_singleFrameVbv = m_bufferRate * 1.1 > m_bufferSize; if (m_param->rc.vbvBufferInit > 1.) m_param->rc.vbvBufferInit = x265_clip3(0.0, 1.0, m_param->rc.vbvBufferInit / m_param->rc.vbvBufferSize); m_param->rc.vbvBufferInit = x265_clip3(0.0, 1.0, X265_MAX(m_param->rc.vbvBufferInit, m_bufferRate / m_bufferSize)); m_bufferFillFinal = m_bufferSize * m_param->rc.vbvBufferInit; } m_totalBits = 0; m_encodedBits = 0; m_framesDone = 0; m_residualCost = 0; m_partialResidualCost = 0; m_amortizeFraction = 0.85; m_amortizeFrames = 75; if (m_param->totalFrames && m_param->totalFrames <= 2 * m_fps && m_param->rc.bStrictCbr) /* Strict CBR segment encode */ { m_amortizeFraction = 0.85; m_amortizeFrames = m_param->totalFrames / 2; } for (int i = 0; i < s_slidingWindowFrames; i++) { m_satdCostWindow[i] = 0; m_encodedBitsWindow[i] = 0; } m_sliderPos = 0; m_isPatternPresent = false; m_numBframesInPattern = 0; /* 720p videos seem to be a good cutoff for cplxrSum */ double tuneCplxFactor = (m_param->rc.cuTree && m_ncu > 3600) ? 2.5 : 1; /* estimated ratio that produces a reasonable QP for the first I-frame */ m_cplxrSum = .01 * pow(7.0e5, m_qCompress) * pow(m_ncu, 0.5) * tuneCplxFactor; m_wantedBitsWindow = m_bitrate * m_frameDuration; m_accumPNorm = .01; m_accumPQp = (m_param->rc.rateControlMode == X265_RC_CRF ? CRF_INIT_QP : ABR_INIT_QP_MIN) * m_accumPNorm; /* Frame Predictors and Row predictors used in vbv */ for (int i = 0; i < 4; i++) { m_pred[i].coeff = 1.0; m_pred[i].count = 1.0; m_pred[i].decay = 0.5; m_pred[i].offset = 0.0; } m_pred[0].coeff = m_pred[3].coeff = 0.75; if (m_param->rc.qCompress >= 0.8) // when tuned for grain { m_pred[1].coeff = 0.75; m_pred[0].coeff = m_pred[3].coeff = 0.50; } if (!m_statFileOut && (m_param->rc.bStatWrite || m_param->rc.bStatRead)) { /* If the user hasn't defined the stat filename, use the default value */ const char *fileName = m_param->rc.statFileName; if (!fileName) fileName = s_defaultStatFileName; /* Load stat file and init 2pass algo */ if (m_param->rc.bStatRead) { m_expectedBitsSum = 0; char *p, *statsIn, *statsBuf; /* read 1st pass stats */ statsIn = statsBuf = x265_slurp_file(fileName); if (!statsBuf) return false; if (m_param->rc.cuTree) { char *tmpFile = strcatFilename(fileName, ".cutree"); if (!tmpFile) return false; m_cutreeStatFileIn = fopen(tmpFile, "rb"); X265_FREE(tmpFile); if (!m_cutreeStatFileIn) { x265_log(m_param, X265_LOG_ERROR, "can't open stats file %s\n", tmpFile); return false; } } /* check whether 1st pass options were compatible with current options */ if (strncmp(statsBuf, "#options:", 9)) { x265_log(m_param, X265_LOG_ERROR,"options list in stats file not valid\n"); return false; } { int i, j; uint32_t k , l; bool bErr = false; char *opts = statsBuf; statsIn = strchr(statsBuf, '\n'); if (!statsIn) { x265_log(m_param, X265_LOG_ERROR, "Malformed stats file\n"); return false; } *statsIn = '\0'; statsIn++; if (sscanf(opts, "#options: %dx%d", &i, &j) != 2) { x265_log(m_param, X265_LOG_ERROR, "Resolution specified in stats file not valid\n"); return false; } if ((p = strstr(opts, " fps=")) == 0 || sscanf(p, " fps=%u/%u", &k, &l) != 2) { x265_log(m_param, X265_LOG_ERROR, "fps specified in stats file not valid\n"); return false; } if (k != m_param->fpsNum || l != m_param->fpsDenom) { x265_log(m_param, X265_LOG_ERROR, "fps mismatch with 1st pass (%u/%u vs %u/%u)\n", m_param->fpsNum, m_param->fpsDenom, k, l); return false; } CMP_OPT_FIRST_PASS("bitdepth", m_param->internalBitDepth); CMP_OPT_FIRST_PASS("weightp", m_param->bEnableWeightedPred); CMP_OPT_FIRST_PASS("bframes", m_param->bframes); CMP_OPT_FIRST_PASS("b-pyramid", m_param->bBPyramid); CMP_OPT_FIRST_PASS("open-gop", m_param->bOpenGOP); CMP_OPT_FIRST_PASS("keyint", m_param->keyframeMax); CMP_OPT_FIRST_PASS("scenecut", m_param->scenecutThreshold); if ((p = strstr(opts, "b-adapt=")) != 0 && sscanf(p, "b-adapt=%d", &i) && i >= X265_B_ADAPT_NONE && i <= X265_B_ADAPT_TRELLIS) { m_param->bFrameAdaptive = i; } else if (m_param->bframes) { x265_log(m_param, X265_LOG_ERROR, "b-adapt method specified in stats file not valid\n"); return false; } if ((p = strstr(opts, "rc-lookahead=")) != 0 && sscanf(p, "rc-lookahead=%d", &i)) m_param->lookaheadDepth = i; } /* find number of pics */ p = statsIn; int numEntries; for (numEntries = -1; p; numEntries++) p = strchr(p + 1, ';'); if (!numEntries) { x265_log(m_param, X265_LOG_ERROR, "empty stats file\n"); return false; } m_numEntries = numEntries; if (m_param->totalFrames < m_numEntries && m_param->totalFrames > 0) { x265_log(m_param, X265_LOG_WARNING, "2nd pass has fewer frames than 1st pass (%d vs %d)\n", m_param->totalFrames, m_numEntries); } if (m_param->totalFrames > m_numEntries) { x265_log(m_param, X265_LOG_ERROR, "2nd pass has more frames than 1st pass (%d vs %d)\n", m_param->totalFrames, m_numEntries); return false; } m_rce2Pass = X265_MALLOC(RateControlEntry, m_numEntries); if (!m_rce2Pass) { x265_log(m_param, X265_LOG_ERROR, "Rce Entries for 2 pass cannot be allocated\n"); return false; } /* init all to skipped p frames */ for (int i = 0; i < m_numEntries; i++) { RateControlEntry *rce = &m_rce2Pass[i]; rce->sliceType = P_SLICE; rce->qScale = rce->newQScale = x265_qp2qScale(20); rce->miscBits = m_ncu + 10; rce->newQp = 0; } /* read stats */ p = statsIn; double totalQpAq = 0; for (int i = 0; i < m_numEntries; i++) { RateControlEntry *rce; int frameNumber; char picType; int e; char *next; double qpRc, qpAq; next = strstr(p, ";"); if (next) *next++ = 0; e = sscanf(p, " in:%d ", &frameNumber); if (frameNumber < 0 || frameNumber >= m_numEntries) { x265_log(m_param, X265_LOG_ERROR, "bad frame number (%d) at stats line %d\n", frameNumber, i); return false; } rce = &m_rce2Pass[frameNumber]; e += sscanf(p, " in:%*d out:%*d type:%c q:%lf q-aq:%lf tex:%d mv:%d misc:%d icu:%lf pcu:%lf scu:%lf", &picType, &qpRc, &qpAq, &rce->coeffBits, &rce->mvBits, &rce->miscBits, &rce->iCuCount, &rce->pCuCount, &rce->skipCuCount); rce->keptAsRef = true; if (picType == 'b' || picType == 'p') rce->keptAsRef = false; if (picType == 'I' || picType == 'i') rce->sliceType = I_SLICE; else if (picType == 'P' || picType == 'p') rce->sliceType = P_SLICE; else if (picType == 'B' || picType == 'b') rce->sliceType = B_SLICE; else e = -1; if (e < 10) { x265_log(m_param, X265_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e); return false; } rce->qScale = x265_qp2qScale(qpRc); totalQpAq += qpAq; p = next; } X265_FREE(statsBuf); if (m_param->rc.rateControlMode == X265_RC_ABR) { if (!initPass2()) return false; } /* else we're using constant quant, so no need to run the bitrate allocation */ } /* Open output file */ /* If input and output files are the same, output to a temp file * and move it to the real name only when it's complete */ if (m_param->rc.bStatWrite) { char *p, *statFileTmpname; statFileTmpname = strcatFilename(fileName, ".temp"); if (!statFileTmpname) return false; m_statFileOut = fopen(statFileTmpname, "wb"); X265_FREE(statFileTmpname); if (!m_statFileOut) { x265_log(m_param, X265_LOG_ERROR, "can't open stats file %s\n", statFileTmpname); return false; } p = x265_param2string(m_param); if (p) fprintf(m_statFileOut, "#options: %s\n", p); X265_FREE(p); if (m_param->rc.cuTree && !m_param->rc.bStatRead) { statFileTmpname = strcatFilename(fileName, ".cutree.temp"); if (!statFileTmpname) return false; m_cutreeStatFileOut = fopen(statFileTmpname, "wb"); X265_FREE(statFileTmpname); if (!m_cutreeStatFileOut) { x265_log(m_param, X265_LOG_ERROR, "can't open mbtree stats file %s\n", statFileTmpname); return false; } } } if (m_param->rc.cuTree) { m_cuTreeStats.qpBuffer[0] = X265_MALLOC(uint16_t, m_ncu * sizeof(uint16_t)); if (m_param->bBPyramid && m_param->rc.bStatRead) m_cuTreeStats.qpBuffer[1] = X265_MALLOC(uint16_t, m_ncu * sizeof(uint16_t)); m_cuTreeStats.qpBufPos = -1; } } return true; } void RateControl::initHRD(SPS& sps) { int vbvBufferSize = m_param->rc.vbvBufferSize * 1000; int vbvMaxBitrate = m_param->rc.vbvMaxBitrate * 1000; // Init HRD HRDInfo* hrd = &sps.vuiParameters.hrdParameters; hrd->cbrFlag = m_isCbr; // normalize HRD size and rate to the value / scale notation hrd->bitRateScale = x265_clip3(0, 15, calcScale(vbvMaxBitrate) - BR_SHIFT); hrd->bitRateValue = (vbvMaxBitrate >> (hrd->bitRateScale + BR_SHIFT)); hrd->cpbSizeScale = x265_clip3(0, 15, calcScale(vbvBufferSize) - CPB_SHIFT); hrd->cpbSizeValue = (vbvBufferSize >> (hrd->cpbSizeScale + CPB_SHIFT)); int bitRateUnscale = hrd->bitRateValue << (hrd->bitRateScale + BR_SHIFT); int cpbSizeUnscale = hrd->cpbSizeValue << (hrd->cpbSizeScale + CPB_SHIFT); // arbitrary #define MAX_DURATION 0.5 TimingInfo *time = &sps.vuiParameters.timingInfo; int maxCpbOutputDelay = (int)(X265_MIN(m_param->keyframeMax * MAX_DURATION * time->timeScale / time->numUnitsInTick, INT_MAX)); int maxDpbOutputDelay = (int)(sps.maxDecPicBuffering * MAX_DURATION * time->timeScale / time->numUnitsInTick); int maxDelay = (int)(90000.0 * cpbSizeUnscale / bitRateUnscale + 0.5); hrd->initialCpbRemovalDelayLength = 2 + x265_clip3(4, 22, 32 - calcLength(maxDelay)); hrd->cpbRemovalDelayLength = x265_clip3(4, 31, 32 - calcLength(maxCpbOutputDelay)); hrd->dpbOutputDelayLength = x265_clip3(4, 31, 32 - calcLength(maxDpbOutputDelay)); #undef MAX_DURATION } bool RateControl::initPass2() { uint64_t allConstBits = 0; uint64_t allAvailableBits = uint64_t(m_param->rc.bitrate * 1000. * m_numEntries * m_frameDuration); double rateFactor, stepMult; double qBlur = m_param->rc.qblur; double cplxBlur = m_param->rc.complexityBlur; const int filterSize = (int)(qBlur * 4) | 1; double expectedBits; double *qScale, *blurredQscale; double baseCplx = m_ncu * (m_param->bframes ? 120 : 80); double clippedDuration = CLIP_DURATION(m_frameDuration) / BASE_FRAME_DURATION; /* find total/average complexity & const_bits */ for (int i = 0; i < m_numEntries; i++) allConstBits += m_rce2Pass[i].miscBits; if (allAvailableBits < allConstBits) { x265_log(m_param, X265_LOG_ERROR, "requested bitrate is too low. estimated minimum is %d kbps\n", (int)(allConstBits * m_fps / m_numEntries * 1000.)); return false; } /* Blur complexities, to reduce local fluctuation of QP. * We don't blur the QPs directly, because then one very simple frame * could drag down the QP of a nearby complex frame and give it more * bits than intended. */ for (int i = 0; i < m_numEntries; i++) { double weightSum = 0; double cplxSum = 0; double weight = 1.0; double gaussianWeight; /* weighted average of cplx of future frames */ for (int j = 1; j < cplxBlur * 2 && j < m_numEntries - i; j++) { RateControlEntry *rcj = &m_rce2Pass[i + j]; weight *= 1 - pow(rcj->iCuCount / m_ncu, 2); if (weight < 0.0001) break; gaussianWeight = weight * exp(-j * j / 200.0); weightSum += gaussianWeight; cplxSum += gaussianWeight * (qScale2bits(rcj, 1) - rcj->miscBits) / clippedDuration; } /* weighted average of cplx of past frames */ weight = 1.0; for (int j = 0; j <= cplxBlur * 2 && j <= i; j++) { RateControlEntry *rcj = &m_rce2Pass[i - j]; gaussianWeight = weight * exp(-j * j / 200.0); weightSum += gaussianWeight; cplxSum += gaussianWeight * (qScale2bits(rcj, 1) - rcj->miscBits) / clippedDuration; weight *= 1 - pow(rcj->iCuCount / m_ncu, 2); if (weight < .0001) break; } m_rce2Pass[i].blurredComplexity = cplxSum / weightSum; } CHECKED_MALLOC(qScale, double, m_numEntries); if (filterSize > 1) { CHECKED_MALLOC(blurredQscale, double, m_numEntries); } else blurredQscale = qScale; /* Search for a factor which, when multiplied by the RCEQ values from * each frame, adds up to the desired total size. * There is no exact closed-form solution because of VBV constraints and * because qscale2bits is not invertible, but we can start with the simple * approximation of scaling the 1st pass by the ratio of bitrates. * The search range is probably overkill, but speed doesn't matter here. */ expectedBits = 1; for (int i = 0; i < m_numEntries; i++) { RateControlEntry* rce = &m_rce2Pass[i]; double q = getQScale(rce, 1.0); expectedBits += qScale2bits(rce, q); m_lastQScaleFor[rce->sliceType] = q; } stepMult = allAvailableBits / expectedBits; rateFactor = 0; for (double step = 1E4 * stepMult; step > 1E-7 * stepMult; step *= 0.5) { expectedBits = 0; rateFactor += step; m_lastNonBPictType = -1; m_lastAccumPNorm = 1; m_accumPNorm = 0; m_lastQScaleFor[0] = m_lastQScaleFor[1] = m_lastQScaleFor[2] = pow(baseCplx, 1 - m_qCompress) / rateFactor; /* find qscale */ for (int i = 0; i < m_numEntries; i++) { RateControlEntry *rce = &m_rce2Pass[i]; qScale[i] = getQScale(rce, rateFactor); m_lastQScaleFor[rce->sliceType] = qScale[i]; } /* fixed I/B qscale relative to P */ for (int i = m_numEntries - 1; i >= 0; i--) { qScale[i] = getDiffLimitedQScale(&m_rce2Pass[i], qScale[i]); X265_CHECK(qScale[i] >= 0, "qScale became negative\n"); } /* smooth curve */ if (filterSize > 1) { X265_CHECK(filterSize % 2 == 1, "filterSize not an odd number\n"); for (int i = 0; i < m_numEntries; i++) { double q = 0.0, sum = 0.0; for (int j = 0; j < filterSize; j++) { int idx = i + j - filterSize / 2; double d = idx - i; double coeff = qBlur == 0 ? 1.0 : exp(-d * d / (qBlur * qBlur)); if (idx < 0 || idx >= m_numEntries) continue; if (m_rce2Pass[i].sliceType != m_rce2Pass[idx].sliceType) continue; q += qScale[idx] * coeff; sum += coeff; } blurredQscale[i] = q / sum; } } /* find expected bits */ for (int i = 0; i < m_numEntries; i++) { RateControlEntry *rce = &m_rce2Pass[i]; rce->newQScale = clipQscale(NULL, rce, blurredQscale[i]); // check if needed X265_CHECK(rce->newQScale >= 0, "new Qscale is negative\n"); expectedBits += qScale2bits(rce, rce->newQScale); } if (expectedBits > allAvailableBits) rateFactor -= step; } X265_FREE(qScale); if (filterSize > 1) X265_FREE(blurredQscale); if (m_isVbv) if (!vbv2Pass(allAvailableBits)) return false; expectedBits = countExpectedBits(); if (fabs(expectedBits / allAvailableBits - 1.0) > 0.01) { double avgq = 0; for (int i = 0; i < m_numEntries; i++) avgq += m_rce2Pass[i].newQScale; avgq = x265_qScale2qp(avgq / m_numEntries); if (expectedBits > allAvailableBits || !m_isVbv) x265_log(m_param, X265_LOG_WARNING, "Error: 2pass curve failed to converge\n"); x265_log(m_param, X265_LOG_WARNING, "target: %.2f kbit/s, expected: %.2f kbit/s, avg QP: %.4f\n", (double)m_param->rc.bitrate, expectedBits * m_fps / (m_numEntries * 1000.), avgq); if (expectedBits < allAvailableBits && avgq < QP_MIN + 2) { x265_log(m_param, X265_LOG_WARNING, "try reducing target bitrate\n"); } else if (expectedBits > allAvailableBits && avgq > QP_MAX_SPEC - 2) { x265_log(m_param, X265_LOG_WARNING, "try increasing target bitrate\n"); } else if (!(m_2pass && m_isVbv)) x265_log(m_param, X265_LOG_WARNING, "internal error\n"); } return true; fail: x265_log(m_param, X265_LOG_WARNING, "two-pass ABR initialization failed\n"); return false; } bool RateControl::vbv2Pass(uint64_t allAvailableBits) { /* for each interval of bufferFull .. underflow, uniformly increase the qp of all * frames in the interval until either buffer is full at some intermediate frame or the * last frame in the interval no longer underflows. Recompute intervals and repeat. * Then do the converse to put bits back into overflow areas until target size is met */ double *fills; double expectedBits = 0; double adjustment; double prevBits = 0; int t0, t1; int iterations = 0 , adjMin, adjMax; CHECKED_MALLOC(fills, double, m_numEntries + 1); fills++; /* adjust overall stream size */ do { iterations++; prevBits = expectedBits; if (expectedBits) { /* not first iteration */ adjustment = X265_MAX(X265_MIN(expectedBits / allAvailableBits, 0.999), 0.9); fills[-1] = m_bufferSize * m_param->rc.vbvBufferInit; t0 = 0; /* fix overflows */ adjMin = 1; while (adjMin && findUnderflow(fills, &t0, &t1, 1)) { adjMin = fixUnderflow(t0, t1, adjustment, MIN_QPSCALE, MAX_MAX_QPSCALE); t0 = t1; } } fills[-1] = m_bufferSize * (1. - m_param->rc.vbvBufferInit); t0 = 0; /* fix underflows -- should be done after overflow, as we'd better undersize target than underflowing VBV */ adjMax = 1; while (adjMax && findUnderflow(fills, &t0, &t1, 0)) adjMax = fixUnderflow(t0, t1, 1.001, MIN_QPSCALE, MAX_MAX_QPSCALE ); expectedBits = countExpectedBits(); } while ((expectedBits < .995 * allAvailableBits) && ((int64_t)(expectedBits+.5) > (int64_t)(prevBits+.5))); if (!adjMax) x265_log(m_param, X265_LOG_WARNING, "vbv-maxrate issue, qpmax or vbv-maxrate too low\n"); /* store expected vbv filling values for tracking when encoding */ for (int i = 0; i < m_numEntries; i++) m_rce2Pass[i].expectedVbv = m_bufferSize - fills[i]; X265_FREE(fills - 1); return true; fail: x265_log(m_param, X265_LOG_ERROR, "malloc failure in two-pass VBV init\n"); return false; } /* In 2pass, force the same frame types as in the 1st pass */ int RateControl::rateControlSliceType(int frameNum) { if (m_param->rc.bStatRead) { if (frameNum >= m_numEntries) { /* We could try to initialize everything required for ABR and * adaptive B-frames, but that would be complicated. * So just calculate the average QP used so far. */ m_param->rc.qp = (m_accumPQp < 1) ? ABR_INIT_QP_MAX : (int)(m_accumPQp + 0.5); m_qpConstant[P_SLICE] = x265_clip3(QP_MIN, QP_MAX_MAX, m_param->rc.qp); m_qpConstant[I_SLICE] = x265_clip3(QP_MIN, QP_MAX_MAX, (int)(m_param->rc.qp - m_ipOffset + 0.5)); m_qpConstant[B_SLICE] = x265_clip3(QP_MIN, QP_MAX_MAX, (int)(m_param->rc.qp + m_pbOffset + 0.5)); x265_log(m_param, X265_LOG_ERROR, "2nd pass has more frames than 1st pass (%d)\n", m_numEntries); x265_log(m_param, X265_LOG_ERROR, "continuing anyway, at constant QP=%d\n", m_param->rc.qp); if (m_param->bFrameAdaptive) x265_log(m_param, X265_LOG_ERROR, "disabling adaptive B-frames\n"); m_isAbr = 0; m_2pass = 0; m_param->rc.rateControlMode = X265_RC_CQP; m_param->rc.bStatRead = 0; m_param->bFrameAdaptive = 0; m_param->scenecutThreshold = 0; m_param->rc.cuTree = 0; if (m_param->bframes > 1) m_param->bframes = 1; return X265_TYPE_AUTO; } int frameType = m_rce2Pass[frameNum].sliceType == I_SLICE ? (frameNum > 0 && m_param->bOpenGOP ? X265_TYPE_I : X265_TYPE_IDR) : m_rce2Pass[frameNum].sliceType == P_SLICE ? X265_TYPE_P : (m_rce2Pass[frameNum].sliceType == B_SLICE && m_rce2Pass[frameNum].keptAsRef? X265_TYPE_BREF : X265_TYPE_B); return frameType; } else return X265_TYPE_AUTO; } int RateControl::rateControlStart(Frame* curFrame, RateControlEntry* rce, Encoder* enc) { int orderValue = m_startEndOrder.get(); int startOrdinal = rce->encodeOrder * 2; while (orderValue < startOrdinal && !m_bTerminated) orderValue = m_startEndOrder.waitForChange(orderValue); if (!curFrame) { // faked rateControlStart calls when the encoder is flushing m_startEndOrder.incr(); return 0; } FrameData& curEncData = *curFrame->m_encData; m_curSlice = curEncData.m_slice; m_sliceType = m_curSlice->m_sliceType; rce->sliceType = m_sliceType; if (!m_2pass) rce->keptAsRef = IS_REFERENCED(curFrame); m_predType = getPredictorType(curFrame->m_lowres.sliceType, m_sliceType); rce->poc = m_curSlice->m_poc; if (m_param->rc.bStatRead) { X265_CHECK(rce->poc >= 0 && rce->poc < m_numEntries, "bad encode ordinal\n"); copyRceData(rce, &m_rce2Pass[rce->poc]); } rce->isActive = true; bool isframeAfterKeyframe = m_sliceType != I_SLICE && m_curSlice->m_refFrameList[0][0]->m_encData->m_slice->m_sliceType == I_SLICE; if (curFrame->m_lowres.bScenecut) { m_isSceneTransition = true; /* Frame Predictors and Row predictors used in vbv */ for (int i = 0; i < 4; i++) { m_pred[i].coeff = 1.0; m_pred[i].count = 1.0; m_pred[i].decay = 0.5; m_pred[i].offset = 0.0; } m_pred[0].coeff = m_pred[3].coeff = 0.75; } else if (m_sliceType != B_SLICE && !isframeAfterKeyframe) m_isSceneTransition = false; rce->bLastMiniGopBFrame = curFrame->m_lowres.bLastMiniGopBFrame; rce->bufferRate = m_bufferRate; rce->rowCplxrSum = 0.0; rce->rowTotalBits = 0; if (m_isVbv) { if (rce->rowPreds[0][0].count == 0) { for (int i = 0; i < 3; i++) { for (int j = 0; j < 2; j++) { rce->rowPreds[i][j].coeff = 0.25; rce->rowPreds[i][j].count = 1.0; rce->rowPreds[i][j].decay = 0.5; rce->rowPreds[i][j].offset = 0.0; } } } rce->rowPred[0] = &rce->rowPreds[m_sliceType][0]; rce->rowPred[1] = &rce->rowPreds[m_sliceType][1]; m_predictedBits = m_totalBits; updateVbvPlan(enc); rce->bufferFill = m_bufferFill; int mincr = enc->m_vps.ptl.minCrForLevel; /* Profiles above Main10 don't require maxAU size check, so just set the maximum to a large value. */ if (enc->m_vps.ptl.profileIdc > Profile::MAIN10 || enc->m_vps.ptl.levelIdc == Level::NONE) rce->frameSizeMaximum = 1e9; else { /* The spec has a special case for the first frame. */ if (rce->encodeOrder == 0) { /* 1.5 * (Max( PicSizeInSamplesY, fR * MaxLumaSr) + MaxLumaSr * (AuCpbRemovalTime[ 0 ] -AuNominalRemovalTime[ 0 ])) ? MinCr */ double fr = 1. / 300; int picSizeInSamplesY = m_param->sourceWidth * m_param->sourceHeight; rce->frameSizeMaximum = 8 * 1.5 * X265_MAX(picSizeInSamplesY, fr * enc->m_vps.ptl.maxLumaSrForLevel) / mincr; } else { /* 1.5 * MaxLumaSr * (AuCpbRemovalTime[ n ] - AuCpbRemovalTime[ n - 1 ]) / MinCr */ rce->frameSizeMaximum = 8 * 1.5 * enc->m_vps.ptl.maxLumaSrForLevel * m_frameDuration / mincr; } } } if (m_isAbr || m_2pass) // ABR,CRF { if (m_isAbr || m_isVbv) { m_currentSatd = curFrame->m_lowres.satdCost >> (X265_DEPTH - 8); /* Update rce for use in rate control VBV later */ rce->lastSatd = m_currentSatd; X265_CHECK(rce->lastSatd, "satdcost cannot be zero\n"); /* Detect a pattern for B frames with same SATDcost to identify a series of static frames * and the P frame at the end of the series marks a possible case for ABR reset logic */ if (m_param->bframes) { if (m_sliceType != B_SLICE && m_numBframesInPattern > m_param->bframes) { m_isPatternPresent = true; } else if (m_sliceType == B_SLICE && !IS_REFERENCED(curFrame)) { if (m_currentSatd != m_lastBsliceSatdCost && !rce->bLastMiniGopBFrame) { m_isPatternPresent = false; m_lastBsliceSatdCost = m_currentSatd; m_numBframesInPattern = 0; } else if (m_currentSatd == m_lastBsliceSatdCost) m_numBframesInPattern++; } } } /* For a scenecut that occurs within the mini-gop, enable scene transition * switch until the next mini-gop to ensure a min qp for all the frames within * the scene-transition mini-gop */ double q = x265_qScale2qp(rateEstimateQscale(curFrame, rce)); q = x265_clip3((double)QP_MIN, (double)QP_MAX_MAX, q); m_qp = int(q + 0.5); rce->qpaRc = curEncData.m_avgQpRc = curEncData.m_avgQpAq = q; /* copy value of lastRceq into thread local rce struct *to be used in RateControlEnd() */ rce->qRceq = m_lastRceq; accumPQpUpdate(); } else // CQP { if (m_sliceType == B_SLICE && IS_REFERENCED(curFrame)) m_qp = (m_qpConstant[B_SLICE] + m_qpConstant[P_SLICE]) / 2; else m_qp = m_qpConstant[m_sliceType]; curEncData.m_avgQpAq = curEncData.m_avgQpRc = m_qp; x265_zone* zone = getZone(); if (zone) { if (zone->bForceQp) m_qp += zone->qp - m_qpConstant[P_SLICE]; else m_qp -= (int)(6.0 * X265_LOG2(zone->bitrateFactor)); } } if (m_sliceType != B_SLICE) { m_lastNonBPictType = m_sliceType; m_leadingNoBSatd = m_currentSatd; } rce->leadingNoBSatd = m_leadingNoBSatd; if (curFrame->m_forceqp) { m_qp = (int32_t)(curFrame->m_forceqp + 0.5) - 1; m_qp = x265_clip3(QP_MIN, QP_MAX_MAX, m_qp); rce->qpaRc = curEncData.m_avgQpRc = curEncData.m_avgQpAq = m_qp; if (m_isAbr || m_2pass) { rce->qpNoVbv = rce->qpaRc; m_lastQScaleFor[m_sliceType] = x265_qp2qScale(rce->qpaRc); if (rce->poc == 0) m_lastQScaleFor[P_SLICE] = m_lastQScaleFor[m_sliceType] * fabs(m_param->rc.ipFactor); rce->frameSizePlanned = predictSize(&m_pred[m_predType], m_qp, (double)m_currentSatd); } } m_framesDone++; return m_qp; } void RateControl::accumPQpUpdate() { m_accumPQp *= .95; m_accumPNorm *= .95; m_accumPNorm += 1; if (m_sliceType == I_SLICE) m_accumPQp += m_qp + m_ipOffset; else m_accumPQp += m_qp; } int RateControl::getPredictorType(int lowresSliceType, int sliceType) { /* Use a different predictor for B Ref and B frames for vbv frame size predictions */ if (lowresSliceType == X265_TYPE_BREF) return 3; return sliceType; } double RateControl::getDiffLimitedQScale(RateControlEntry *rce, double q) { // force I/B quants as a function of P quants const double lastPqScale = m_lastQScaleFor[P_SLICE]; const double lastNonBqScale = m_lastQScaleFor[m_lastNonBPictType]; if (rce->sliceType == I_SLICE) { double iq = q; double pq = x265_qp2qScale(m_accumPQp / m_accumPNorm); double ipFactor = fabs(m_param->rc.ipFactor); /* don't