libbpg/jctvc/TLibEncoder/TEncSbac.cpp
2015-01-16 13:46:18 +01:00

2008 lines
70 KiB
C++

/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2014, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file TEncSbac.cpp
\brief SBAC encoder class
*/
#include "TEncTop.h"
#include "TEncSbac.h"
#include "TLibCommon/TComTU.h"
#include <map>
#include <algorithm>
#if ENVIRONMENT_VARIABLE_DEBUG_AND_TEST
#include "../TLibCommon/Debug.h"
#endif
//! \ingroup TLibEncoder
//! \{
// ====================================================================================================================
// Constructor / destructor / create / destroy
// ====================================================================================================================
TEncSbac::TEncSbac()
// new structure here
: m_pcBitIf ( NULL )
, m_pcSlice ( NULL )
, m_pcBinIf ( NULL )
, m_numContextModels ( 0 )
, m_cCUSplitFlagSCModel ( 1, 1, NUM_SPLIT_FLAG_CTX , m_contextModels + m_numContextModels, m_numContextModels)
, m_cCUSkipFlagSCModel ( 1, 1, NUM_SKIP_FLAG_CTX , m_contextModels + m_numContextModels, m_numContextModels)
, m_cCUMergeFlagExtSCModel ( 1, 1, NUM_MERGE_FLAG_EXT_CTX , m_contextModels + m_numContextModels, m_numContextModels)
, m_cCUMergeIdxExtSCModel ( 1, 1, NUM_MERGE_IDX_EXT_CTX , m_contextModels + m_numContextModels, m_numContextModels)
, m_cCUPartSizeSCModel ( 1, 1, NUM_PART_SIZE_CTX , m_contextModels + m_numContextModels, m_numContextModels)
, m_cCUPredModeSCModel ( 1, 1, NUM_PRED_MODE_CTX , m_contextModels + m_numContextModels, m_numContextModels)
, m_cCUIntraPredSCModel ( 1, 1, NUM_ADI_CTX , m_contextModels + m_numContextModels, m_numContextModels)
, m_cCUChromaPredSCModel ( 1, 1, NUM_CHROMA_PRED_CTX , m_contextModels + m_numContextModels, m_numContextModels)
, m_cCUDeltaQpSCModel ( 1, 1, NUM_DELTA_QP_CTX , m_contextModels + m_numContextModels, m_numContextModels)
, m_cCUInterDirSCModel ( 1, 1, NUM_INTER_DIR_CTX , m_contextModels + m_numContextModels, m_numContextModels)
, m_cCURefPicSCModel ( 1, 1, NUM_REF_NO_CTX , m_contextModels + m_numContextModels, m_numContextModels)
, m_cCUMvdSCModel ( 1, 1, NUM_MV_RES_CTX , m_contextModels + m_numContextModels, m_numContextModels)
, m_cCUQtCbfSCModel ( 1, NUM_QT_CBF_CTX_SETS, NUM_QT_CBF_CTX_PER_SET , m_contextModels + m_numContextModels, m_numContextModels)
, m_cCUTransSubdivFlagSCModel ( 1, 1, NUM_TRANS_SUBDIV_FLAG_CTX , m_contextModels + m_numContextModels, m_numContextModels)
, m_cCUQtRootCbfSCModel ( 1, 1, NUM_QT_ROOT_CBF_CTX , m_contextModels + m_numContextModels, m_numContextModels)
, m_cCUSigCoeffGroupSCModel ( 1, 2, NUM_SIG_CG_FLAG_CTX , m_contextModels + m_numContextModels, m_numContextModels)
, m_cCUSigSCModel ( 1, 1, NUM_SIG_FLAG_CTX , m_contextModels + m_numContextModels, m_numContextModels)
, m_cCuCtxLastX ( 1, NUM_CTX_LAST_FLAG_SETS, NUM_CTX_LAST_FLAG_XY , m_contextModels + m_numContextModels, m_numContextModels)
, m_cCuCtxLastY ( 1, NUM_CTX_LAST_FLAG_SETS, NUM_CTX_LAST_FLAG_XY , m_contextModels + m_numContextModels, m_numContextModels)
, m_cCUOneSCModel ( 1, 1, NUM_ONE_FLAG_CTX , m_contextModels + m_numContextModels, m_numContextModels)
, m_cCUAbsSCModel ( 1, 1, NUM_ABS_FLAG_CTX , m_contextModels + m_numContextModels, m_numContextModels)
, m_cMVPIdxSCModel ( 1, 1, NUM_MVP_IDX_CTX , m_contextModels + m_numContextModels, m_numContextModels)
, m_cSaoMergeSCModel ( 1, 1, NUM_SAO_MERGE_FLAG_CTX , m_contextModels + m_numContextModels, m_numContextModels)
, m_cSaoTypeIdxSCModel ( 1, 1, NUM_SAO_TYPE_IDX_CTX , m_contextModels + m_numContextModels, m_numContextModels)
, m_cTransformSkipSCModel ( 1, MAX_NUM_CHANNEL_TYPE, NUM_TRANSFORMSKIP_FLAG_CTX , m_contextModels + m_numContextModels, m_numContextModels)
, m_CUTransquantBypassFlagSCModel ( 1, 1, NUM_CU_TRANSQUANT_BYPASS_FLAG_CTX , m_contextModels + m_numContextModels, m_numContextModels)
, m_explicitRdpcmFlagSCModel ( 1, MAX_NUM_CHANNEL_TYPE, NUM_EXPLICIT_RDPCM_FLAG_CTX , m_contextModels + m_numContextModels, m_numContextModels)
, m_explicitRdpcmDirSCModel ( 1, MAX_NUM_CHANNEL_TYPE, NUM_EXPLICIT_RDPCM_DIR_CTX , m_contextModels + m_numContextModels, m_numContextModels)
, m_cCrossComponentPredictionSCModel ( 1, 1, NUM_CROSS_COMPONENT_PREDICTION_CTX , m_contextModels + m_numContextModels, m_numContextModels)
, m_ChromaQpAdjFlagSCModel ( 1, 1, NUM_CHROMA_QP_ADJ_FLAG_CTX , m_contextModels + m_numContextModels, m_numContextModels)
, m_ChromaQpAdjIdcSCModel ( 1, 1, NUM_CHROMA_QP_ADJ_IDC_CTX , m_contextModels + m_numContextModels, m_numContextModels)
{
assert( m_numContextModels <= MAX_NUM_CTX_MOD );
}
TEncSbac::~TEncSbac()
{
}
// ====================================================================================================================
// Public member functions
// ====================================================================================================================
Void TEncSbac::resetEntropy ()
{
Int iQp = m_pcSlice->getSliceQp();
SliceType eSliceType = m_pcSlice->getSliceType();
Int encCABACTableIdx = m_pcSlice->getPPS()->getEncCABACTableIdx();
if (!m_pcSlice->isIntra() && (encCABACTableIdx==B_SLICE || encCABACTableIdx==P_SLICE) && m_pcSlice->getPPS()->getCabacInitPresentFlag())
{
eSliceType = (SliceType) encCABACTableIdx;
}
m_cCUSplitFlagSCModel.initBuffer ( eSliceType, iQp, (UChar*)INIT_SPLIT_FLAG );
m_cCUSkipFlagSCModel.initBuffer ( eSliceType, iQp, (UChar*)INIT_SKIP_FLAG );
m_cCUMergeFlagExtSCModel.initBuffer ( eSliceType, iQp, (UChar*)INIT_MERGE_FLAG_EXT);
m_cCUMergeIdxExtSCModel.initBuffer ( eSliceType, iQp, (UChar*)INIT_MERGE_IDX_EXT);
m_cCUPartSizeSCModel.initBuffer ( eSliceType, iQp, (UChar*)INIT_PART_SIZE );
m_cCUPredModeSCModel.initBuffer ( eSliceType, iQp, (UChar*)INIT_PRED_MODE );
m_cCUIntraPredSCModel.initBuffer ( eSliceType, iQp, (UChar*)INIT_INTRA_PRED_MODE );
m_cCUChromaPredSCModel.initBuffer ( eSliceType, iQp, (UChar*)INIT_CHROMA_PRED_MODE );
m_cCUInterDirSCModel.initBuffer ( eSliceType, iQp, (UChar*)INIT_INTER_DIR );
m_cCUMvdSCModel.initBuffer ( eSliceType, iQp, (UChar*)INIT_MVD );
m_cCURefPicSCModel.initBuffer ( eSliceType, iQp, (UChar*)INIT_REF_PIC );
m_cCUDeltaQpSCModel.initBuffer ( eSliceType, iQp, (UChar*)INIT_DQP );
m_cCUQtCbfSCModel.initBuffer ( eSliceType, iQp, (UChar*)INIT_QT_CBF );
m_cCUQtRootCbfSCModel.initBuffer ( eSliceType, iQp, (UChar*)INIT_QT_ROOT_CBF );
m_cCUSigCoeffGroupSCModel.initBuffer ( eSliceType, iQp, (UChar*)INIT_SIG_CG_FLAG );
m_cCUSigSCModel.initBuffer ( eSliceType, iQp, (UChar*)INIT_SIG_FLAG );
m_cCuCtxLastX.initBuffer ( eSliceType, iQp, (UChar*)INIT_LAST );
m_cCuCtxLastY.initBuffer ( eSliceType, iQp, (UChar*)INIT_LAST );
m_cCUOneSCModel.initBuffer ( eSliceType, iQp, (UChar*)INIT_ONE_FLAG );
m_cCUAbsSCModel.initBuffer ( eSliceType, iQp, (UChar*)INIT_ABS_FLAG );
m_cMVPIdxSCModel.initBuffer ( eSliceType, iQp, (UChar*)INIT_MVP_IDX );
m_cCUTransSubdivFlagSCModel.initBuffer ( eSliceType, iQp, (UChar*)INIT_TRANS_SUBDIV_FLAG );
m_cSaoMergeSCModel.initBuffer ( eSliceType, iQp, (UChar*)INIT_SAO_MERGE_FLAG );
m_cSaoTypeIdxSCModel.initBuffer ( eSliceType, iQp, (UChar*)INIT_SAO_TYPE_IDX );
m_cTransformSkipSCModel.initBuffer ( eSliceType, iQp, (UChar*)INIT_TRANSFORMSKIP_FLAG );
m_CUTransquantBypassFlagSCModel.initBuffer ( eSliceType, iQp, (UChar*)INIT_CU_TRANSQUANT_BYPASS_FLAG );
m_explicitRdpcmFlagSCModel.initBuffer ( eSliceType, iQp, (UChar*)INIT_EXPLICIT_RDPCM_FLAG);
m_explicitRdpcmDirSCModel.initBuffer ( eSliceType, iQp, (UChar*)INIT_EXPLICIT_RDPCM_DIR);
m_cCrossComponentPredictionSCModel.initBuffer ( eSliceType, iQp, (UChar*)INIT_CROSS_COMPONENT_PREDICTION );
m_ChromaQpAdjFlagSCModel.initBuffer ( eSliceType, iQp, (UChar*)INIT_CHROMA_QP_ADJ_FLAG );
m_ChromaQpAdjIdcSCModel.initBuffer ( eSliceType, iQp, (UChar*)INIT_CHROMA_QP_ADJ_IDC );
for (UInt statisticIndex = 0; statisticIndex < RExt__GOLOMB_RICE_ADAPTATION_STATISTICS_SETS ; statisticIndex++)
{
m_golombRiceAdaptationStatistics[statisticIndex] = 0;
}
m_pcBinIf->start();
return;
}
/** The function does the following:
* If current slice type is P/B then it determines the distance of initialisation type 1 and 2 from the current CABAC states and
* stores the index of the closest table. This index is used for the next P/B slice when cabac_init_present_flag is true.
