/***************************************************************************** * Copyright (C) 2015 x265 project * * Authors: Steve Borho * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA. * * This program is also available under a commercial proprietary license. * For more information, contact us at license @ x265.com. *****************************************************************************/ #include "common.h" #include "yuv.h" #include "shortyuv.h" #include "picyuv.h" #include "primitives.h" using namespace X265_NS; Yuv::Yuv() { m_buf[0] = NULL; m_buf[1] = NULL; m_buf[2] = NULL; } bool Yuv::create(uint32_t size, int csp) { m_csp = csp; m_hChromaShift = CHROMA_H_SHIFT(csp); m_vChromaShift = CHROMA_V_SHIFT(csp); m_size = size; m_part = partitionFromSizes(size, size); if (csp == X265_CSP_I400) { CHECKED_MALLOC(m_buf[0], pixel, size * size + 8); m_buf[1] = m_buf[2] = 0; m_csize = MAX_INT; return true; } else { m_csize = size >> m_hChromaShift; size_t sizeL = size * size; size_t sizeC = sizeL >> (m_vChromaShift + m_hChromaShift); X265_CHECK((sizeC & 15) == 0, "invalid size"); // memory allocation (padded for SIMD reads) CHECKED_MALLOC(m_buf[0], pixel, sizeL + sizeC * 2 + 8); m_buf[1] = m_buf[0] + sizeL; m_buf[2] = m_buf[0] + sizeL + sizeC; return true; } fail: return false; } void Yuv::destroy() { X265_FREE(m_buf[0]); } void Yuv::copyToPicYuv(PicYuv& dstPic, uint32_t cuAddr, uint32_t absPartIdx) const { pixel* dstY = dstPic.getLumaAddr(cuAddr, absPartIdx); primitives.cu[m_part].copy_pp(dstY, dstPic.m_stride, m_buf[0], m_size); if (m_csp != X265_CSP_I400) { pixel* dstU = dstPic.getCbAddr(cuAddr, absPartIdx); pixel* dstV = dstPic.getCrAddr(cuAddr, absPartIdx); primitives.chroma[m_csp].cu[m_part].copy_pp(dstU, dstPic.m_strideC, m_buf[1], m_csize); primitives.chroma[m_csp].cu[m_part].copy_pp(dstV, dstPic.m_strideC, m_buf[2], m_csize); } } void Yuv::copyFromPicYuv(const PicYuv& srcPic, uint32_t cuAddr, uint32_t absPartIdx) { const pixel* srcY = srcPic.getLumaAddr(cuAddr, absPartIdx); primitives.cu[m_part].copy_pp(m_buf[0], m_size, srcY, srcPic.m_stride); if (m_csp != X265_CSP_I400) { const pixel* srcU = srcPic.getCbAddr(cuAddr, absPartIdx); const pixel* srcV = srcPic.getCrAddr(cuAddr, absPartIdx); primitives.chroma[m_csp].cu[m_part].copy_pp(m_buf[1], m_csize, srcU, srcPic.m_strideC); primitives.chroma[m_csp].cu[m_part].copy_pp(m_buf[2], m_csize, srcV, srcPic.m_strideC); } } void Yuv::copyFromYuv(const Yuv& srcYuv) { X265_CHECK(m_size >= srcYuv.m_size, "invalid size\n"); primitives.cu[m_part].copy_pp(m_buf[0], m_size, srcYuv.m_buf[0], srcYuv.m_size); if (m_csp != X265_CSP_I400) { primitives.chroma[m_csp].cu[m_part].copy_pp(m_buf[1], m_csize, srcYuv.m_buf[1], srcYuv.m_csize); primitives.chroma[m_csp].cu[m_part].copy_pp(m_buf[2], m_csize, srcYuv.m_buf[2], srcYuv.m_csize); } } /* This version is intended for use by ME, which required FENC_STRIDE for luma fenc pixels */ void Yuv::copyPUFromYuv(const Yuv& srcYuv, uint32_t absPartIdx, int partEnum, bool bChroma) { X265_CHECK(m_size == FENC_STRIDE && m_size >= srcYuv.m_size, "PU buffer size mismatch\n"); const pixel* srcY = srcYuv.m_buf[0] + getAddrOffset(absPartIdx, srcYuv.m_size); primitives.pu[partEnum].copy_pp(m_buf[0], m_size, srcY, srcYuv.m_size); if (bChroma) { const pixel* srcU = srcYuv.m_buf[1] + srcYuv.getChromaAddrOffset(absPartIdx); const pixel* srcV = srcYuv.m_buf[2] + srcYuv.getChromaAddrOffset(absPartIdx); primitives.chroma[m_csp].pu[partEnum].copy_pp(m_buf[1], m_csize, srcU, srcYuv.m_csize); primitives.chroma[m_csp].pu[partEnum].copy_pp(m_buf[2], m_csize, srcV, srcYuv.m_csize); } } void Yuv::copyToPartYuv(Yuv& dstYuv, uint32_t absPartIdx) const { pixel* dstY = dstYuv.getLumaAddr(absPartIdx); primitives.cu[m_part].copy_pp(dstY, dstYuv.m_size, m_buf[0], m_size); if (m_csp != X265_CSP_I400) { pixel* dstU = dstYuv.getCbAddr(absPartIdx); pixel* dstV = dstYuv.getCrAddr(absPartIdx); primitives.chroma[m_csp].cu[m_part].copy_pp(dstU, dstYuv.m_csize, m_buf[1], m_csize); primitives.chroma[m_csp].cu[m_part].copy_pp(dstV, dstYuv.m_csize, m_buf[2], m_csize); } } void Yuv::copyPartToYuv(Yuv& dstYuv, uint32_t absPartIdx) const { pixel* srcY = m_buf[0] + getAddrOffset(absPartIdx, m_size); pixel* dstY = dstYuv.m_buf[0]; primitives.cu[dstYuv.m_part].copy_pp(dstY, dstYuv.m_size, srcY, m_size); if (m_csp != X265_CSP_I400) { pixel* srcU = m_buf[1] + getChromaAddrOffset(absPartIdx); pixel* srcV = m_buf[2] + getChromaAddrOffset(absPartIdx); pixel* dstU = dstYuv.m_buf[1]; pixel* dstV = dstYuv.m_buf[2]; primitives.chroma[m_csp].cu[dstYuv.m_part].copy_pp(dstU, dstYuv.m_csize, srcU, m_csize); primitives.chroma[m_csp].cu[dstYuv.m_part].copy_pp(dstV, dstYuv.m_csize, srcV, m_csize); } } void Yuv::addClip(const Yuv& srcYuv0, const ShortYuv& srcYuv1, uint32_t log2SizeL) { primitives.cu[log2SizeL - 2].add_ps(m_buf[0], m_size, srcYuv0.m_buf[0], srcYuv1.m_buf[0], srcYuv0.m_size, srcYuv1.m_size); if (m_csp != X265_CSP_I400) { primitives.chroma[m_csp].cu[log2SizeL - 2].add_ps(m_buf[1], m_csize, srcYuv0.m_buf[1], srcYuv1.m_buf[1], srcYuv0.m_csize, srcYuv1.m_csize); primitives.chroma[m_csp].cu[log2SizeL - 2].add_ps(m_buf[2], m_csize, srcYuv0.m_buf[2], srcYuv1.m_buf[2], srcYuv0.m_csize, srcYuv1.m_csize); } } void Yuv::addAvg(const ShortYuv& srcYuv0, const ShortYuv& srcYuv1, uint32_t absPartIdx, uint32_t width, uint32_t height, bool bLuma, bool bChroma) { int part = partitionFromSizes(width, height); if (bLuma) { const int16_t* srcY0 = srcYuv0.getLumaAddr(absPartIdx); const int16_t* srcY1 = srcYuv1.getLumaAddr(absPartIdx); pixel* dstY = getLumaAddr(absPartIdx); primitives.pu[part].addAvg(srcY0, srcY1, dstY, srcYuv0.m_size, srcYuv1.m_size, m_size); } if (bChroma) { const int16_t* srcU0 = srcYuv0.getCbAddr(absPartIdx); const int16_t* srcV0 = srcYuv0.getCrAddr(absPartIdx); const int16_t* srcU1 = srcYuv1.getCbAddr(absPartIdx); const int16_t* srcV1 = srcYuv1.getCrAddr(absPartIdx); pixel* dstU = getCbAddr(absPartIdx); pixel* dstV = getCrAddr(absPartIdx); primitives.chroma[m_csp].pu[part].addAvg(srcU0, srcU1, dstU, srcYuv0.m_csize, srcYuv1.m_csize, m_csize); primitives.chroma[m_csp].pu[part].addAvg(srcV0, srcV1, dstV, srcYuv0.m_csize, srcYuv1.m_csize, m_csize); } } void Yuv::copyPartToPartLuma(Yuv& dstYuv, uint32_t absPartIdx, uint32_t log2Size) const { const pixel* src = getLumaAddr(absPartIdx); pixel* dst = dstYuv.getLumaAddr(absPartIdx); primitives.cu[log2Size - 2].copy_pp(dst, dstYuv.m_size, src, m_size); } void Yuv::copyPartToPartChroma(Yuv& dstYuv, uint32_t absPartIdx, uint32_t log2SizeL) const { const pixel* srcU = getCbAddr(absPartIdx); const pixel* srcV = getCrAddr(absPartIdx); pixel* dstU = dstYuv.getCbAddr(absPartIdx); pixel* dstV = dstYuv.getCrAddr(absPartIdx); primitives.chroma[m_csp].cu[log2SizeL - 2].copy_pp(dstU, dstYuv.m_csize, srcU, m_csize); primitives.chroma[m_csp].cu[log2SizeL - 2].copy_pp(dstV, dstYuv.m_csize, srcV, m_csize); }