apply ipFactor if the following frame is also I */ if (m_accumPNorm <= 0) q = iq; else if (m_param->rc.ipFactor < 0) q = iq / ipFactor; else if (m_accumPNorm >= 1) q = pq / ipFactor; else q = m_accumPNorm * pq / ipFactor + (1 - m_accumPNorm) * iq; } else if (rce->sliceType == B_SLICE) { if (m_param->rc.pbFactor > 0) q = lastNonBqScale; if (!rce->keptAsRef) q *= fabs(m_param->rc.pbFactor); } else if (rce->sliceType == P_SLICE && m_lastNonBPictType == P_SLICE && rce->coeffBits == 0) { q = lastPqScale; } /* last qscale / qdiff stuff */ if (m_lastNonBPictType == rce->sliceType && (rce->sliceType != I_SLICE || m_lastAccumPNorm < 1)) { double maxQscale = m_lastQScaleFor[rce->sliceType] * m_lstep; double minQscale = m_lastQScaleFor[rce->sliceType] / m_lstep; q = x265_clip3(minQscale, maxQscale, q); } m_lastQScaleFor[rce->sliceType] = q; if (rce->sliceType != B_SLICE) m_lastNonBPictType = rce->sliceType; if (rce->sliceType == I_SLICE) { m_lastAccumPNorm = m_accumPNorm; m_accumPNorm = 0; m_accumPQp = 0; } if (rce->sliceType == P_SLICE) { double mask = 1 - pow(rce->iCuCount / m_ncu, 2); m_accumPQp = mask * (x265_qScale2qp(q) + m_accumPQp); m_accumPNorm = mask * (1 + m_accumPNorm); } x265_zone* zone = getZone(); if (zone) { if (zone->bForceQp) q = x265_qp2qScale(zone->qp); else q /= zone->bitrateFactor; } return q; } double RateControl::countExpectedBits() { double expectedBits = 0; for( int i = 0; i < m_numEntries; i++ ) { RateControlEntry *rce = &m_rce2Pass[i]; rce->expectedBits = (uint64_t)expectedBits; expectedBits += qScale2bits(rce, rce->newQScale); } return expectedBits; } bool RateControl::findUnderflow(double *fills, int *t0, int *t1, int over) { /* find an interval ending on an overflow or underflow (depending on whether * we're adding or removing bits), and starting on the earliest frame that * can influence the buffer fill of that end frame. */ const double bufferMin = .1 * m_bufferSize; const double bufferMax = .9 * m_bufferSize; double fill = fills[*t0 - 1]; double parity = over ? 1. : -1.; int start = -1, end = -1; for (int i = *t0; i < m_numEntries; i++) { fill += (m_frameDuration * m_vbvMaxRate - qScale2bits(&m_rce2Pass[i], m_rce2Pass[i].newQScale)) * parity; fill = x265_clip3(0.0, m_bufferSize, fill); fills[i] = fill; if (fill <= bufferMin || i == 0) { if (end >= 0) break; start = i; } else if (fill >= bufferMax && start >= 0) end = i; } *t0 = start; *t1 = end; return start >= 0 && end >= 0; } bool RateControl::fixUnderflow(int t0, int t1, double adjustment, double qscaleMin, double qscaleMax) { double qscaleOrig, qscaleNew; bool adjusted = false; if (t0 > 0) t0++; for (int i = t0; i <= t1; i++) { qscaleOrig = m_rce2Pass[i].newQScale; qscaleOrig = x265_clip3(qscaleMin, qscaleMax, qscaleOrig); qscaleNew = qscaleOrig * adjustment; qscaleNew = x265_clip3(qscaleMin, qscaleMax, qscaleNew); m_rce2Pass[i].newQScale = qscaleNew; adjusted = adjusted || (qscaleNew != qscaleOrig); } return adjusted; } bool RateControl::cuTreeReadFor2Pass(Frame* frame) { uint8_t sliceTypeActual = (uint8_t)m_rce2Pass[frame->m_poc].sliceType; if (m_rce2Pass[frame->m_poc].keptAsRef) { /* TODO: We don't need pre-lookahead to measure AQ offsets, but there is currently * no way to signal this */ uint8_t type; if (m_cuTreeStats.qpBufPos < 0) { do { m_cuTreeStats.qpBufPos++; if (!fread(&type, 1, 1, m_cutreeStatFileIn)) goto fail; if (fread(m_cuTreeStats.qpBuffer[m_cuTreeStats.qpBufPos], sizeof(uint16_t), m_ncu, m_cutreeStatFileIn) != (size_t)m_ncu) goto fail; if (type != sliceTypeActual && m_cuTreeStats.qpBufPos == 1) { x265_log(m_param, X265_LOG_ERROR, "CU-tree frametype %d doesn't match actual frametype %d.\n", type, sliceTypeActual); return false; } } while(type != sliceTypeActual); } for (int i = 0; i < m_ncu; i++) { int16_t qpFix8 = m_cuTreeStats.qpBuffer[m_cuTreeStats.qpBufPos][i]; frame->m_lowres.qpCuTreeOffset[i] = (double)(qpFix8) / 256.0; frame->m_lowres.invQscaleFactor[i] = x265_exp2fix8(frame->m_lowres.qpCuTreeOffset[i]); } m_cuTreeStats.qpBufPos--; } return true; fail: x265_log(m_param, X265_LOG_ERROR, "Incomplete CU-tree stats file.\n"); return false; } double RateControl::tuneAbrQScaleFromFeedback(double qScale) { double abrBuffer = 2 * m_rateTolerance * m_bitrate; if (m_currentSatd) { /* use framesDone instead of POC as poc count is not serial with bframes enabled */ double overflow = 1.0; double timeDone = (double)(m_framesDone - m_param->frameNumThreads + 1) * m_frameDuration; double wantedBits = timeDone * m_bitrate; int64_t encodedBits = m_totalBits; if (m_param->totalFrames && m_param->totalFrames <= 2 * m_fps) { abrBuffer = m_param->totalFrames * (m_bitrate / m_fps); encodedBits = m_encodedBits; } if (wantedBits > 0 && encodedBits > 0 && (!m_partialResidualFrames || m_param->rc.bStrictCbr)) { abrBuffer *= X265_MAX(1, sqrt(timeDone)); overflow = x265_clip3(.5, 2.0, 1.0 + (encodedBits - wantedBits) / abrBuffer); qScale *= overflow; } } return qScale; } double RateControl::rateEstimateQscale(Frame* curFrame, RateControlEntry *rce) { double q; if (m_2pass) { if (m_sliceType != rce->sliceType) { x265_log(m_param, X265_LOG_ERROR, "slice=%c but 2pass stats say %c\n", g_sliceTypeToChar[m_sliceType], g_sliceTypeToChar[rce->sliceType]); } } else { if (m_isAbr) { double slidingWindowCplxSum = 0; int start = m_sliderPos > s_slidingWindowFrames ? m_sliderPos : 0; for (int cnt = 0; cnt < s_slidingWindowFrames; cnt++, start++) { int pos = start % s_slidingWindowFrames; slidingWindowCplxSum *= 0.5; if (!m_satdCostWindow[pos]) break; slidingWindowCplxSum += m_satdCostWindow[pos]; } rce->movingAvgSum = slidingWindowCplxSum; m_satdCostWindow[m_sliderPos % s_slidingWindowFrames] = rce->lastSatd; m_sliderPos++; } } if (m_sliceType == B_SLICE) { /* B-frames don't have independent rate control, but rather get the * average QP of the two adjacent P-frames + an offset */ Slice* prevRefSlice = m_curSlice->m_refFrameList[0][0]->m_encData->m_slice; Slice* nextRefSlice = m_curSlice->m_refFrameList[1][0]->m_encData->m_slice; double q0 = m_curSlice->m_refFrameList[0][0]->m_encData->m_avgQpRc; double q1 = m_curSlice->m_refFrameList[1][0]->m_encData->m_avgQpRc; bool i0 = prevRefSlice->m_sliceType == I_SLICE; bool i1 = nextRefSlice->m_sliceType == I_SLICE; int dt0 = abs(m_curSlice->m_poc - prevRefSlice->m_poc); int dt1 = abs(m_curSlice->m_poc - nextRefSlice->m_poc); // Skip taking a reference frame before the Scenecut if ABR has been reset. if (m_lastAbrResetPoc >= 0) { if (prevRefSlice->m_sliceType == P_SLICE && prevRefSlice->m_poc < m_lastAbrResetPoc) { i0 = i1; dt0 = dt1; q0 = q1; } } if (prevRefSlice->m_sliceType == B_SLICE && IS_REFERENCED(m_curSlice->m_refFrameList[0][0])) q0 -= m_pbOffset / 2; if (nextRefSlice->m_sliceType == B_SLICE && IS_REFERENCED(m_curSlice->m_refFrameList[1][0])) q1 -= m_pbOffset / 2; if (i0 && i1) q = (q0 + q1) / 2 + m_ipOffset; else if (i0) q = q1; else if (i1) q = q0; else q = (q0 * dt1 + q1 * dt0) / (dt0 + dt1); if (IS_REFERENCED(curFrame)) q += m_pbOffset / 2; else q += m_pbOffset; /* Set a min qp at scenechanges and transitions */ if (m_isSceneTransition) { q = X265_MAX(ABR_SCENECUT_INIT_QP_MIN, q); double minScenecutQscale =x265_qp2qScale(ABR_SCENECUT_INIT_QP_MIN); m_lastQScaleFor[P_SLICE] = X265_MAX(minScenecutQscale, m_lastQScaleFor[P_SLICE]); } double qScale = x265_qp2qScale(q); rce->qpNoVbv = q; double lmin = 0, lmax = 0; if (m_isVbv) { lmin = m_lastQScaleFor[P_SLICE] / m_lstep; lmax = m_lastQScaleFor[P_SLICE] * m_lstep; if (m_isCbr) { qScale = tuneAbrQScaleFromFeedback(qScale); if (!m_isAbrReset) qScale = x265_clip3(lmin, lmax, qScale); q = x265_qScale2qp(qScale); } if (!m_2pass) { qScale = clipQscale(curFrame, rce, qScale); /* clip qp to permissible range after vbv-lookahead estimation to avoid possible * mispredictions by initial frame size predictors */ if (m_pred[m_predType].count == 1) qScale = x265_clip3(lmin, lmax, qScale); m_lastQScaleFor[m_sliceType] = qScale; rce->frameSizePlanned = predictSize(&m_pred[m_predType], qScale, (double)m_currentSatd); } else rce->frameSizePlanned = qScale2bits(rce, qScale); /* Limit planned size by MinCR */ rce->frameSizePlanned = X265_MIN(rce->frameSizePlanned, rce->frameSizeMaximum); rce->frameSizeEstimated = rce->frameSizePlanned; } rce->newQScale = qScale; return qScale; } else { double abrBuffer = 2 * m_rateTolerance * m_bitrate; if (m_2pass) { int64_t diff; if (!m_isVbv) { m_predictedBits = m_totalBits; if (rce->encodeOrder < m_param->frameNumThreads) m_predictedBits += (int64_t)(rce->encodeOrder * m_bitrate / m_fps); else m_predictedBits += (int64_t)(m_param->frameNumThreads * m_bitrate / m_fps); } /* Adjust ABR buffer based on distance to the end of the video. */ if (m_numEntries > rce->encodeOrder) { uint64_t finalBits = m_rce2Pass[m_numEntries - 1].expectedBits; double videoPos = (double)rce->expectedBits / finalBits; double scaleFactor = sqrt((1 - videoPos) * m_numEntries); abrBuffer *= 0.5 * X265_MAX(scaleFactor, 0.5); } diff = m_predictedBits - (int64_t)rce->expectedBits; q = rce->newQScale; q /= x265_clip3(0.5, 2.0, (double)(abrBuffer - diff) / abrBuffer); if (m_expectedBitsSum > 0) { /* Adjust quant based on the difference between * achieved and expected bitrate so far */ double curTime = (double)rce->encodeOrder / m_numEntries; double w = x265_clip3(0.0, 1.0, curTime * 100); q *= pow((double)m_totalBits / m_expectedBitsSum, w); } rce->qpNoVbv = x265_qScale2qp(q); if (m_isVbv) { /* Do not overflow vbv */ double expectedSize = qScale2bits(rce, q); double expectedVbv = m_bufferFill + m_bufferRate - expectedSize; double expectedFullness = rce->expectedVbv / m_bufferSize; double qmax = q * (2 - expectedFullness); double sizeConstraint = 1 + expectedFullness; qmax = X265_MAX(qmax, rce->newQScale); if (expectedFullness < .05) qmax = MAX_MAX_QPSCALE; qmax = X265_MIN(qmax, MAX_MAX_QPSCALE); while (((expectedVbv < rce->expectedVbv/sizeConstraint) && (q < qmax)) || ((expectedVbv < 0) && (q < MAX_MAX_QPSCALE))) { q *= 1.05; expectedSize = qScale2bits(rce, q); expectedVbv = m_bufferFill + m_bufferRate - expectedSize; } } q = x265_clip3(MIN_QPSCALE, MAX_MAX_QPSCALE, q); } else { /* 1pass ABR */ /* Calculate the quantizer which would have produced the desired * average bitrate if it had been applied to all frames so far. * Then modulate that quant based on the current frame's complexity * relative to the average complexity so far (using the 2pass RCEQ). * Then bias the quant up or down if total size so far was far from * the target. * Result: Depending on the value of rate_tolerance, there is a * trade-off between quality and bitrate precision. But at large * tolerances, the bit distribution approaches that of 2pass. */ double overflow = 1; double lqmin = MIN_QPSCALE, lqmax = MAX_MAX_QPSCALE; m_shortTermCplxSum *= 0.5; m_shortTermCplxCount *= 0.5; m_shortTermCplxSum += m_currentSatd / (CLIP_DURATION(m_frameDuration) / BASE_FRAME_DURATION); m_shortTermCplxCount++; /* coeffBits to be used in 2-pass */ rce->coeffBits = (int)m_currentSatd; rce->blurredComplexity = m_shortTermCplxSum / m_shortTermCplxCount; rce->mvBits = 0; rce->sliceType = m_sliceType; if (m_param->rc.rateControlMode == X265_RC_CRF) { q = getQScale(rce, m_rateFactorConstant); } else { if (!m_param->rc.bStatRead) checkAndResetABR(rce, false); double initialQScale = getQScale(rce, m_wantedBitsWindow / m_cplxrSum); q = tuneAbrQScaleFromFeedback(initialQScale); overflow = q / initialQScale; } if (m_sliceType == I_SLICE && m_param->keyframeMax > 1 && m_lastNonBPictType != I_SLICE && !m_isAbrReset) { if (!m_param->rc.bStrictCbr) q = x265_qp2qScale(m_accumPQp / m_accumPNorm); q /= fabs(m_param->rc.ipFactor); } else if (m_framesDone > 0) { if (m_param->rc.rateControlMode != X265_RC_CRF) { lqmin = m_lastQScaleFor[m_sliceType] / m_lstep; lqmax = m_lastQScaleFor[m_sliceType] * m_lstep; if (!m_partialResidualFrames) { if (overflow > 1.1 && m_framesDone > 3) lqmax *= m_lstep; else if (overflow < 0.9) lqmin /= m_lstep; } q = x265_clip3(lqmin, lqmax, q); } } else if (m_qCompress != 1 && m_param->rc.rateControlMode == X265_RC_CRF) { q = x265_qp2qScale(CRF_INIT_QP) / fabs(m_param->rc.ipFactor); } else if (m_framesDone == 0 && !m_isVbv && m_param->rc.rateControlMode == X265_RC_ABR) { /* for ABR alone, clip the first I frame qp */ lqmax = x265_qp2qScale(ABR_INIT_QP_MAX) * m_lstep; q = X265_MIN(lqmax, q); } q = x265_clip3(MIN_QPSCALE, MAX_MAX_QPSCALE, q); /* Set a min qp at scenechanges and transitions */ if (m_isSceneTransition) { double minScenecutQscale =x265_qp2qScale(ABR_SCENECUT_INIT_QP_MIN); q = X265_MAX(minScenecutQscale, q); m_lastQScaleFor[P_SLICE] = X265_MAX(minScenecutQscale, m_lastQScaleFor[P_SLICE]); } rce->qpNoVbv = x265_qScale2qp(q); q = clipQscale(curFrame, rce, q); /* clip qp to permissible range after vbv-lookahead estimation to avoid possible * mispredictions by initial frame size predictors */ if (!m_2pass && m_isVbv && m_pred[m_predType].count == 1) q = x265_clip3(lqmin, lqmax, q); } m_lastQScaleFor[m_sliceType] = q; if ((m_curSlice->m_poc == 0 || m_lastQScaleFor[P_SLICE] < q) && !(m_2pass && !m_isVbv)) m_lastQScaleFor[P_SLICE] = q * fabs(m_param->rc.ipFactor); if (m_2pass && m_isVbv) rce->frameSizePlanned = qScale2bits(rce, q); else rce->frameSizePlanned = predictSize(&m_pred[m_predType], q, (double)m_currentSatd); /* Always use up the whole VBV in this case. */ if (m_singleFrameVbv) rce->frameSizePlanned = m_bufferRate; /* Limit planned size by MinCR */ if (m_isVbv) rce->frameSizePlanned = X265_MIN(rce->frameSizePlanned, rce->frameSizeMaximum); rce->frameSizeEstimated = rce->frameSizePlanned; rce->newQScale = q; return q; } } void RateControl::rateControlUpdateStats(RateControlEntry* rce) { if (!m_param->rc.bStatWrite && !m_param->rc.bStatRead) { if (rce->sliceType == I_SLICE) { /* previous I still had a residual; roll it into the new loan */ if (m_partialResidualFrames) rce->rowTotalBits += m_partialResidualCost * m_partialResidualFrames; if ((m_param->totalFrames != 0) && (m_amortizeFrames > (m_param->totalFrames - m_framesDone))) { m_amortizeFrames = 0; m_amortizeFraction = 0; } else { double depreciateRate = 1.1; m_amortizeFrames = (int)(m_amortizeFrames / depreciateRate); m_amortizeFraction /= depreciateRate; m_amortizeFrames = X265_MAX(m_amortizeFrames, MIN_AMORTIZE_FRAME); m_amortizeFraction = X265_MAX(m_amortizeFraction, MIN_AMORTIZE_FRACTION); } rce->amortizeFrames = m_amortizeFrames; rce->amortizeFraction = m_amortizeFraction; m_partialResidualFrames = X265_MIN((int)rce->amortizeFrames, m_param->keyframeMax); m_partialResidualCost = (int)((rce->rowTotalBits * rce->amortizeFraction) / m_partialResidualFrames); rce->rowTotalBits -= m_partialResidualCost * m_partialResidualFrames; } else if (m_partialResidualFrames) { rce->rowTotalBits += m_partialResidualCost; m_partialResidualFrames--; } } if (rce->sliceType != B_SLICE) rce->rowCplxrSum = rce->rowTotalBits * x265_qp2qScale(rce->qpaRc) / rce->qRceq; else rce->rowCplxrSum = rce->rowTotalBits * x265_qp2qScale(rce->qpaRc) / (rce->qRceq * fabs(m_param->rc.pbFactor)); m_cplxrSum += rce->rowCplxrSum; m_totalBits += rce->rowTotalBits; /* do not allow the next frame to enter rateControlStart() until this * frame has updated its mid-frame statistics */ if (m_param->rc.rateControlMode == X265_RC_ABR || m_isVbv) { m_startEndOrder.incr(); if (rce->encodeOrder < m_param->frameNumThreads - 1) m_startEndOrder.incr(); // faked rateControlEnd calls for negative frames } } void RateControl::checkAndResetABR(RateControlEntry* rce, bool isFrameDone) { double abrBuffer = 2 * m_rateTolerance * m_bitrate; // Check if current Slice is a scene cut that follows low detailed/blank frames if (rce->lastSatd > 4 * rce->movingAvgSum) { if (!m_isAbrReset && rce->movingAvgSum > 0 && (m_isPatternPresent || !m_param->bframes)) { int pos = X265_MAX(m_sliderPos - m_param->frameNumThreads, 0); int64_t shrtTermWantedBits = (int64_t) (X265_MIN(pos, s_slidingWindowFrames) * m_bitrate * m_frameDuration); int64_t shrtTermTotalBitsSum = 0; // Reset ABR if prev frames are blank to prevent further sudden overflows/ high bit rate spikes. for (int i = 0; i < s_slidingWindowFrames ; i++) shrtTermTotalBitsSum += m_encodedBitsWindow[i]; double underflow = (shrtTermTotalBitsSum - shrtTermWantedBits) / abrBuffer; const double epsilon = 0.0001f; if (underflow < epsilon && !isFrameDone) { init(*m_curSlice->m_sps); m_shortTermCplxSum = rce->lastSatd / (CLIP_DURATION(m_frameDuration) / BASE_FRAME_DURATION); m_shortTermCplxCount = 1; m_isAbrReset = true; m_lastAbrResetPoc = rce->poc; } } else if (m_isAbrReset && isFrameDone) { // Clear flag to reset ABR and continue as usual. m_isAbrReset = false; } } } void RateControl::hrdFullness(SEIBufferingPeriod *seiBP) { const VUI* vui = &m_curSlice->m_sps->vuiParameters; const HRDInfo* hrd = &vui->hrdParameters; int num = 90000; int denom = hrd->bitRateValue << (hrd->bitRateScale + BR_SHIFT); reduceFraction(&num, &denom); int64_t cpbState = (int64_t)m_bufferFillFinal; int64_t cpbSize = (int64_t)hrd->cpbSizeValue << (hrd->cpbSizeScale + CPB_SHIFT); if (cpbState < 0 || cpbState > cpbSize) { x265_log(m_param, X265_LOG_WARNING, "CPB %s: %.0lf bits in a %.0lf-bit buffer\n", cpbState < 0 ? "underflow" : "overflow", (float)cpbState/denom, (float)cpbSize/denom); } seiBP->m_initialCpbRemovalDelay = (uint32_t)(num * cpbState + denom) / denom; seiBP->m_initialCpbRemovalDelayOffset = (uint32_t)(num * cpbSize + denom) / denom - seiBP->m_initialCpbRemovalDelay; } void RateControl::updateVbvPlan(Encoder* enc) { m_bufferFill = m_bufferFillFinal; enc->updateVbvPlan(this); } double RateControl::predictSize(Predictor *p, double q, double var) { return (p->coeff * var + p->offset) / (q * p->count); } double RateControl::clipQscale(Frame* curFrame, RateControlEntry* rce, double q) { // B-frames are not directly subject to VBV, // since they are controlled by referenced P-frames' QPs. double q0 = q; if (m_isVbv && m_currentSatd > 0 && curFrame) { if (m_param->lookaheadDepth || m_param->rc.cuTree || m_param->scenecutThreshold || (m_param->bFrameAdaptive && m_param->bframes)) { /* Lookahead VBV: If lookahead is done, raise the quantizer as necessary * such that no frames in the lookahead overflow and such that the buffer * is in a reasonable state by the end of the lookahead. */ int loopTerminate = 0; /* Avoid an infinite loop. */ for (int iterations = 0; iterations < 1000 && loopTerminate != 3; iterations++) { double frameQ[3]; double curBits; curBits = predictSize(&m_pred[m_predType], q, (double)m_currentSatd); double bufferFillCur = m_bufferFill - curBits; double targetFill; double totalDuration = m_frameDuration; frameQ[P_SLICE] = m_sliceType == I_SLICE ? q * m_param->rc.ipFactor : (m_sliceType == B_SLICE ? q / m_param->rc.pbFactor : q); frameQ[B_SLICE] = frameQ[P_SLICE] * m_param->rc.pbFactor; frameQ[I_SLICE] = frameQ[P_SLICE] / m_param->rc.ipFactor; /* Loop over the planned future frames. */ for (int j = 0; bufferFillCur >= 0; j++) { int type = curFrame->m_lowres.plannedType[j]; if (type == X265_TYPE_AUTO || totalDuration >= 1.0) break; totalDuration += m_frameDuration; double wantedFrameSize = m_vbvMaxRate * m_frameDuration; if (bufferFillCur + wantedFrameSize <= m_bufferSize) bufferFillCur += wantedFrameSize; int64_t satd = curFrame->m_lowres.plannedSatd[j] >> (X265_DEPTH - 8); type = IS_X265_TYPE_I(type) ? I_SLICE : IS_X265_TYPE_B(type) ? B_SLICE : P_SLICE; int predType = getPredictorType(curFrame->m_lowres.plannedType[j], type); curBits = predictSize(&m_pred[predType], frameQ[type], (double)satd); bufferFillCur -= curBits; } /* Try to get the buffer at least 50% filled, but don't set an impossible goal. */ double finalDur = 1; if (m_param->rc.bStrictCbr) { finalDur = x265_clip3(0.4, 1.0, totalDuration); } targetFill = X265_MIN(m_bufferFill + totalDuration * m_vbvMaxRate * 0.5 , m_bufferSize * (1 - 0.5 * finalDur)); if (bufferFillCur < targetFill) { q *= 1.01; loopTerminate |= 1; continue; } /* Try to get the buffer not more than 80% filled, but don't set an impossible goal. */ targetFill = x265_clip3(m_bufferSize * (1 - 0.2 * finalDur), m_bufferSize, m_bufferFill - totalDuration * m_vbvMaxRate * 0.5); if (m_isCbr && bufferFillCur > targetFill && !m_isSceneTransition) { q /= 1.01; loopTerminate |= 2; continue; } break; } q = X265_MAX(q0 / 2, q); } else { /* Fallback to old purely-reactive algorithm: no lookahead. */ if ((m_sliceType == P_SLICE || m_sliceType == B_SLICE || (m_sliceType == I_SLICE && m_lastNonBPictType == I_SLICE)) && m_bufferFill / m_bufferSize < 0.5) { q /= x265_clip3(0.5, 1.0, 2.0 * m_bufferFill / m_bufferSize); } // Now a hard threshold to make sure the frame fits in VBV. // This one is mostly for I-frames. double bits = predictSize(&m_pred[m_predType], q, (double)m_currentSatd); // For small VBVs, allow the frame to use up the entire VBV. double maxFillFactor; maxFillFactor = m_bufferSize >= 5 * m_bufferRate ? 2 : 1; // For single-frame VBVs, request that the frame use up the entire VBV. double minFillFactor = m_singleFrameVbv ? 1 : 2; for (int iterations = 0; iterations < 10; iterations++) { double qf = 1.0; if (bits > m_bufferFill / maxFillFactor) qf = x265_clip3(0.2, 1.0, m_bufferFill / (maxFillFactor * bits)); q /= qf; bits *= qf; if (bits < m_bufferRate / minFillFactor) q *= bits * minFillFactor / m_bufferRate; bits = predictSize(&m_pred[m_predType], q, (double)m_currentSatd); } q = X265_MAX(q0, q); } /* Apply MinCR restrictions */ double pbits = predictSize(&m_pred[m_predType], q, (double)m_currentSatd); if (pbits > rce->frameSizeMaximum) q *= pbits / rce->frameSizeMaximum; /* To detect frames that are more complex in SATD costs compared to prev window, yet * lookahead vbv reduces its qscale by half its value. Be on safer side and avoid drastic * qscale reductions for frames high in complexity */ bool mispredCheck = rce->movingAvgSum && m_currentSatd >= rce->movingAvgSum && q <= q0 / 2; if (!m_isCbr || (m_isAbr && mispredCheck)) q = X265_MAX(q0, q); if (m_rateFactorMaxIncrement) { double qpNoVbv = x265_qScale2qp(q0); double qmax = X265_MIN(MAX_MAX_QPSCALE,x265_qp2qScale(qpNoVbv + m_rateFactorMaxIncrement)); return x265_clip3(MIN_QPSCALE, qmax, q); } } if (m_2pass) { double min = log(MIN_QPSCALE); double max = log(MAX_MAX_QPSCALE); q = (log(q) - min) / (max - min) - 0.5; q = 1.0 / (1.0 + exp(-4 * q)); q = q*(max - min) + min; return exp(q); } return x265_clip3(MIN_QPSCALE, MAX_MAX_QPSCALE, q); } double RateControl::predictRowsSizeSum(Frame* curFrame, RateControlEntry* rce, double qpVbv, int32_t& encodedBitsSoFar) { uint32_t rowSatdCostSoFar = 0, totalSatdBits = 0; encodedBitsSoFar = 0; double qScale = x265_qp2qScale(qpVbv); FrameData& curEncData = *curFrame->m_encData; int picType = curEncData.m_slice->m_sliceType; Frame* refFrame = curEncData.m_slice->m_refFrameList[0][0]; uint32_t maxRows = curEncData.m_slice->m_sps->numCuInHeight; uint32_t maxCols = curEncData.m_slice->m_sps->numCuInWidth; for (uint32_t row = 0; row < maxRows; row++) { encodedBitsSoFar += curEncData.m_rowStat[row].encodedBits; rowSatdCostSoFar = curEncData.m_rowStat[row].diagSatd; uint32_t satdCostForPendingCus = curEncData.m_rowStat[row].satdForVbv - rowSatdCostSoFar; satdCostForPendingCus >>= X265_DEPTH - 8; if (satdCostForPendingCus > 0) { double pred_s = predictSize(rce->rowPred[0], qScale, satdCostForPendingCus); uint32_t refRowSatdCost = 0, refRowBits = 0, intraCostForPendingCus = 0; double refQScale = 0; if (picType != I_SLICE) { FrameData& refEncData = *refFrame->m_encData; uint32_t endCuAddr = maxCols * (row + 1); uint32_t startCuAddr = curEncData.m_rowStat[row].numEncodedCUs; if (startCuAddr) { for (uint32_t cuAddr = startCuAddr + 1 ; cuAddr < endCuAddr; cuAddr++) { refRowSatdCost += refEncData.m_cuStat[cuAddr].vbvCost; refRowBits += refEncData.m_cuStat[cuAddr].totalBits; } } else { refRowBits = refEncData.m_rowStat[row].encodedBits; refRowSatdCost = refEncData.m_rowStat[row].satdForVbv; } refRowSatdCost >>= X265_DEPTH - 8; refQScale = refEncData.m_rowStat[row].diagQpScale; } if (picType == I_SLICE || qScale >= refQScale) { if (picType == P_SLICE && refFrame && refFrame->m_encData->m_slice->m_sliceType == picType && refQScale > 0 && refRowSatdCost > 0) { if (abs((int32_t)(refRowSatdCost - satdCostForPendingCus)) < (int32_t)satdCostForPendingCus / 2) { double predTotal = refRowBits * satdCostForPendingCus / refRowSatdCost * refQScale / qScale; totalSatdBits += (int32_t)((pred_s + predTotal) * 0.5); continue; } } totalSatdBits += (int32_t)pred_s; } else if (picType == P_SLICE) { intraCostForPendingCus = curEncData.m_rowStat[row].intraSatdForVbv - curEncData.m_rowStat[row].diagIntraSatd; /* Our QP is lower than the reference! */ double pred_intra = predictSize(rce->rowPred[1], qScale, intraCostForPendingCus); /* Sum: better to overestimate than underestimate by using only one of the two predictors. */ totalSatdBits += (int32_t)(pred_intra + pred_s); } else totalSatdBits += (int32_t)pred_s; } } return totalSatdBits + encodedBitsSoFar; } int RateControl::rowDiagonalVbvRateControl(Frame* curFrame, uint32_t row, RateControlEntry* rce, double& qpVbv) { FrameData& curEncData = *curFrame->m_encData; double qScaleVbv = x265_qp2qScale(qpVbv); uint64_t rowSatdCost = curEncData.m_rowStat[row].diagSatd; double encodedBits = curEncData.m_rowStat[row].encodedBits; if (row == 1) { rowSatdCost += curEncData.m_rowStat[0].diagSatd; encodedBits += curEncData.m_rowStat[0].encodedBits; } rowSatdCost >>= X265_DEPTH - 8; updatePredictor(rce->rowPred[0], qScaleVbv, (double)rowSatdCost, encodedBits); if (curEncData.m_slice->m_sliceType == P_SLICE) { Frame* refFrame = curEncData.m_slice->m_refFrameList[0][0]; if (qpVbv < refFrame->m_encData->m_rowStat[row].diagQp) { uint64_t intraRowSatdCost = curEncData.m_rowStat[row].diagIntraSatd; if (row == 1) intraRowSatdCost += curEncData.m_rowStat[0].diagIntraSatd; updatePredictor(rce->rowPred[1], qScaleVbv, (double)intraRowSatdCost, encodedBits); } } int canReencodeRow = 1; /* tweak quality based on difference from predicted size */ double prevRowQp = qpVbv; double qpAbsoluteMax = QP_MAX_MAX; double qpAbsoluteMin = QP_MIN; if (m_rateFactorMaxIncrement) qpAbsoluteMax = X265_MIN(qpAbsoluteMax, rce->qpNoVbv + m_rateFactorMaxIncrement); if (m_rateFactorMaxDecrement) qpAbsoluteMin = X265_MAX(qpAbsoluteMin, rce->qpNoVbv - m_rateFactorMaxDecrement); double qpMax = X265_MIN(prevRowQp + m_param->rc.qpStep, qpAbsoluteMax); double qpMin = X265_MAX(prevRowQp - m_param->rc.qpStep, qpAbsoluteMin); double stepSize = 0.5; double bufferLeftPlanned = rce->bufferFill - rce->frameSizePlanned; const SPS& sps = *curEncData.m_slice->m_sps; double maxFrameError = X265_MAX(0.05, 1.0 / sps.numCuInHeight); if (row < sps.numCuInHeight - 1) { /* More threads means we have to be more cautious in letting ratecontrol use up extra bits. */ double rcTol = bufferLeftPlanned / m_param->frameNumThreads * m_rateTolerance; int32_t encodedBitsSoFar = 0; double accFrameBits = predictRowsSizeSum(curFrame, rce, qpVbv, encodedBitsSoFar); /* * Don't increase the row QPs until a sufficent amount of the bits of * the frame have been processed, in case a flat area at the top of the * frame was measured inaccurately. */ if (encodedBitsSoFar < 0.05f * rce->frameSizePlanned) qpMax = qpAbsoluteMax = prevRowQp; if (rce->sliceType != I_SLICE || (m_param->rc.bStrictCbr && rce->poc > 0)) rcTol *= 0.5; if (!m_isCbr) qpMin = X265_MAX(qpMin, rce->qpNoVbv); double totalBitsNeeded = m_wantedBitsWindow; if (m_param->totalFrames) totalBitsNeeded = (m_param->totalFrames * m_bitrate) / m_fps; double abrOvershoot = (accFrameBits + m_totalBits - m_wantedBitsWindow) / totalBitsNeeded; while (qpVbv < qpMax && (((accFrameBits > rce->frameSizePlanned + rcTol) || (rce->bufferFill - accFrameBits < bufferLeftPlanned * 0.5) || (accFrameBits > rce->frameSizePlanned && qpVbv < rce->qpNoVbv)) && (!m_param->rc.bStrictCbr ? 1 : abrOvershoot > 0.1))) { qpVbv += stepSize; accFrameBits = predictRowsSizeSum(curFrame, rce, qpVbv, encodedBitsSoFar); abrOvershoot = (accFrameBits + m_totalBits - m_wantedBitsWindow) / totalBitsNeeded; } while (qpVbv > qpMin && (qpVbv > curEncData.m_rowStat[0].diagQp || m_singleFrameVbv) && (((accFrameBits < rce->frameSizePlanned * 0.8f && qpVbv <= prevRowQp) || accFrameBits < (rce->bufferFill - m_bufferSize + m_bufferRate) * 1.1) && (!m_param->rc.bStrictCbr ? 1 : abrOvershoot < 0))) { qpVbv -= stepSize; accFrameBits = predictRowsSizeSum(curFrame, rce, qpVbv, encodedBitsSoFar); abrOvershoot = (accFrameBits + m_totalBits - m_wantedBitsWindow) / totalBitsNeeded; } if (m_param->rc.bStrictCbr && m_param->totalFrames) { double timeDone = (double)(m_framesDone) / m_param->totalFrames; while (qpVbv < qpMax && (qpVbv < rce->qpNoVbv + (m_param->rc.qpStep * timeDone)) && (timeDone > 0.75 && abrOvershoot > 0)) { qpVbv += stepSize; accFrameBits = predictRowsSizeSum(curFrame, rce, qpVbv, encodedBitsSoFar); abrOvershoot = (accFrameBits + m_totalBits - m_wantedBitsWindow) / totalBitsNeeded; } if (qpVbv > curEncData.m_rowStat[0].diagQp && abrOvershoot < -0.1 && timeDone > 0.5 && accFrameBits < rce->frameSizePlanned - rcTol) { qpVbv -= stepSize; accFrameBits = predictRowsSizeSum(curFrame, rce, qpVbv, encodedBitsSoFar); } } /* avoid VBV underflow or MinCr violation */ while ((qpVbv < qpAbsoluteMax) && ((rce->bufferFill - accFrameBits < m_bufferRate * maxFrameError) || (rce->frameSizeMaximum - accFrameBits < rce->frameSizeMaximum * maxFrameError))) { qpVbv += stepSize; accFrameBits = predictRowsSizeSum(curFrame, rce, qpVbv, encodedBitsSoFar); } rce->frameSizeEstimated = accFrameBits; /* If the current row was large enough to cause a large QP jump, try re-encoding it. */ if (qpVbv > qpMax && prevRowQp < qpMax && canReencodeRow) { /* Bump QP to halfway in between... close enough. */ qpVbv = x265_clip3(prevRowQp + 1.0f, qpMax, (prevRowQp + qpVbv) * 0.5); return -1; } if (m_param->rc.rfConstantMin) { if (qpVbv < qpMin && prevRowQp > qpMin && canReencodeRow) { qpVbv = x265_clip3(qpMin, prevRowQp, (prevRowQp + qpVbv) * 0.5); return -1; } } } else { int32_t encodedBitsSoFar = 0; rce->frameSizeEstimated = predictRowsSizeSum(curFrame, rce, qpVbv, encodedBitsSoFar); /* Last-ditch attempt: if the last row of the frame underflowed the VBV, * try again. */ if ((rce->frameSizeEstimated > (rce->bufferFill - m_bufferRate * maxFrameError) && qpVbv < qpMax && canReencodeRow)) { qpVbv = qpMax; return -1; } } return 0; } /* modify the bitrate curve from pass1 for one frame */ double RateControl::getQScale(RateControlEntry *rce, double rateFactor) { double q; if (m_param->rc.cuTree) { // Scale and units are obtained from rateNum and rateDenom for videos with fixed frame rates. double timescale = (double)m_param->fpsDenom / (2 * m_param->fpsNum); q = pow(BASE_FRAME_DURATION / CLIP_DURATION(2 * timescale), 1 - m_param->rc.qCompress); } else q = pow(rce->blurredComplexity, 1 - m_param->rc.qCompress); // avoid NaN's in the Rceq if (rce->coeffBits + rce->mvBits == 0) q = m_lastQScaleFor[rce->sliceType]; else { m_lastRceq = q; q /= rateFactor; } x265_zone* zone = getZone(); if (zone) { if (zone->bForceQp) q = x265_qp2qScale(zone->qp); else q /= zone->bitrateFactor; } return q; } void RateControl::updatePredictor(Predictor *p, double q, double var, double bits) { if (var < 10) return; const double range = 2; double old_coeff = p->coeff / p->count; double new_coeff = bits * q / var; double new_coeff_clipped = x265_clip3(old_coeff / range, old_coeff * range, new_coeff); double new_offset = bits * q - new_coeff_clipped * var; if (new_offset >= 0) new_coeff = new_coeff_clipped; else new_offset = 0; p->count *= p->decay; p->coeff *= p->decay; p->offset *= p->decay; p->count++; p->coeff += new_coeff; p->offset += new_offset; } void RateControl::updateVbv(int64_t bits, RateControlEntry* rce) { int predType = rce->sliceType; predType = rce->sliceType == B_SLICE && rce->keptAsRef ? 