*/
Void TEncSbac::determineCabacInitIdx()
{
Int qp = m_pcSlice->getSliceQp();
if (!m_pcSlice->isIntra())
{
SliceType aSliceTypeChoices[] = {B_SLICE, P_SLICE};
UInt bestCost = MAX_UINT;
SliceType bestSliceType = aSliceTypeChoices[0];
for (UInt idx=0; idx<2; idx++)
{
UInt curCost = 0;
SliceType curSliceType = aSliceTypeChoices[idx];
curCost = m_cCUSplitFlagSCModel.calcCost ( curSliceType, qp, (UChar*)INIT_SPLIT_FLAG );
curCost += m_cCUSkipFlagSCModel.calcCost ( curSliceType, qp, (UChar*)INIT_SKIP_FLAG );
curCost += m_cCUMergeFlagExtSCModel.calcCost ( curSliceType, qp, (UChar*)INIT_MERGE_FLAG_EXT);
curCost += m_cCUMergeIdxExtSCModel.calcCost ( curSliceType, qp, (UChar*)INIT_MERGE_IDX_EXT);
curCost += m_cCUPartSizeSCModel.calcCost ( curSliceType, qp, (UChar*)INIT_PART_SIZE );
curCost += m_cCUPredModeSCModel.calcCost ( curSliceType, qp, (UChar*)INIT_PRED_MODE );
curCost += m_cCUIntraPredSCModel.calcCost ( curSliceType, qp, (UChar*)INIT_INTRA_PRED_MODE );
curCost += m_cCUChromaPredSCModel.calcCost ( curSliceType, qp, (UChar*)INIT_CHROMA_PRED_MODE );
curCost += m_cCUInterDirSCModel.calcCost ( curSliceType, qp, (UChar*)INIT_INTER_DIR );
curCost += m_cCUMvdSCModel.calcCost ( curSliceType, qp, (UChar*)INIT_MVD );
curCost += m_cCURefPicSCModel.calcCost ( curSliceType, qp, (UChar*)INIT_REF_PIC );
curCost += m_cCUDeltaQpSCModel.calcCost ( curSliceType, qp, (UChar*)INIT_DQP );
curCost += m_cCUQtCbfSCModel.calcCost ( curSliceType, qp, (UChar*)INIT_QT_CBF );
curCost += m_cCUQtRootCbfSCModel.calcCost ( curSliceType, qp, (UChar*)INIT_QT_ROOT_CBF );
curCost += m_cCUSigCoeffGroupSCModel.calcCost ( curSliceType, qp, (UChar*)INIT_SIG_CG_FLAG );
curCost += m_cCUSigSCModel.calcCost ( curSliceType, qp, (UChar*)INIT_SIG_FLAG );
curCost += m_cCuCtxLastX.calcCost ( curSliceType, qp, (UChar*)INIT_LAST );
curCost += m_cCuCtxLastY.calcCost ( curSliceType, qp, (UChar*)INIT_LAST );
curCost += m_cCUOneSCModel.calcCost ( curSliceType, qp, (UChar*)INIT_ONE_FLAG );
curCost += m_cCUAbsSCModel.calcCost ( curSliceType, qp, (UChar*)INIT_ABS_FLAG );
curCost += m_cMVPIdxSCModel.calcCost ( curSliceType, qp, (UChar*)INIT_MVP_IDX );
curCost += m_cCUTransSubdivFlagSCModel.calcCost ( curSliceType, qp, (UChar*)INIT_TRANS_SUBDIV_FLAG );
curCost += m_cSaoMergeSCModel.calcCost ( curSliceType, qp, (UChar*)INIT_SAO_MERGE_FLAG );
curCost += m_cSaoTypeIdxSCModel.calcCost ( curSliceType, qp, (UChar*)INIT_SAO_TYPE_IDX );
curCost += m_cTransformSkipSCModel.calcCost ( curSliceType, qp, (UChar*)INIT_TRANSFORMSKIP_FLAG );
curCost += m_CUTransquantBypassFlagSCModel.calcCost ( curSliceType, qp, (UChar*)INIT_CU_TRANSQUANT_BYPASS_FLAG );
curCost += m_explicitRdpcmFlagSCModel.calcCost ( curSliceType, qp, (UChar*)INIT_EXPLICIT_RDPCM_FLAG);
curCost += m_explicitRdpcmDirSCModel.calcCost ( curSliceType, qp, (UChar*)INIT_EXPLICIT_RDPCM_DIR);
curCost += m_cCrossComponentPredictionSCModel.calcCost ( curSliceType, qp, (UChar*)INIT_CROSS_COMPONENT_PREDICTION );
curCost += m_ChromaQpAdjFlagSCModel.calcCost ( curSliceType, qp, (UChar*)INIT_CHROMA_QP_ADJ_FLAG );
curCost += m_ChromaQpAdjIdcSCModel.calcCost ( curSliceType, qp, (UChar*)INIT_CHROMA_QP_ADJ_IDC );
if (curCost < bestCost)
{
bestSliceType = curSliceType;
bestCost = curCost;
}
}
m_pcSlice->getPPS()->setEncCABACTableIdx( bestSliceType );
}
else
{
m_pcSlice->getPPS()->setEncCABACTableIdx( I_SLICE );
}
}
Void TEncSbac::codeVPS( TComVPS* pcVPS )
{
assert (0);
return;
}
Void TEncSbac::codeSPS( TComSPS* pcSPS )
{
assert (0);
return;
}
Void TEncSbac::codePPS( TComPPS* pcPPS )
{
assert (0);
return;
}
Void TEncSbac::codeSliceHeader( TComSlice* pcSlice )
{
assert (0);
return;
}
Void TEncSbac::codeTilesWPPEntryPoint( TComSlice* pSlice )
{
assert (0);
return;
}
Void TEncSbac::codeTerminatingBit( UInt uilsLast )
{
m_pcBinIf->encodeBinTrm( uilsLast );
}
Void TEncSbac::codeSliceFinish()
{
m_pcBinIf->finish();
}
Void TEncSbac::xWriteUnarySymbol( UInt uiSymbol, ContextModel* pcSCModel, Int iOffset )
{
m_pcBinIf->encodeBin( uiSymbol ? 1 : 0, pcSCModel[0] );
if( 0 == uiSymbol)
{
return;
}
while( uiSymbol-- )
{
m_pcBinIf->encodeBin( uiSymbol ? 1 : 0, pcSCModel[ iOffset ] );
}
return;
}
Void TEncSbac::xWriteUnaryMaxSymbol( UInt uiSymbol, ContextModel* pcSCModel, Int iOffset, UInt uiMaxSymbol )
{
if (uiMaxSymbol == 0)
{
return;
}
m_pcBinIf->encodeBin( uiSymbol ? 1 : 0, pcSCModel[ 0 ] );
if ( uiSymbol == 0 )
{
return;
}
Bool bCodeLast = ( uiMaxSymbol > uiSymbol );
while( --uiSymbol )
{
m_pcBinIf->encodeBin( 1, pcSCModel[ iOffset ] );
}
if( bCodeLast )
{
m_pcBinIf->encodeBin( 0, pcSCModel[ iOffset ] );
}
return;
}
Void TEncSbac::xWriteEpExGolomb( UInt uiSymbol, UInt uiCount )
{
UInt bins = 0;
Int numBins = 0;
while( uiSymbol >= (UInt)(1<<uiCount) )
{
bins = 2 * bins + 1;
numBins++;
uiSymbol -= 1 << uiCount;
uiCount ++;
}
bins = 2 * bins + 0;
numBins++;
bins = (bins << uiCount) | uiSymbol;
numBins += uiCount;
assert( numBins <= 32 );
m_pcBinIf->encodeBinsEP( bins, numBins );
}
/** Coding of coeff_abs_level_minus3
* \param uiSymbol value of coeff_abs_level_minus3
* \param ruiGoRiceParam reference to Rice parameter
* \returns Void
*/
Void TEncSbac::xWriteCoefRemainExGolomb ( UInt symbol, UInt &rParam, const Bool useLimitedPrefixLength, const ChannelType channelType )
{
Int codeNumber = (Int)symbol;
UInt length;
if (codeNumber < (COEF_REMAIN_BIN_REDUCTION << rParam))
{
length = codeNumber>>rParam;
m_pcBinIf->encodeBinsEP( (1<<(length+1))-2 , length+1);
m_pcBinIf->encodeBinsEP((codeNumber%(1<<rParam)),rParam);
}
else if (useLimitedPrefixLength)
{
const UInt maximumPrefixLength = (32 - (COEF_REMAIN_BIN_REDUCTION + g_maxTrDynamicRange[channelType]));
UInt prefixLength = 0;
UInt suffixLength = MAX_UINT;
UInt codeValue = (symbol >> rParam) - COEF_REMAIN_BIN_REDUCTION;
if (codeValue >= ((1 << maximumPrefixLength) - 1))
{
prefixLength = maximumPrefixLength;
suffixLength = g_maxTrDynamicRange[channelType] - rParam;
}
else
{
while (codeValue > ((2 << prefixLength) - 2))
{
prefixLength++;
}
suffixLength = prefixLength + 1; //+1 for the separator bit
}
const UInt suffix = codeValue - ((1 << prefixLength) - 1);
const UInt totalPrefixLength = prefixLength + COEF_REMAIN_BIN_REDUCTION;
const UInt prefix = (1 << totalPrefixLength) - 1;
const UInt rParamBitMask = (1 << rParam) - 1;
m_pcBinIf->encodeBinsEP( prefix, totalPrefixLength ); //prefix
m_pcBinIf->encodeBinsEP(((suffix << rParam) | (symbol & rParamBitMask)), (suffixLength + rParam)); //separator, suffix, and rParam bits
}
else
{
length = rParam;
codeNumber = codeNumber - ( COEF_REMAIN_BIN_REDUCTION << rParam);
while (codeNumber >= (1<<length))
{
codeNumber -= (1<<(length++));
}
m_pcBinIf->encodeBinsEP((1<<(COEF_REMAIN_BIN_REDUCTION+length+1-rParam))-2,COEF_REMAIN_BIN_REDUCTION+length+1-rParam);
m_pcBinIf->encodeBinsEP(codeNumber,length);
}
}
// SBAC RD
Void TEncSbac::load ( const TEncSbac* pSrc)
{
this->xCopyFrom(pSrc);
}
Void TEncSbac::loadIntraDirMode( const TEncSbac* pSrc, const ChannelType chType )
{
m_pcBinIf->copyState( pSrc->m_pcBinIf );
if (isLuma(chType))
this->m_cCUIntraPredSCModel .copyFrom( &pSrc->m_cCUIntraPredSCModel );
else
this->m_cCUChromaPredSCModel .copyFrom( &pSrc->m_cCUChromaPredSCModel );
}
Void TEncSbac::store( TEncSbac* pDest) const
{
pDest->xCopyFrom( this );
}
Void TEncSbac::xCopyFrom( const TEncSbac* pSrc )
{
m_pcBinIf->copyState( pSrc->m_pcBinIf );
xCopyContextsFrom(pSrc);
}
Void TEncSbac::codeMVPIdx ( TComDataCU* pcCU, UInt uiAbsPartIdx, RefPicList eRefList )
{
Int iSymbol = pcCU->getMVPIdx(eRefList, uiAbsPartIdx);
Int iNum = AMVP_MAX_NUM_CANDS;
xWriteUnaryMaxSymbol(iSymbol, m_cMVPIdxSCModel.get(0), 1, iNum-1);
}
Void TEncSbac::codePartSize( TComDataCU* pcCU, UInt uiAbsPartIdx, UInt uiDepth )
{
PartSize eSize = pcCU->getPartitionSize( uiAbsPartIdx );
if ( pcCU->isIntra( uiAbsPartIdx ) )
{
if( uiDepth == g_uiMaxCUDepth - g_uiAddCUDepth )
{
m_pcBinIf->encodeBin( eSize == SIZE_2Nx2N? 1 : 0, m_cCUPartSizeSCModel.get( 0, 0, 0 ) );
}
return;
}
switch(eSize)
{
case SIZE_2Nx2N:
{
m_pcBinIf->encodeBin( 1, m_cCUPartSizeSCModel.get( 0, 0, 0) );
break;
}
case SIZE_2NxN:
case SIZE_2NxnU:
case SIZE_2NxnD:
{
m_pcBinIf->encodeBin( 0, m_cCUPartSizeSCModel.get( 0, 0, 0) );
m_pcBinIf->encodeBin( 1, m_cCUPartSizeSCModel.get( 0, 0, 1) );
if ( pcCU->getSlice()->getSPS()->getAMPAcc( uiDepth ) )
{
if (eSize == SIZE_2NxN)
{
m_pcBinIf->encodeBin(1, m_cCUPartSizeSCModel.get( 0, 0, 3 ));
}
else
{
m_pcBinIf->encodeBin(0, m_cCUPartSizeSCModel.get( 0, 0, 3 ));
m_pcBinIf->encodeBinEP((eSize == SIZE_2NxnU? 0: 1));
}
}
break;
}
case SIZE_Nx2N:
case SIZE_nLx2N:
case SIZE_nRx2N:
{
m_pcBinIf->encodeBin( 0, m_cCUPartSizeSCModel.get( 0, 0, 0) );
m_pcBinIf->encodeBin( 0, m_cCUPartSizeSCModel.get( 0, 0, 1) );
if( uiDepth == g_uiMaxCUDepth - g_uiAddCUDepth && !( pcCU->getWidth(uiAbsPartIdx) == 8 && pcCU->getHeight(uiAbsPartIdx) == 8 ) )
{
m_pcBinIf->encodeBin( 1, m_cCUPartSizeSCModel.get( 0, 0, 2) );
}
if ( pcCU->getSlice()->getSPS()->getAMPAcc( uiDepth ) )
{
if (eSize == SIZE_Nx2N)
{
m_pcBinIf->encodeBin(1, m_cCUPartSizeSCModel.get( 0, 0, 3 ));
}
else
{
m_pcBinIf->encodeBin(0, m_cCUPartSizeSCModel.get( 0, 0, 3 ));
m_pcBinIf->encodeBinEP((eSize == SIZE_nLx2N? 0: 1));
}
}
break;
}
case SIZE_NxN:
{
if( uiDepth == g_uiMaxCUDepth - g_uiAddCUDepth && !( pcCU->getWidth(uiAbsPartIdx) == 8 && pcCU->getHeight(uiAbsPartIdx) == 8 ) )
{
m_pcBinIf->encodeBin( 0, m_cCUPartSizeSCModel.get( 0, 0, 0) );
m_pcBinIf->encodeBin( 0, m_cCUPartSizeSCModel.get( 0, 0, 1) );
m_pcBinIf->encodeBin( 0, m_cCUPartSizeSCModel.get( 0, 0, 2) );
}
break;
}
default:
{
assert(0);
break;
}
}
}
/** code prediction mode
* \param pcCU
* \param uiAbsPartIdx
* \returns Void
*/
Void TEncSbac::codePredMode( TComDataCU* pcCU, UInt uiAbsPartIdx )
{
// get context function is here
m_pcBinIf->encodeBin( pcCU->isIntra( uiAbsPartIdx ) ? 1 : 0, m_cCUPredModeSCModel.get( 0, 0, 0 ) );
}
Void TEncSbac::codeCUTransquantBypassFlag( TComDataCU* pcCU, UInt uiAbsPartIdx )
{
UInt uiSymbol = pcCU->getCUTransquantBypass(uiAbsPartIdx);
m_pcBinIf->encodeBin( uiSymbol, m_CUTransquantBypassFlagSCModel.get( 0, 0, 0 ) );
}
/** code skip flag
* \param pcCU
* \param uiAbsPartIdx
* \returns Void
*/
Void TEncSbac::codeSkipFlag( TComDataCU* pcCU, UInt uiAbsPartIdx )
{
// get context function is here
UInt uiSymbol = pcCU->isSkipped( uiAbsPartIdx ) ? 1 : 0;
UInt uiCtxSkip = pcCU->getCtxSkipFlag( uiAbsPartIdx ) ;
m_pcBinIf->encodeBin( uiSymbol, m_cCUSkipFlagSCModel.get( 0, 0, uiCtxSkip ) );
DTRACE_CABAC_VL( g_nSymbolCounter++ );
DTRACE_CABAC_T( "\tSkipFlag" );
DTRACE_CABAC_T( "\tuiCtxSkip: ");
DTRACE_CABAC_V( uiCtxSkip );
DTRACE_CABAC_T( "\tuiSymbol: ");
DTRACE_CABAC_V( uiSymbol );
DTRACE_CABAC_T( "\n");
}
/** code merge flag
* \param pcCU
* \param uiAbsPartIdx
* \returns Void
*/
Void TEncSbac::codeMergeFlag( TComDataCU* pcCU, UInt uiAbsPartIdx )
{
const UInt uiSymbol = pcCU->getMergeFlag( uiAbsPartIdx ) ? 1 : 0;
m_pcBinIf->encodeBin( uiSymbol, *m_cCUMergeFlagExtSCModel.get( 0 ) );
DTRACE_CABAC_VL( g_nSymbolCounter++ );
DTRACE_CABAC_T( "\tMergeFlag: " );
DTRACE_CABAC_V( uiSymbol );
DTRACE_CABAC_T( "\tAddress: " );
DTRACE_CABAC_V( pcCU->getCtuRsAddr() );
DTRACE_CABAC_T( "\tuiAbsPartIdx: " );
DTRACE_CABAC_V( uiAbsPartIdx );
DTRACE_CABAC_T( "\n" );
}
/** code merge index
* \param pcCU
* \param uiAbsPartIdx
* \returns Void
*/
Void TEncSbac::codeMergeIndex( TComDataCU* pcCU, UInt uiAbsPartIdx )
{
UInt uiUnaryIdx = pcCU->getMergeIndex( uiAbsPartIdx );
UInt uiNumCand = pcCU->getSlice()->getMaxNumMergeCand();
if ( uiNumCand > 1 )
{
for( UInt ui = 0; ui < uiNumCand - 1; ++ui )
{
const UInt uiSymbol = ui == uiUnaryIdx ? 0 : 1;
if ( ui==0 )
{
m_pcBinIf->encodeBin( uiSymbol, m_cCUMergeIdxExtSCModel.get( 0, 0, 0 ) );
}
else
{
m_pcBinIf->encodeBinEP( uiSymbol );
}
if( uiSymbol == 0 )
{
break;
}
}
}
DTRACE_CABAC_VL( g_nSymbolCounter++ );
DTRACE_CABAC_T( "\tparseMergeIndex()" );
DTRACE_CABAC_T( "\tuiMRGIdx= " );
DTRACE_CABAC_V( pcCU->getMergeIndex( uiAbsPartIdx ) );
DTRACE_CABAC_T( "\n" );
}
Void TEncSbac::codeSplitFlag ( TComDataCU* pcCU, UInt uiAbsPartIdx, UInt uiDepth )
{
if( uiDepth == g_uiMaxCUDepth - g_uiAddCUDepth )
return;
UInt uiCtx = pcCU->getCtxSplitFlag( uiAbsPartIdx, uiDepth );
UInt uiCurrSplitFlag = ( pcCU->getDepth( uiAbsPartIdx ) > uiDepth ) ? 1 : 0;
assert( uiCtx < 3 );
m_pcBinIf->encodeBin( uiCurrSplitFlag, m_cCUSplitFlagSCModel.get( 0, 0, uiCtx ) );
DTRACE_CABAC_VL( g_nSymbolCounter++ )
DTRACE_CABAC_T( "\tSplitFlag\n" )
return;
}
Void TEncSbac::codeTransformSubdivFlag( UInt uiSymbol, UInt uiCtx )
{
m_pcBinIf->encodeBin( uiSymbol, m_cCUTransSubdivFlagSCModel.get( 0, 0, uiCtx ) );
DTRACE_CABAC_VL( g_nSymbolCounter++ )
DTRACE_CABAC_T( "\tparseTransformSubdivFlag()" )
DTRACE_CABAC_T( "\tsymbol=" )
DTRACE_CABAC_V( uiSymbol )
DTRACE_CABAC_T( "\tctx=" )
DTRACE_CABAC_V( uiCtx )
DTRACE_CABAC_T( "\n" )
}
Void TEncSbac::codeIntraDirLumaAng( TComDataCU* pcCU, UInt absPartIdx, Bool isMultiple)
{
UInt dir[4],j;
Int preds[4][NUM_MOST_PROBABLE_MODES] = {{-1, -1, -1},{-1, -1, -1},{-1, -1, -1},{-1, -1, -1}};
Int predNum[4], predIdx[4] ={ -1,-1,-1,-1};
PartSize mode = pcCU->getPartitionSize( absPartIdx );
UInt partNum = isMultiple?(mode==SIZE_NxN?4:1):1;
UInt partOffset = ( pcCU->getPic()->getNumPartitionsInCtu() >> ( pcCU->getDepth(absPartIdx) << 1 ) ) >> 2;
for (j=0;j<partNum;j++)
{
dir[j] = pcCU->getIntraDir( CHANNEL_TYPE_LUMA, absPartIdx+partOffset*j );
predNum[j] = pcCU->getIntraDirPredictor(absPartIdx+partOffset*j, preds[j], COMPONENT_Y);
for(UInt i = 0; i < predNum[j]; i++)
{
if(dir[j] == preds[j][i])
{
predIdx[j] = i;
}
}
m_pcBinIf->encodeBin((predIdx[j] != -1)? 1 : 0, m_cCUIntraPredSCModel.get( 0, 0, 0 ) );
}
for (j=0;j<partNum;j++)
{
if(predIdx[j] != -1)
{
m_pcBinIf->encodeBinEP( predIdx[j] ? 1 : 0 );
if (predIdx[j])
{
m_pcBinIf->encodeBinEP( predIdx[j]-1 );
}
}
else
{
assert(predNum[j]>=3); // It is currently always 3!