3 : predType; if (rce->lastSatd >= m_ncu) updatePredictor(&m_pred[predType], x265_qp2qScale(rce->qpaRc), (double)rce->lastSatd, (double)bits); if (!m_isVbv) return; m_bufferFillFinal -= bits; if (m_bufferFillFinal < 0) x265_log(m_param, X265_LOG_WARNING, "poc:%d, VBV underflow (%.0f bits)\n", rce->poc, m_bufferFillFinal); m_bufferFillFinal = X265_MAX(m_bufferFillFinal, 0); m_bufferFillFinal += m_bufferRate; m_bufferFillFinal = X265_MIN(m_bufferFillFinal, m_bufferSize); } /* After encoding one frame, update rate control state */ int RateControl::rateControlEnd(Frame* curFrame, int64_t bits, RateControlEntry* rce) { int orderValue = m_startEndOrder.get(); int endOrdinal = (rce->encodeOrder + m_param->frameNumThreads) * 2 - 1; while (orderValue < endOrdinal && !m_bTerminated) { /* no more frames are being encoded, so fake the start event if we would * have blocked on it. Note that this does not enforce rateControlEnd() * ordering during flush, but this has no impact on the outputs */ if (m_finalFrameCount && orderValue >= 2 * m_finalFrameCount) break; orderValue = m_startEndOrder.waitForChange(orderValue); } FrameData& curEncData = *curFrame->m_encData; int64_t actualBits = bits; Slice *slice = curEncData.m_slice; if (m_param->rc.aqMode || m_isVbv) { if (m_isVbv) { /* determine avg QP decided by VBV rate control */ for (uint32_t i = 0; i < slice->m_sps->numCuInHeight; i++) curEncData.m_avgQpRc += curEncData.m_rowStat[i].sumQpRc; curEncData.m_avgQpRc /= slice->m_sps->numCUsInFrame; rce->qpaRc = curEncData.m_avgQpRc; } if (m_param->rc.aqMode) { /* determine actual avg encoded QP, after AQ/cutree adjustments */ for (uint32_t i = 0; i < slice->m_sps->numCuInHeight; i++) curEncData.m_avgQpAq += curEncData.m_rowStat[i].sumQpAq; curEncData.m_avgQpAq /= (slice->m_sps->numCUsInFrame * NUM_4x4_PARTITIONS); } else curEncData.m_avgQpAq = curEncData.m_avgQpRc; } if (m_isAbr) { if (m_param->rc.rateControlMode == X265_RC_ABR && !m_param->rc.bStatRead) checkAndResetABR(rce, true); if (m_param->rc.rateControlMode == X265_RC_CRF) { if (int(curEncData.m_avgQpRc + 0.5) == slice->m_sliceQp) curEncData.m_rateFactor = m_rateFactorConstant; else { /* If vbv changed the frame QP recalculate the rate-factor */ double baseCplx = m_ncu * (m_param->bframes ? 120 : 80); double mbtree_offset = m_param->rc.cuTree ? (1.0 - m_param->rc.qCompress) * 13.5 : 0; curEncData.m_rateFactor = pow(baseCplx, 1 - m_qCompress) / x265_qp2qScale(int(curEncData.m_avgQpRc + 0.5) + mbtree_offset); } } } if (m_isAbr && !m_isAbrReset) { /* amortize part of each I slice over the next several frames, up to * keyint-max, to avoid over-compensating for the large I slice cost */ if (!m_param->rc.bStatWrite && !m_param->rc.bStatRead) { if (rce->sliceType == I_SLICE) { /* previous I still had a residual; roll it into the new loan */ if (m_residualFrames) bits += m_residualCost * m_residualFrames; m_residualFrames = X265_MIN((int)rce->amortizeFrames, m_param->keyframeMax); m_residualCost = (int)((bits * rce->amortizeFraction) / m_residualFrames); bits -= m_residualCost * m_residualFrames; } else if (m_residualFrames) { bits += m_residualCost; m_residualFrames--; } } if (rce->sliceType != B_SLICE) { /* The factor 1.5 is to tune up the actual bits, otherwise the cplxrSum is scaled too low * to improve short term compensation for next frame. */ m_cplxrSum += (bits * x265_qp2qScale(rce->qpaRc) / rce->qRceq) - (rce->rowCplxrSum); } else { /* Depends on the fact that B-frame's QP is an offset from the following P-frame's. * Not perfectly accurate with B-refs, but good enough. */ m_cplxrSum += (bits * x265_qp2qScale(rce->qpaRc) / (rce->qRceq * fabs(m_param->rc.pbFactor))) - (rce->rowCplxrSum); } m_wantedBitsWindow += m_frameDuration * m_bitrate; m_totalBits += bits - rce->rowTotalBits; m_encodedBits += actualBits; int pos = m_sliderPos - m_param->frameNumThreads; if (pos >= 0) m_encodedBitsWindow[pos % s_slidingWindowFrames] = actualBits; } if (m_2pass) { m_expectedBitsSum += qScale2bits(rce, x265_qp2qScale(rce->newQp)); m_totalBits += bits - rce->rowTotalBits; } if (m_isVbv) { updateVbv(actualBits, rce); if (m_param->bEmitHRDSEI) { const VUI *vui = &curEncData.m_slice->m_sps->vuiParameters; const HRDInfo *hrd = &vui->hrdParameters; const TimingInfo *time = &vui->timingInfo; if (!curFrame->m_poc) { // first access unit initializes the HRD rce->hrdTiming->cpbInitialAT = 0; rce->hrdTiming->cpbRemovalTime = m_nominalRemovalTime = (double)m_bufPeriodSEI.m_initialCpbRemovalDelay / 90000; } else { rce->hrdTiming->cpbRemovalTime = m_nominalRemovalTime + (double)rce->picTimingSEI->m_auCpbRemovalDelay * time->numUnitsInTick / time->timeScale; double cpbEarliestAT = rce->hrdTiming->cpbRemovalTime - (double)m_bufPeriodSEI.m_initialCpbRemovalDelay / 90000; if (!curFrame->m_lowres.bKeyframe) cpbEarliestAT -= (double)m_bufPeriodSEI.m_initialCpbRemovalDelayOffset / 90000; rce->hrdTiming->cpbInitialAT = hrd->cbrFlag ? m_prevCpbFinalAT : X265_MAX(m_prevCpbFinalAT, cpbEarliestAT); } uint32_t cpbsizeUnscale = hrd->cpbSizeValue << (hrd->cpbSizeScale + CPB_SHIFT); rce->hrdTiming->cpbFinalAT = m_prevCpbFinalAT = rce->hrdTiming->cpbInitialAT + actualBits / cpbsizeUnscale; rce->hrdTiming->dpbOutputTime = (double)rce->picTimingSEI->m_picDpbOutputDelay * time->numUnitsInTick / time->timeScale + rce->hrdTiming->cpbRemovalTime; } } rce->isActive = false; // Allow rateControlStart of next frame only when rateControlEnd of previous frame is over m_startEndOrder.incr(); return 0; } /* called to write out the rate control frame stats info in multipass encodes */ int RateControl::writeRateControlFrameStats(Frame* curFrame, RateControlEntry* rce) { FrameData& curEncData = *curFrame->m_encData; char cType = rce->sliceType == I_SLICE ? (rce->poc > 0 && m_param->bOpenGOP ? 'i' : 'I') : rce->sliceType == P_SLICE ? 'P' : IS_REFERENCED(curFrame) ? 'B' : 'b'; if (fprintf(m_statFileOut, "in:%d out:%d type:%c q:%.2f q-aq:%.2f tex:%d mv:%d misc:%d icu:%.2f pcu:%.2f scu:%.2f ;\n", rce->poc, rce->encodeOrder, cType, curEncData.m_avgQpRc, curEncData.m_avgQpAq, curFrame->m_encData->m_frameStats.coeffBits, curFrame->m_encData->m_frameStats.mvBits, curFrame->m_encData->m_frameStats.miscBits, curFrame->m_encData->m_frameStats.percent8x8Intra * m_ncu, curFrame->m_encData->m_frameStats.percent8x8Inter * m_ncu, curFrame->m_encData->m_frameStats.percent8x8Skip * m_ncu) < 0) goto writeFailure; /* Don't re-write the data in multi-pass mode. */ if (m_param->rc.cuTree && IS_REFERENCED(curFrame) && !m_param->rc.bStatRead) { uint8_t sliceType = (uint8_t)rce->sliceType; for (int i = 0; i < m_ncu; i++) m_cuTreeStats.qpBuffer[0][i] = (uint16_t)(curFrame->m_lowres.qpCuTreeOffset[i] * 256.0); if (fwrite(&sliceType, 1, 1, m_cutreeStatFileOut) < 1) goto writeFailure; if (fwrite(m_cuTreeStats.qpBuffer[0], sizeof(uint16_t), m_ncu, m_cutreeStatFileOut) < (size_t)m_ncu) goto writeFailure; } return 0; writeFailure: x265_log(m_param, X265_LOG_ERROR, "RatecontrolEnd: stats file write failure\n"); return 1; } #if defined(_MSC_VER) #pragma warning(disable: 4996) // POSIX function names are just fine, thank you #endif /* called when the encoder is flushing, and thus the final frame count is * unambiguously known */ void RateControl::setFinalFrameCount(int count) { m_finalFrameCount = count; /* unblock waiting threads */ m_startEndOrder.poke(); } /* called when the encoder is closing, and no more frames will be output. * all blocked functions must finish so the frame encoder threads can be * closed */ void RateControl::terminate() { m_bTerminated = true; /* unblock waiting threads */ m_startEndOrder.poke(); } void RateControl::destroy() { const char *fileName = m_param->rc.statFileName; if (!fileName) fileName = s_defaultStatFileName; if (m_statFileOut) { fclose(m_statFileOut); char *tmpFileName = strcatFilename(fileName, ".temp"); int bError = 1; if (tmpFileName) { unlink(fileName); bError = rename(tmpFileName, fileName); } if (bError) { x265_log(m_param, X265_LOG_ERROR, "failed to rename output stats file to \"%s\"\n", fileName); } X265_FREE(tmpFileName); } if (m_cutreeStatFileOut) { fclose(m_cutreeStatFileOut); char *tmpFileName = strcatFilename(fileName, ".cutree.temp"); char *newFileName = strcatFilename(fileName, ".cutree"); int bError = 1; if (tmpFileName && newFileName) { unlink(newFileName); bError = rename(tmpFileName, newFileName); } if (bError) { x265_log(m_param, X265_LOG_ERROR, "failed to rename cutree output stats file to \"%s\"\n", newFileName); } X265_FREE(tmpFileName); X265_FREE(newFileName); } if (m_cutreeStatFileIn) fclose(m_cutreeStatFileIn); X265_FREE(m_rce2Pass); for (int i = 0; i < 2; i++) X265_FREE(m_cuTreeStats.qpBuffer[i]); X265_FREE(m_param->rc.zones); }