if (preds[j][0] > preds[j][1])
{
std::swap(preds[j][0], preds[j][1]);
}
if (preds[j][0] > preds[j][2])
{
std::swap(preds[j][0], preds[j][2]);
}
if (preds[j][1] > preds[j][2])
{
std::swap(preds[j][1], preds[j][2]);
}
for(Int i = (predNum[j] - 1); i >= 0; i--)
{
dir[j] = dir[j] > preds[j][i] ? dir[j] - 1 : dir[j];
}
m_pcBinIf->encodeBinsEP( dir[j], 5 );
}
}
return;
}
Void TEncSbac::codeIntraDirChroma( TComDataCU* pcCU, UInt uiAbsPartIdx )
{
UInt uiIntraDirChroma = pcCU->getIntraDir( CHANNEL_TYPE_CHROMA, uiAbsPartIdx );
if( uiIntraDirChroma == DM_CHROMA_IDX )
{
m_pcBinIf->encodeBin( 0, m_cCUChromaPredSCModel.get( 0, 0, 0 ) );
}
else
{
m_pcBinIf->encodeBin( 1, m_cCUChromaPredSCModel.get( 0, 0, 0 ) );
UInt uiAllowedChromaDir[ NUM_CHROMA_MODE ];
pcCU->getAllowedChromaDir( uiAbsPartIdx, uiAllowedChromaDir );
for( Int i = 0; i < NUM_CHROMA_MODE - 1; i++ )
{
if( uiIntraDirChroma == uiAllowedChromaDir[i] )
{
uiIntraDirChroma = i;
break;
}
}
m_pcBinIf->encodeBinsEP( uiIntraDirChroma, 2 );
}
return;
}
Void TEncSbac::codeInterDir( TComDataCU* pcCU, UInt uiAbsPartIdx )
{
const UInt uiInterDir = pcCU->getInterDir( uiAbsPartIdx ) - 1;
const UInt uiCtx = pcCU->getCtxInterDir( uiAbsPartIdx );
ContextModel *pCtx = m_cCUInterDirSCModel.get( 0 );
if (pcCU->getPartitionSize(uiAbsPartIdx) == SIZE_2Nx2N || pcCU->getHeight(uiAbsPartIdx) != 8 )
{
m_pcBinIf->encodeBin( uiInterDir == 2 ? 1 : 0, *( pCtx + uiCtx ) );
}
if (uiInterDir < 2)
{
m_pcBinIf->encodeBin( uiInterDir, *( pCtx + 4 ) );
}
return;
}
Void TEncSbac::codeRefFrmIdx( TComDataCU* pcCU, UInt uiAbsPartIdx, RefPicList eRefList )
{
Int iRefFrame = pcCU->getCUMvField( eRefList )->getRefIdx( uiAbsPartIdx );
ContextModel *pCtx = m_cCURefPicSCModel.get( 0 );
m_pcBinIf->encodeBin( ( iRefFrame == 0 ? 0 : 1 ), *pCtx );
if( iRefFrame > 0 )
{
UInt uiRefNum = pcCU->getSlice()->getNumRefIdx( eRefList ) - 2;
pCtx++;
iRefFrame--;
for( UInt ui = 0; ui < uiRefNum; ++ui )
{
const UInt uiSymbol = ui == iRefFrame ? 0 : 1;
if( ui == 0 )
{
m_pcBinIf->encodeBin( uiSymbol, *pCtx );
}
else
{
m_pcBinIf->encodeBinEP( uiSymbol );
}
if( uiSymbol == 0 )
{
break;
}
}
}
return;
}
Void TEncSbac::codeMvd( TComDataCU* pcCU, UInt uiAbsPartIdx, RefPicList eRefList )
{
if(pcCU->getSlice()->getMvdL1ZeroFlag() && eRefList == REF_PIC_LIST_1 && pcCU->getInterDir(uiAbsPartIdx)==3)
{
return;
}
const TComCUMvField* pcCUMvField = pcCU->getCUMvField( eRefList );
const Int iHor = pcCUMvField->getMvd( uiAbsPartIdx ).getHor();
const Int iVer = pcCUMvField->getMvd( uiAbsPartIdx ).getVer();
ContextModel* pCtx = m_cCUMvdSCModel.get( 0 );
m_pcBinIf->encodeBin( iHor != 0 ? 1 : 0, *pCtx );
m_pcBinIf->encodeBin( iVer != 0 ? 1 : 0, *pCtx );
const Bool bHorAbsGr0 = iHor != 0;
const Bool bVerAbsGr0 = iVer != 0;
const UInt uiHorAbs = 0 > iHor ? -iHor : iHor;
const UInt uiVerAbs = 0 > iVer ? -iVer : iVer;
pCtx++;
if( bHorAbsGr0 )
{
m_pcBinIf->encodeBin( uiHorAbs > 1 ? 1 : 0, *pCtx );
}
if( bVerAbsGr0 )
{
m_pcBinIf->encodeBin( uiVerAbs > 1 ? 1 : 0, *pCtx );
}
if( bHorAbsGr0 )
{
if( uiHorAbs > 1 )
{
xWriteEpExGolomb( uiHorAbs-2, 1 );
}
m_pcBinIf->encodeBinEP( 0 > iHor ? 1 : 0 );
}
if( bVerAbsGr0 )
{
if( uiVerAbs > 1 )
{
xWriteEpExGolomb( uiVerAbs-2, 1 );
}
m_pcBinIf->encodeBinEP( 0 > iVer ? 1 : 0 );
}
return;
}
Void TEncSbac::codeCrossComponentPrediction( TComTU &rTu, ComponentID compID )
{
TComDataCU *pcCU = rTu.getCU();
if( isLuma(compID) || !pcCU->getSlice()->getPPS()->getUseCrossComponentPrediction() ) return;
const UInt uiAbsPartIdx = rTu.GetAbsPartIdxTU();
if (!pcCU->isIntra(uiAbsPartIdx) || (pcCU->getIntraDir( CHANNEL_TYPE_CHROMA, uiAbsPartIdx ) == DM_CHROMA_IDX))
{
DTRACE_CABAC_VL( g_nSymbolCounter++ )
DTRACE_CABAC_T("\tparseCrossComponentPrediction()")
DTRACE_CABAC_T( "\tAddr=" )
DTRACE_CABAC_V( compID )
DTRACE_CABAC_T( "\tuiAbsPartIdx=" )
DTRACE_CABAC_V( uiAbsPartIdx )
Int alpha = pcCU->getCrossComponentPredictionAlpha( uiAbsPartIdx, compID );
ContextModel *pCtx = m_cCrossComponentPredictionSCModel.get(0, 0) + ((compID == COMPONENT_Cr) ? (NUM_CROSS_COMPONENT_PREDICTION_CTX >> 1) : 0);
m_pcBinIf->encodeBin(((alpha != 0) ? 1 : 0), pCtx[0]);
if (alpha != 0)
{
static const Int log2AbsAlphaMinus1Table[8] = { 0, 1, 1, 2, 2, 2, 3, 3 };
assert(abs(alpha) <= 8);
if (abs(alpha)>1)
{
m_pcBinIf->encodeBin(1, pCtx[1]);
xWriteUnaryMaxSymbol( log2AbsAlphaMinus1Table[abs(alpha) - 1] - 1, (pCtx + 2), 1, 2 );
}
else
{
m_pcBinIf->encodeBin(0, pCtx[1]);
}
m_pcBinIf->encodeBin( ((alpha < 0) ? 1 : 0), pCtx[4] );
}
DTRACE_CABAC_T( "\tAlpha=" )
DTRACE_CABAC_V( pcCU->getCrossComponentPredictionAlpha( uiAbsPartIdx, compID ) )
DTRACE_CABAC_T( "\n" )
}
}
Void TEncSbac::codeDeltaQP( TComDataCU* pcCU, UInt uiAbsPartIdx )
{
Int iDQp = pcCU->getQP( uiAbsPartIdx ) - pcCU->getRefQP( uiAbsPartIdx );
Int qpBdOffsetY = pcCU->getSlice()->getSPS()->getQpBDOffset(CHANNEL_TYPE_LUMA);
iDQp = (iDQp + 78 + qpBdOffsetY + (qpBdOffsetY/2)) % (52 + qpBdOffsetY) - 26 - (qpBdOffsetY/2);
UInt uiAbsDQp = (UInt)((iDQp > 0)? iDQp : (-iDQp));
UInt TUValue = min((Int)uiAbsDQp, CU_DQP_TU_CMAX);
xWriteUnaryMaxSymbol( TUValue, &m_cCUDeltaQpSCModel.get( 0, 0, 0 ), 1, CU_DQP_TU_CMAX);
if( uiAbsDQp >= CU_DQP_TU_CMAX )
{
xWriteEpExGolomb( uiAbsDQp - CU_DQP_TU_CMAX, CU_DQP_EG_k );
}
if ( uiAbsDQp > 0)
{
UInt uiSign = (iDQp > 0 ? 0 : 1);
m_pcBinIf->encodeBinEP(uiSign);
}
return;
}
/** code chroma qp adjustment, converting from the internal table representation
* \returns Void
*/
Void TEncSbac::codeChromaQpAdjustment( TComDataCU* cu, UInt absPartIdx )
{
Int internalIdc = cu->getChromaQpAdj( absPartIdx );
Int tableSize = cu->getSlice()->getPPS()->getChromaQpAdjTableSize();
/* internal_idc == 0 => flag = 0
* internal_idc > 1 => code idc value (if table size warrents) */
m_pcBinIf->encodeBin( internalIdc > 0, m_ChromaQpAdjFlagSCModel.get( 0, 0, 0 ) );
if (internalIdc > 0 && tableSize > 1)
{
xWriteUnaryMaxSymbol( internalIdc - 1, &m_ChromaQpAdjIdcSCModel.get( 0, 0, 0 ), 0, tableSize - 1 );
}
}
Void TEncSbac::codeQtCbf( TComTU &rTu, const ComponentID compID, const Bool lowestLevel )
{
TComDataCU* pcCU = rTu.getCU();
const UInt absPartIdx = rTu.GetAbsPartIdxTU(compID);
const UInt TUDepth = rTu.GetTransformDepthRel();
UInt uiCtx = pcCU->getCtxQtCbf( rTu, toChannelType(compID) );
const UInt contextSet = toChannelType(compID);
const UInt width = rTu.getRect(compID).width;
const UInt height = rTu.getRect(compID).height;
const Bool canQuadSplit = (width >= (MIN_TU_SIZE * 2)) && (height >= (MIN_TU_SIZE * 2));
// Since the CBF for chroma is coded at the highest level possible, if sub-TUs are
// to be coded for a 4x8 chroma TU, their CBFs must be coded at the highest 4x8 level
// (i.e. where luma TUs are 8x8 rather than 4x4)
// ___ ___
// | | | <- 4 x (8x8 luma + 4x8 4:2:2 chroma)
// |___|___| each quadrant has its own chroma CBF
// | | | _ _ _ _
// |___|___| |
// <--16---> V
// _ _
// |_|_| <- 4 x 4x4 luma + 1 x 4x8 4:2:2 chroma
// |_|_| no chroma CBF is coded - instead the parent CBF is inherited
// <-8-> if sub-TUs are present, their CBFs had to be coded at the parent level
const UInt lowestTUDepth = TUDepth + ((!lowestLevel && !canQuadSplit) ? 1 : 0); //unsplittable TUs inherit their parent's CBF
if ((width != height) && (lowestLevel || !canQuadSplit)) //if sub-TUs are present
{
const UInt subTUDepth = lowestTUDepth + 1; //if this is the lowest level of the TU-tree, the sub-TUs are directly below. Otherwise, this must be the level above the lowest level (as specified above)
const UInt partIdxesPerSubTU = rTu.GetAbsPartIdxNumParts(compID) >> 1;
for (UInt subTU = 0; subTU < 2; subTU++)
{
const UInt subTUAbsPartIdx = absPartIdx + (subTU * partIdxesPerSubTU);
const UInt uiCbf = pcCU->getCbf(subTUAbsPartIdx, compID, subTUDepth);
m_pcBinIf->encodeBin(uiCbf, m_cCUQtCbfSCModel.get(0, contextSet, uiCtx));
DTRACE_CABAC_VL( g_nSymbolCounter++ )
DTRACE_CABAC_T( "\tparseQtCbf()" )
DTRACE_CABAC_T( "\tsub-TU=" )
DTRACE_CABAC_V( subTU )
DTRACE_CABAC_T( "\tsymbol=" )
DTRACE_CABAC_V( uiCbf )
DTRACE_CABAC_T( "\tctx=" )
DTRACE_CABAC_V( uiCtx )
DTRACE_CABAC_T( "\tetype=" )
DTRACE_CABAC_V( compID )
DTRACE_CABAC_T( "\tuiAbsPartIdx=" )
DTRACE_CABAC_V( subTUAbsPartIdx )
DTRACE_CABAC_T( "\n" )
}
}
else
{
const UInt uiCbf = pcCU->getCbf( absPartIdx, compID, lowestTUDepth );
m_pcBinIf->encodeBin( uiCbf , m_cCUQtCbfSCModel.get( 0, contextSet, uiCtx ) );
DTRACE_CABAC_VL( g_nSymbolCounter++ )
DTRACE_CABAC_T( "\tparseQtCbf()" )
DTRACE_CABAC_T( "\tsymbol=" )
DTRACE_CABAC_V( uiCbf )
DTRACE_CABAC_T( "\tctx=" )
DTRACE_CABAC_V( uiCtx )
DTRACE_CABAC_T( "\tetype=" )
DTRACE_CABAC_V( compID )
DTRACE_CABAC_T( "\tuiAbsPartIdx=" )
DTRACE_CABAC_V( rTu.GetAbsPartIdxTU(compID) )
DTRACE_CABAC_T( "\n" )
}
}
Void TEncSbac::codeTransformSkipFlags (TComTU &rTu, ComponentID component )
{
TComDataCU* pcCU=rTu.getCU();
const UInt uiAbsPartIdx=rTu.GetAbsPartIdxTU();
if (pcCU->getCUTransquantBypass(uiAbsPartIdx))
{
return;
}
if (!TUCompRectHasAssociatedTransformSkipFlag(rTu.getRect(component), pcCU->getSlice()->getPPS()->getTransformSkipLog2MaxSize()))
{
return;
}
UInt useTransformSkip = pcCU->getTransformSkip( uiAbsPartIdx,component);
m_pcBinIf->encodeBin( useTransformSkip, m_cTransformSkipSCModel.get( 0, toChannelType(component), 0 ) );
DTRACE_CABAC_VL( g_nSymbolCounter++ )
DTRACE_CABAC_T("\tparseTransformSkip()");
DTRACE_CABAC_T( "\tsymbol=" )
DTRACE_CABAC_V( useTransformSkip )
DTRACE_CABAC_T( "\tAddr=" )
DTRACE_CABAC_V( pcCU->getCtuRsAddr() )
DTRACE_CABAC_T( "\tetype=" )
DTRACE_CABAC_V( component )
DTRACE_CABAC_T( "\tuiAbsPartIdx=" )
DTRACE_CABAC_V( rTu.GetAbsPartIdxTU() )
DTRACE_CABAC_T( "\n" )
}
/** Code I_PCM information.
* \param pcCU pointer to CU
* \param uiAbsPartIdx CU index
* \returns Void
*/
Void TEncSbac::codeIPCMInfo( TComDataCU* pcCU, UInt uiAbsPartIdx )
{
UInt uiIPCM = (pcCU->getIPCMFlag(uiAbsPartIdx) == true)? 1 : 0;
Bool writePCMSampleFlag = pcCU->getIPCMFlag(uiAbsPartIdx);
m_pcBinIf->encodeBinTrm (uiIPCM);
if (writePCMSampleFlag)
{
m_pcBinIf->encodePCMAlignBits();
const UInt minCoeffSizeY = pcCU->getPic()->getMinCUWidth() * pcCU->getPic()->getMinCUHeight();
const UInt offsetY = minCoeffSizeY * uiAbsPartIdx;
for (UInt ch=0; ch < pcCU->getPic()->getNumberValidComponents(); ch++)
{
const ComponentID compID = ComponentID(ch);
const UInt offset = offsetY >> (pcCU->getPic()->getComponentScaleX(compID) + pcCU->getPic()->getComponentScaleY(compID));
Pel * pPCMSample = pcCU->getPCMSample(compID) + offset;
const UInt width = pcCU->getWidth (uiAbsPartIdx) >> pcCU->getPic()->getComponentScaleX(compID);
const UInt height = pcCU->getHeight(uiAbsPartIdx) >> pcCU->getPic()->getComponentScaleY(compID);
const UInt sampleBits = pcCU->getSlice()->getSPS()->getPCMBitDepth(toChannelType(compID));
for (UInt y=0; y<height; y++)
{
for (UInt x=0; x<width; x++)
{
UInt sample = pPCMSample[x];
m_pcBinIf->xWritePCMCode(sample, sampleBits);
}
pPCMSample += width;
}
}
m_pcBinIf->resetBac();
}
}
Void TEncSbac::codeQtRootCbf( TComDataCU* pcCU, UInt uiAbsPartIdx )
{
UInt uiCbf = pcCU->getQtRootCbf( uiAbsPartIdx );
UInt uiCtx = 0;
m_pcBinIf->encodeBin( uiCbf , m_cCUQtRootCbfSCModel.get( 0, 0, uiCtx ) );
DTRACE_CABAC_VL( g_nSymbolCounter++ )
DTRACE_CABAC_T( "\tparseQtRootCbf()" )
DTRACE_CABAC_T( "\tsymbol=" )
DTRACE_CABAC_V( uiCbf )
DTRACE_CABAC_T( "\tctx=" )
DTRACE_CABAC_V( uiCtx )
DTRACE_CABAC_T( "\tuiAbsPartIdx=" )
DTRACE_CABAC_V( uiAbsPartIdx )
DTRACE_CABAC_T( "\n" )
}
Void TEncSbac::codeQtCbfZero( TComTU & rTu, const ChannelType chType )
{
// this function is only used to estimate the bits when cbf is 0
// and will never be called when writing the bistream. do not need to write log
UInt uiCbf = 0;
UInt uiCtx = rTu.getCU()->getCtxQtCbf( rTu, chType );
m_pcBinIf->encodeBin( uiCbf , m_cCUQtCbfSCModel.get( 0, chType, uiCtx ) );
}
Void TEncSbac::codeQtRootCbfZero( TComDataCU* pcCU )
{
// this function is only used to estimate the bits when cbf is 0
// and will never be called when writing the bistream. do not need to write log
UInt uiCbf = 0;
UInt uiCtx = 0;
m_pcBinIf->encodeBin( uiCbf , m_cCUQtRootCbfSCModel.get( 0, 0, uiCtx ) );
}
/** Encode (X,Y) position of the last significant coefficient
* \param uiPosX X component of last coefficient
* \param uiPosY Y component of last coefficient
* \param width Block width
* \param height Block height
* \param eTType plane type / luminance or chrominance
* \param uiScanIdx scan type (zig-zag, hor, ver)
* This method encodes the X and Y component within a block of the last significant coefficient.
*/
Void TEncSbac::codeLastSignificantXY( UInt uiPosX, UInt uiPosY, Int width, Int height, ComponentID component, UInt uiScanIdx )
{
// swap
if( uiScanIdx == SCAN_VER )
{
swap( uiPosX, uiPosY );
swap( width, height );
}
UInt uiCtxLast;
UInt uiGroupIdxX = g_uiGroupIdx[ uiPosX ];
UInt uiGroupIdxY = g_uiGroupIdx[ uiPosY ];
ContextModel *pCtxX = m_cCuCtxLastX.get( 0, toChannelType(component) );
ContextModel *pCtxY = m_cCuCtxLastY.get( 0, toChannelType(component) );
Int blkSizeOffsetX, blkSizeOffsetY, shiftX, shiftY;
getLastSignificantContextParameters(component, width, height, blkSizeOffsetX, blkSizeOffsetY, shiftX, shiftY);
//------------------
// posX
for( uiCtxLast = 0; uiCtxLast < uiGroupIdxX; uiCtxLast++ )
{
m_pcBinIf->encodeBin( 1, *( pCtxX + blkSizeOffsetX + (uiCtxLast >>shiftX) ) );
}
if( uiGroupIdxX < g_uiGroupIdx[ width - 1 ])
{
m_pcBinIf->encodeBin( 0, *( pCtxX + blkSizeOffsetX + (uiCtxLast >>shiftX) ) );
}
// posY
for( uiCtxLast = 0; uiCtxLast < uiGroupIdxY; uiCtxLast++ )
{
m_pcBinIf->encodeBin( 1, *( pCtxY + blkSizeOffsetY + (uiCtxLast >>shiftY) ) );
}
if( uiGroupIdxY < g_uiGroupIdx[ height - 1 ])
{
m_pcBinIf->encodeBin( 0, *( pCtxY + blkSizeOffsetY + (uiCtxLast >>shiftY) ) );
}
// EP-coded part
if ( uiGroupIdxX > 3 )
{
UInt uiCount = ( uiGroupIdxX - 2 ) >> 1;
uiPosX = uiPosX - g_uiMinInGroup[ uiGroupIdxX ];
for (Int i = uiCount - 1 ; i >= 0; i-- )
{
m_pcBinIf->encodeBinEP( ( uiPosX >> i ) & 1 );
}
}
if ( uiGroupIdxY > 3 )
{
UInt uiCount = ( uiGroupIdxY - 2 ) >> 1;
uiPosY = uiPosY - g_uiMinInGroup[ uiGroupIdxY ];
for ( Int i = uiCount - 1 ; i >= 0; i-- )
{
m_pcBinIf->encodeBinEP( ( uiPosY >> i ) & 1 );
}
}
}
Void TEncSbac::codeCoeffNxN( TComTU &rTu, TCoeff* pcCoef, const ComponentID compID )
{
TComDataCU* pcCU=rTu.getCU();
const UInt uiAbsPartIdx=rTu.GetAbsPartIdxTU(compID);
const TComRectangle &tuRect=rTu.getRect(compID);
const UInt uiWidth=tuRect.width;
const UInt uiHeight=tuRect.height;
DTRACE_CABAC_VL( g_nSymbolCounter++ )
DTRACE_CABAC_T( "\tparseCoeffNxN()\teType=" )
DTRACE_CABAC_V( compID )
DTRACE_CABAC_T( "\twidth=" )
DTRACE_CABAC_V( uiWidth )
DTRACE_CABAC_T( "\theight=" )
DTRACE_CABAC_V( uiHeight )
DTRACE_CABAC_T( "\tdepth=" )
// DTRACE_CABAC_V( rTu.GetTransformDepthTotalAdj(compID) )
DTRACE_CABAC_V( rTu.GetTransformDepthTotal() )
DTRACE_CABAC_T( "\tabspartidx=" )
DTRACE_CABAC_V( uiAbsPartIdx )
DTRACE_CABAC_T( "\ttoCU-X=" )
DTRACE_CABAC_V( pcCU->getCUPelX() )
DTRACE_CABAC_T( "\ttoCU-Y=" )
DTRACE_CABAC_V( pcCU->getCUPelY() )
DTRACE_CABAC_T( "\tCU-addr=" )
DTRACE_CABAC_V( pcCU->getCtuRsAddr() )
DTRACE_CABAC_T( "\tinCU-X=" )
// DTRACE_CABAC_V( g_auiRasterToPelX[ g_auiZscanToRaster[uiAbsPartIdx] ] )
DTRACE_CABAC_V( g_auiRasterToPelX[ g_auiZscanToRaster[rTu.GetAbsPartIdxTU(compID)] ] )
DTRACE_CABAC_T( "\tinCU-Y=" )
// DTRACE_CABAC_V( g_auiRasterToPelY[ g_auiZscanToRaster[uiAbsPartIdx] ] )
DTRACE_CABAC_V( g_auiRasterToPelY[ g_auiZscanToRaster[rTu.GetAbsPartIdxTU(compID)] ] )
DTRACE_CABAC_T( "\tpredmode=" )
DTRACE_CABAC_V( pcCU->getPredictionMode( uiAbsPartIdx ) )
DTRACE_CABAC_T( "\n" )
//--------------------------------------------------------------------------------------------------
if( uiWidth > m_pcSlice->getSPS()->getMaxTrSize() )
{
std::cerr << "ERROR: codeCoeffNxN was passed a TU with dimensions larger than the maximum allowed size" << std::endl;
assert(false);
exit(1);
}
// compute number of significant coefficients
UInt uiNumSig = TEncEntropy::countNonZeroCoeffs(pcCoef, uiWidth * uiHeight);
if ( uiNumSig == 0 )
{
std::cerr << "ERROR: codeCoeffNxN called for empty TU!" << std::endl;
assert(false);
exit(1);
}
//--------------------------------------------------------------------------------------------------
//set parameters
const ChannelType chType = toChannelType(compID);
const UInt uiLog2BlockWidth = g_aucConvertToBit[ uiWidth ] + 2;
const UInt uiLog2BlockHeight = g_aucConvertToBit[ uiHeight ] + 2;
const ChannelType channelType = toChannelType(compID);
const Bool extendedPrecision = pcCU->getSlice()->getSPS()->getUseExtendedPrecision();
const Bool alignCABACBeforeBypass = pcCU->getSlice()->getSPS()->getAlignCABACBeforeBypass();
Bool beValid;
{
Int uiIntraMode = -1;
const Bool bIsLuma = isLuma(compID);
Int isIntra = pcCU->isIntra(uiAbsPartIdx) ? 1 : 0;
if ( isIntra )
{
uiIntraMode = pcCU->getIntraDir( toChannelType(compID), uiAbsPartIdx );
uiIntraMode = (uiIntraMode==DM_CHROMA_IDX && !bIsLuma) ? pcCU->getIntraDir(CHANNEL_TYPE_LUMA, getChromasCorrespondingPULumaIdx(uiAbsPartIdx, rTu.GetChromaFormat())) : uiIntraMode;
uiIntraMode = ((rTu.GetChromaFormat() == CHROMA_422) && !bIsLuma) ? g_chroma422IntraAngleMappingTable[uiIntraMode] : uiIntraMode;
}
Int transformSkip = pcCU->getTransformSkip( uiAbsPartIdx,compID) ? 1 : 0;
Bool rdpcm_lossy = ( transformSkip && isIntra && ( (uiIntraMode == HOR_IDX) || (uiIntraMode == VER_IDX) ) ) && pcCU->isRDPCMEnabled(uiAbsPartIdx);
if ( (pcCU->getCUTransquantBypass(uiAbsPartIdx)) || rdpcm_lossy )
{
beValid = false;
if ( (!pcCU->isIntra(uiAbsPartIdx)) && pcCU->isRDPCMEnabled(uiAbsPartIdx))
codeExplicitRdpcmMode( rTu, compID);
}
else
{
beValid = pcCU->getSlice()->getPPS()->getSignHideFlag() > 0;
}
}
//--------------------------------------------------------------------------------------------------
if(pcCU->getSlice()->getPPS()->getUseTransformSkip())
{
codeTransformSkipFlags(rTu, compID);
if(pcCU->getTransformSkip(uiAbsPartIdx, compID) && !pcCU->isIntra(uiAbsPartIdx) && pcCU->isRDPCMEnabled(uiAbsPartIdx))
{
// This TU has coefficients and is transform skipped. Check whether is inter coded and if yes encode the explicit RDPCM mode
codeExplicitRdpcmMode( rTu, compID);
if(pcCU->getExplicitRdpcmMode(compID, uiAbsPartIdx) != RDPCM_OFF)
{
// Sign data hiding is avoided for horizontal and vertical explicit RDPCM modes
beValid = false;
}
}
}
//--------------------------------------------------------------------------------------------------
const Bool bUseGolombRiceParameterAdaptation = pcCU->getSlice()->getSPS()->getUseGolombRiceParameterAdaptation();
UInt &currentGolombRiceStatistic = m_golombRiceAdaptationStatistics[rTu.getGolombRiceStatisticsIndex(compID)];
//select scans
TUEntropyCodingParameters codingParameters;
getTUEntropyCodingParameters(codingParameters, rTu, compID);
//----- encode significance map -----
// Find position of last coefficient
Int scanPosLast = -1;
Int posLast;
UInt uiSigCoeffGroupFlag[ MLS_GRP_NUM ];
memset( uiSigCoeffGroupFlag, 0, sizeof(UInt) * MLS_GRP_NUM );
do
{
posLast = codingParameters.scan[ ++scanPosLast ];
if( pcCoef[ posLast ] != 0 )
{
// get L1 sig map
UInt uiPosY = posLast >> uiLog2BlockWidth;
UInt uiPosX = posLast - ( uiPosY << uiLog2BlockWidth );
UInt uiBlkIdx = (codingParameters.widthInGroups * (uiPosY >> MLS_CG_LOG2_HEIGHT)) + (uiPosX >> MLS_CG_LOG2_WIDTH);
uiSigCoeffGroupFlag[ uiBlkIdx ] = 1;
uiNumSig--;
}
}
while ( uiNumSig > 0 );
// Code position of last coefficient
Int posLastY = posLast >> uiLog2BlockWidth;
Int posLastX = posLast - ( posLastY << uiLog2BlockWidth );
codeLastSignificantXY(posLastX, posLastY, uiWidth, uiHeight, compID, codingParameters.scanType);
//===== code significance flag =====
ContextModel * const baseCoeffGroupCtx = m_cCUSigCoeffGroupSCModel.get( 0, chType );
ContextModel * const baseCtx = m_cCUSigSCModel.get( 0, 0 ) + getSignificanceMapContextOffset(compID);
const Int iLastScanSet = scanPosLast >> MLS_CG_SIZE;
UInt c1 = 1;
UInt uiGoRiceParam = 0;
Int iScanPosSig = scanPosLast;
for( Int iSubSet = iLastScanSet; iSubSet >= 0; iSubSet-- )
{
Int numNonZero = 0;
Int iSubPos = iSubSet << MLS_CG_SIZE;
uiGoRiceParam = currentGolombRiceStatistic / RExt__GOLOMB_RICE_INCREMENT_DIVISOR;
Bool updateGolombRiceStatistics = bUseGolombRiceParameterAdaptation; //leave the statistics at 0 when not using the adaptation system
UInt coeffSigns = 0;
Int absCoeff[1 << MLS_CG_SIZE];
Int lastNZPosInCG = -1;
Int firstNZPosInCG = 1 << MLS_CG_SIZE;
Bool escapeDataPresentInGroup = false;
if( iScanPosSig == scanPosLast )
{
absCoeff[ 0 ] = Int(abs( pcCoef[ posLast ] ));
coeffSigns = ( pcCoef[ posLast ] < 0 );
numNonZero = 1;
lastNZPosInCG = iScanPosSig;
firstNZPosInCG = iScanPosSig;
iScanPosSig--;
}
// encode significant_coeffgroup_flag
Int iCGBlkPos = codingParameters.scanCG[ iSubSet ];
Int iCGPosY = iCGBlkPos / codingParameters.widthInGroups;
Int iCGPosX = iCGBlkPos - (iCGPosY * codingParameters.widthInGroups);
if( iSubSet == iLastScanSet || iSubSet == 0)
{
uiSigCoeffGroupFlag[ iCGBlkPos ] = 1;
}
else
{
UInt uiSigCoeffGroup = (uiSigCoeffGroupFlag[ iCGBlkPos ] != 0);
UInt uiCtxSig = TComTrQuant::getSigCoeffGroupCtxInc( uiSigCoeffGroupFlag, iCGPosX, iCGPosY, codingParameters.widthInGroups, codingParameters.heightInGroups );
m_pcBinIf->encodeBin( uiSigCoeffGroup, baseCoeffGroupCtx[ uiCtxSig ] );
}
// encode significant_coeff_flag
if( uiSigCoeffGroupFlag[ iCGBlkPos ] )
{
const Int patternSigCtx = TComTrQuant::calcPatternSigCtx(uiSigCoeffGroupFlag, iCGPosX, iCGPosY, codingParameters.widthInGroups, codingParameters.heightInGroups);
UInt uiBlkPos, uiSig, uiCtxSig;
for( ; iScanPosSig >= iSubPos; iScanPosSig-- )
{
uiBlkPos = codingParameters.scan[ iScanPosSig ];
uiSig = (pcCoef[ uiBlkPos ] != 0);
if( iScanPosSig > iSubPos || iSubSet == 0 || numNonZero )
{
uiCtxSig = TComTrQuant::getSigCtxInc( patternSigCtx, codingParameters, iScanPosSig, uiLog2BlockWidth, uiLog2BlockHeight, chType );
m_pcBinIf->encodeBin( uiSig, baseCtx[ uiCtxSig ] );
}
if( uiSig )
{
absCoeff[ numNonZero ] = Int(abs( pcCoef[ uiBlkPos ] ));
coeffSigns = 2 * coeffSigns + ( pcCoef[ uiBlkPos ] < 0 );
numNonZero++;
if( lastNZPosInCG == -1 )
{
lastNZPosInCG = iScanPosSig;
}
firstNZPosInCG = iScanPosSig;
}
}
}
else
{
iScanPosSig = iSubPos - 1;
}
if( numNonZero > 0 )
{
Bool signHidden = ( lastNZPosInCG - firstNZPosInCG >= SBH_THRESHOLD );
const UInt uiCtxSet = getContextSetIndex(compID, iSubSet, (c1 == 0));
c1 = 1;
ContextModel *baseCtxMod = m_cCUOneSCModel.get( 0, 0 ) + (NUM_ONE_FLAG_CTX_PER_SET * uiCtxSet);
Int numC1Flag = min(numNonZero, C1FLAG_NUMBER);
Int firstC2FlagIdx = -1;
for( Int idx = 0; idx < numC1Flag; idx++ )
{
UInt uiSymbol = absCoeff[ idx ] > 1;
m_pcBinIf->encodeBin( uiSymbol, baseCtxMod[c1] );
if( uiSymbol )
{
c1 = 0;
if (firstC2FlagIdx == -1)
{
firstC2FlagIdx = idx;
}
else //if a greater-than-one has been encountered already this group
{
escapeDataPresentInGroup = true;
}
}
else if( (c1 < 3) && (c1 > 0) )
{
c1++;
}
}
if (c1 == 0)
{
baseCtxMod = m_cCUAbsSCModel.get( 0, 0 ) + (NUM_ABS_FLAG_CTX_PER_SET * uiCtxSet);
if ( firstC2FlagIdx != -1)
{
UInt symbol = absCoeff[ firstC2FlagIdx ] > 2;
m_pcBinIf->encodeBin( symbol, baseCtxMod[0] );
if (symbol != 0)
{
escapeDataPresentInGroup = true;
}
}
}
escapeDataPresentInGroup = escapeDataPresentInGroup || (numNonZero > C1FLAG_NUMBER);
if (escapeDataPresentInGroup && alignCABACBeforeBypass)
{
m_pcBinIf->align();
}
if( beValid && signHidden )
{
m_pcBinIf->encodeBinsEP( (coeffSigns >> 1), numNonZero-1 );
}
else
{
m_pcBinIf->encodeBinsEP( coeffSigns, numNonZero );
}
Int iFirstCoeff2 = 1;
if (escapeDataPresentInGroup)
{
for ( Int idx = 0; idx < numNonZero; idx++ )
{
UInt baseLevel = (idx < C1FLAG_NUMBER)? (2 + iFirstCoeff2 ) : 1;
if( absCoeff[ idx ] >= baseLevel)
{
const UInt escapeCodeValue = absCoeff[idx] - baseLevel;
xWriteCoefRemainExGolomb( escapeCodeValue, uiGoRiceParam, extendedPrecision, channelType );
if (absCoeff[idx] > (3 << uiGoRiceParam))
{
uiGoRiceParam = bUseGolombRiceParameterAdaptation ? (uiGoRiceParam + 1) : (std::min<UInt>((uiGoRiceParam + 1), 4));
}
if (updateGolombRiceStatistics)
{
const UInt initialGolombRiceParameter = currentGolombRiceStatistic / RExt__GOLOMB_RICE_INCREMENT_DIVISOR;
if (escapeCodeValue >= (3 << initialGolombRiceParameter))
{
currentGolombRiceStatistic++;
}
else if (((escapeCodeValue * 2) < (1 << initialGolombRiceParameter)) && (currentGolombRiceStatistic > 0))
{
currentGolombRiceStatistic--;
}
updateGolombRiceStatistics = false;
}
}
if(absCoeff[ idx ] >= 2)
{
iFirstCoeff2 = 0;
}
}
}
}
}
#if ENVIRONMENT_VARIABLE_DEBUG_AND_TEST
printSBACCoeffData(posLastX, posLastY, uiWidth, uiHeight, compID, uiAbsPartIdx, codingParameters.scanType, pcCoef, g_bFinalEncode);
#endif
return;
}
/** code SAO offset sign
* \param code sign value
*/
Void TEncSbac::codeSAOSign( UInt code )
{
m_pcBinIf->encodeBinEP( code );
}
Void TEncSbac::codeSaoMaxUvlc ( UInt code, UInt maxSymbol )
{
if (maxSymbol == 0)
{
return;
}
Int i;
Bool bCodeLast = ( maxSymbol > code );
if ( code == 0 )
{
m_pcBinIf->encodeBinEP( 0 );
}
else
{
m_pcBinIf->encodeBinEP( 1 );
for ( i=0; i<code-1; i++ )
{
m_pcBinIf->encodeBinEP( 1 );
}
if( bCodeLast )
{
m_pcBinIf->encodeBinEP( 0 );
}
}
}
/** Code SAO EO class or BO band position
* \param uiLength
* \param uiCode
*/
Void TEncSbac::codeSaoUflc ( UInt uiLength, UInt uiCode )
{
m_pcBinIf->encodeBinsEP ( uiCode, uiLength );
}
/** Code SAO merge flags
* \param uiCode
* \param uiCompIdx
*/
Void TEncSbac::codeSaoMerge ( UInt uiCode )
{
m_pcBinIf->encodeBin(((uiCode == 0) ? 0 : 1), m_cSaoMergeSCModel.get( 0, 0, 0 ));
}
/** Code SAO type index
* \param uiCode
*/
Void TEncSbac::codeSaoTypeIdx ( UInt uiCode)
{
if (uiCode == 0)
{
m_pcBinIf->encodeBin( 0, m_cSaoTypeIdxSCModel.get( 0, 0, 0 ) );
}
else
{
m_pcBinIf->encodeBin( 1, m_cSaoTypeIdxSCModel.get( 0, 0, 0 ) );
m_pcBinIf->encodeBinEP( uiCode == 1 ? 0 : 1 );
}
}
Void TEncSbac::codeSAOOffsetParam(ComponentID compIdx, SAOOffset& ctbParam, Bool sliceEnabled)
{
UInt uiSymbol;
if(!sliceEnabled)
{
assert(ctbParam.modeIdc == SAO_MODE_OFF);
return;
}
const Bool bIsFirstCompOfChType = (getFirstComponentOfChannel(toChannelType(compIdx)) == compIdx);
//type
if(bIsFirstCompOfChType)
{
//sao_type_idx_luma or sao_type_idx_chroma
if(ctbParam.modeIdc == SAO_MODE_OFF)
{
uiSymbol =0;
}
else if(ctbParam.typeIdc == SAO_TYPE_BO) //BO
{
uiSymbol = 1;
}
else
{
assert(ctbParam.typeIdc < SAO_TYPE_START_BO); //EO
uiSymbol = 2;
}
codeSaoTypeIdx(uiSymbol);
}
if(ctbParam.modeIdc == SAO_MODE_NEW)
{
Int numClasses = (ctbParam.typeIdc == SAO_TYPE_BO)?4:NUM_SAO_EO_CLASSES;
Int offset[4];
Int k=0;
for(Int i=0; i< numClasses; i++)
{
if(ctbParam.typeIdc != SAO_TYPE_BO && i == SAO_CLASS_EO_PLAIN)
{
continue;
}
Int classIdx = (ctbParam.typeIdc == SAO_TYPE_BO)?( (ctbParam.typeAuxInfo+i)% NUM_SAO_BO_CLASSES ):i;
offset[k] = ctbParam.offset[classIdx];
k++;
}
for(Int i=0; i< 4; i++)
{
codeSaoMaxUvlc((offset[i]<0)?(-offset[i]):(offset[i]), g_saoMaxOffsetQVal[compIdx] ); //sao_offset_abs
}
if(ctbParam.typeIdc == SAO_TYPE_BO)
{
for(Int i=0; i< 4; i++)
{
if(offset[i] != 0)
{
codeSAOSign((offset[i]< 0)?1:0);
}
}
codeSaoUflc(NUM_SAO_BO_CLASSES_LOG2, ctbParam.typeAuxInfo ); //sao_band_position
}
else //EO
{
if(bIsFirstCompOfChType)
{
assert(ctbParam.typeIdc - SAO_TYPE_START_EO >=0);
codeSaoUflc(NUM_SAO_EO_TYPES_LOG2, ctbParam.typeIdc - SAO_TYPE_START_EO ); //sao_eo_class_luma or sao_eo_class_chroma
}
}
}
}
Void TEncSbac::codeSAOBlkParam(SAOBlkParam& saoBlkParam
, Bool* sliceEnabled
, Bool leftMergeAvail
, Bool aboveMergeAvail
, Bool onlyEstMergeInfo // = false
)
{
Bool isLeftMerge = false;
Bool isAboveMerge= false;
if(leftMergeAvail)
{
isLeftMerge = ((saoBlkParam[COMPONENT_Y].modeIdc == SAO_MODE_MERGE) && (saoBlkParam[COMPONENT_Y].typeIdc == SAO_MERGE_LEFT));
codeSaoMerge( isLeftMerge?1:0 ); //sao_merge_left_flag
}
if( aboveMergeAvail && !isLeftMerge)
{
isAboveMerge = ((saoBlkParam[COMPONENT_Y].modeIdc == SAO_MODE_MERGE) && (saoBlkParam[COMPONENT_Y].typeIdc == SAO_MERGE_ABOVE));
codeSaoMerge( isAboveMerge?1:0 ); //sao_merge_left_flag
}
if(onlyEstMergeInfo)
{
return; //only for RDO
}
if(!isLeftMerge && !isAboveMerge) //not merge mode
{
for(Int compIdx=0; compIdx < MAX_NUM_COMPONENT; compIdx++)
{
codeSAOOffsetParam(ComponentID(compIdx), saoBlkParam[compIdx], sliceEnabled[compIdx]);
}
}
}
/*!
****************************************************************************
* \brief
* estimate bit cost for CBP, significant map and significant coefficients
****************************************************************************
*/
Void TEncSbac::estBit( estBitsSbacStruct* pcEstBitsSbac, Int width, Int height, ChannelType chType )
{
estCBFBit( pcEstBitsSbac );
estSignificantCoeffGroupMapBit( pcEstBitsSbac, chType );
// encode significance map
estSignificantMapBit( pcEstBitsSbac, width, height, chType );
// encode last significant position
estLastSignificantPositionBit( pcEstBitsSbac, width, height, chType );
// encode significant coefficients
estSignificantCoefficientsBit( pcEstBitsSbac, chType );
memcpy(pcEstBitsSbac->golombRiceAdaptationStatistics, m_golombRiceAdaptationStatistics, (sizeof(UInt) * RExt__GOLOMB_RICE_ADAPTATION_STATISTICS_SETS));
}
/*!
****************************************************************************
* \brief
* estimate bit cost for each CBP bit
****************************************************************************
*/
Void TEncSbac::estCBFBit( estBitsSbacStruct* pcEstBitsSbac )
{
ContextModel *pCtx = m_cCUQtCbfSCModel.get( 0 );
for( UInt uiCtxInc = 0; uiCtxInc < (NUM_QT_CBF_CTX_SETS * NUM_QT_CBF_CTX_PER_SET); uiCtxInc++ )
{
pcEstBitsSbac->blockCbpBits[ uiCtxInc ][ 0 ] = pCtx[ uiCtxInc ].getEntropyBits( 0 );
pcEstBitsSbac->blockCbpBits[ uiCtxInc ][ 1 ] = pCtx[ uiCtxInc ].getEntropyBits( 1 );
}
pCtx = m_cCUQtRootCbfSCModel.get( 0 );
for( UInt uiCtxInc = 0; uiCtxInc < 4; uiCtxInc++ )
{
pcEstBitsSbac->blockRootCbpBits[ uiCtxInc ][ 0 ] = pCtx[ uiCtxInc ].getEntropyBits( 0 );
pcEstBitsSbac->blockRootCbpBits[ uiCtxInc ][ 1 ] = pCtx[ uiCtxInc ].getEntropyBits( 1 );
}
}
/*!
****************************************************************************
* \brief
* estimate SAMBAC bit cost for significant coefficient group map
****************************************************************************
*/
Void TEncSbac::estSignificantCoeffGroupMapBit( estBitsSbacStruct* pcEstBitsSbac, ChannelType chType )
{
Int firstCtx = 0, numCtx = NUM_SIG_CG_FLAG_CTX;
for ( Int ctxIdx = firstCtx; ctxIdx < firstCtx + numCtx; ctxIdx++ )
{
for( UInt uiBin = 0; uiBin < 2; uiBin++ )
{
pcEstBitsSbac->significantCoeffGroupBits[ ctxIdx ][ uiBin ] = m_cCUSigCoeffGroupSCModel.get( 0, chType, ctxIdx ).getEntropyBits( uiBin );
}
}
}
/*!
****************************************************************************
* \brief
* estimate SAMBAC bit cost for significant coefficient map
****************************************************************************
*/
Void TEncSbac::estSignificantMapBit( estBitsSbacStruct* pcEstBitsSbac, Int width, Int height, ChannelType chType )
{
//--------------------------------------------------------------------------------------------------
//set up the number of channels and context variables
const UInt firstComponent = ((isLuma(chType)) ? (COMPONENT_Y) : (COMPONENT_Cb));
const UInt lastComponent = ((isLuma(chType)) ? (COMPONENT_Y) : (COMPONENT_Cb));
//----------------------------------------------------------
Int firstCtx = MAX_INT;
Int numCtx = MAX_INT;
if ((width == 4) && (height == 4))
{
firstCtx = significanceMapContextSetStart[chType][CONTEXT_TYPE_4x4];
numCtx = significanceMapContextSetSize [chType][CONTEXT_TYPE_4x4];
}
else if ((width == 8) && (height == 8))
{
firstCtx = significanceMapContextSetStart[chType][CONTEXT_TYPE_8x8];
numCtx = significanceMapContextSetSize [chType][CONTEXT_TYPE_8x8];
}
else
{
firstCtx = significanceMapContextSetStart[chType][CONTEXT_TYPE_NxN];
numCtx = significanceMapContextSetSize [chType][CONTEXT_TYPE_NxN];
}
//--------------------------------------------------------------------------------------------------
//fill the data for the significace map
for (UInt component = firstComponent; component <= lastComponent; component++)
{
const UInt contextOffset = getSignificanceMapContextOffset(ComponentID(component));
if (firstCtx > 0)
{
for( UInt bin = 0; bin < 2; bin++ ) //always get the DC
{
pcEstBitsSbac->significantBits[ contextOffset ][ bin ] = m_cCUSigSCModel.get( 0, 0, contextOffset ).getEntropyBits( bin );
}
}
// This could be made optional, but would require this function to have knowledge of whether the
// TU is transform-skipped or transquant-bypassed and whether the SPS flag is set
for( UInt bin = 0; bin < 2; bin++ )
{
const Int ctxIdx = significanceMapContextSetStart[chType][CONTEXT_TYPE_SINGLE];
pcEstBitsSbac->significantBits[ contextOffset + ctxIdx ][ bin ] = m_cCUSigSCModel.get( 0, 0, (contextOffset + ctxIdx) ).getEntropyBits( bin );
}
for ( Int ctxIdx = firstCtx; ctxIdx < firstCtx + numCtx; ctxIdx++ )
{
for( UInt uiBin = 0; uiBin < 2; uiBin++ )
{
pcEstBitsSbac->significantBits[ contextOffset + ctxIdx ][ uiBin ] = m_cCUSigSCModel.get( 0, 0, (contextOffset + ctxIdx) ).getEntropyBits( uiBin );
}
}
}
//--------------------------------------------------------------------------------------------------
}
/*!
****************************************************************************
* \brief
* estimate bit cost of significant coefficient
****************************************************************************
*/
Void TEncSbac::estLastSignificantPositionBit( estBitsSbacStruct* pcEstBitsSbac, Int width, Int height, ChannelType chType )
{
//--------------------------------------------------------------------------------------------------.
//set up the number of channels
const UInt firstComponent = ((isLuma(chType)) ? (COMPONENT_Y) : (COMPONENT_Cb));
const UInt lastComponent = ((isLuma(chType)) ? (COMPONENT_Y) : (COMPONENT_Cb));
//--------------------------------------------------------------------------------------------------
//fill the data for the last-significant-coefficient position
for (UInt componentIndex = firstComponent; componentIndex <= lastComponent; componentIndex++)
{
const ComponentID component = ComponentID(componentIndex);
Int iBitsX = 0, iBitsY = 0;
Int blkSizeOffsetX, blkSizeOffsetY, shiftX, shiftY;
getLastSignificantContextParameters(ComponentID(component), width, height, blkSizeOffsetX, blkSizeOffsetY, shiftX, shiftY);
Int ctx;
const ChannelType channelType = toChannelType(ComponentID(component));
ContextModel *const pCtxX = m_cCuCtxLastX.get( 0, channelType );
ContextModel *const pCtxY = m_cCuCtxLastY.get( 0, channelType );
Int *const lastXBitsArray = pcEstBitsSbac->lastXBits[channelType];
Int *const lastYBitsArray = pcEstBitsSbac->lastYBits[channelType];
//------------------------------------------------
//X-coordinate
for (ctx = 0; ctx < g_uiGroupIdx[ width - 1 ]; ctx++)
{
Int ctxOffset = blkSizeOffsetX + (ctx >>shiftX);
lastXBitsArray[ ctx ] = iBitsX + pCtxX[ ctxOffset ].getEntropyBits( 0 );
iBitsX += pCtxX[ ctxOffset ].getEntropyBits( 1 );
}
lastXBitsArray[ctx] = iBitsX;
//------------------------------------------------
//Y-coordinate
for (ctx = 0; ctx < g_uiGroupIdx[ height - 1 ]; ctx++)
{
Int ctxOffset = blkSizeOffsetY + (ctx >>shiftY);
lastYBitsArray[ ctx ] = iBitsY + pCtxY[ ctxOffset ].getEntropyBits( 0 );
iBitsY += pCtxY[ ctxOffset ].getEntropyBits( 1 );
}
lastYBitsArray[ctx] = iBitsY;
} //end of component loop
//--------------------------------------------------------------------------------------------------
}
/*!
****************************************************************************
* \brief
* estimate bit cost of significant coefficient
****************************************************************************
*/
Void TEncSbac::estSignificantCoefficientsBit( estBitsSbacStruct* pcEstBitsSbac, ChannelType chType )
{
ContextModel *ctxOne = m_cCUOneSCModel.get(0, 0);
ContextModel *ctxAbs = m_cCUAbsSCModel.get(0, 0);
const UInt oneStartIndex = ((isLuma(chType)) ? (0) : (NUM_ONE_FLAG_CTX_LUMA));
const UInt oneStopIndex = ((isLuma(chType)) ? (NUM_ONE_FLAG_CTX_LUMA) : (NUM_ONE_FLAG_CTX));
const UInt absStartIndex = ((isLuma(chType)) ? (0) : (NUM_ABS_FLAG_CTX_LUMA));
const UInt absStopIndex = ((isLuma(chType)) ? (NUM_ABS_FLAG_CTX_LUMA) : (NUM_ABS_FLAG_CTX));
for (Int ctxIdx = oneStartIndex; ctxIdx < oneStopIndex; ctxIdx++)
{
pcEstBitsSbac->m_greaterOneBits[ ctxIdx ][ 0 ] = ctxOne[ ctxIdx ].getEntropyBits( 0 );
pcEstBitsSbac->m_greaterOneBits[ ctxIdx ][ 1 ] = ctxOne[ ctxIdx ].getEntropyBits( 1 );
}
for (Int ctxIdx = absStartIndex; ctxIdx < absStopIndex; ctxIdx++)
{
pcEstBitsSbac->m_levelAbsBits[ ctxIdx ][ 0 ] = ctxAbs[ ctxIdx ].getEntropyBits( 0 );
pcEstBitsSbac->m_levelAbsBits[ ctxIdx ][ 1 ] = ctxAbs[ ctxIdx ].getEntropyBits( 1 );
}
}
/**
- Initialize our context information from the nominated source.
.
\param pSrc From where to copy context information.
*/
Void TEncSbac::xCopyContextsFrom( const TEncSbac* pSrc )
{
memcpy(m_contextModels, pSrc->m_contextModels, m_numContextModels*sizeof(m_contextModels[0]));
memcpy(m_golombRiceAdaptationStatistics, pSrc->m_golombRiceAdaptationStatistics, (sizeof(UInt) * RExt__GOLOMB_RICE_ADAPTATION_STATISTICS_SETS));
}
Void TEncSbac::loadContexts ( const TEncSbac* pSrc)
{
xCopyContextsFrom(pSrc);
}
/** Performs CABAC encoding of the explicit RDPCM mode
* \param rTu current TU data structure
* \param compID component identifier
*/
Void TEncSbac::codeExplicitRdpcmMode( TComTU &rTu, const ComponentID compID )
{
TComDataCU *cu = rTu.getCU();
const TComRectangle &rect = rTu.getRect(compID);
const UInt absPartIdx = rTu.GetAbsPartIdxTU(compID);
const UInt tuHeight = g_aucConvertToBit[rect.height];
const UInt tuWidth = g_aucConvertToBit[rect.width];
assert(tuHeight == tuWidth);
assert(tuHeight < 4);
UInt explicitRdpcmMode = cu->getExplicitRdpcmMode(compID, absPartIdx);
if( explicitRdpcmMode == RDPCM_OFF )
{
m_pcBinIf->encodeBin (0, m_explicitRdpcmFlagSCModel.get (0, toChannelType(compID), 0));
}
else if( explicitRdpcmMode == RDPCM_HOR || explicitRdpcmMode == RDPCM_VER )
{
m_pcBinIf->encodeBin (1, m_explicitRdpcmFlagSCModel.get (0, toChannelType(compID), 0));
if(explicitRdpcmMode == RDPCM_HOR)
{
m_pcBinIf->encodeBin ( 0, m_explicitRdpcmDirSCModel.get(0, toChannelType(compID), 0));
}
else
{
m_pcBinIf->encodeBin ( 1, m_explicitRdpcmDirSCModel.get(0, toChannelType(compID), 0));
}
}
else
{
assert(0);
}
}
//! \}