libbpg/x265/source/encoder/encoder.cpp
2015-10-27 11:46:00 +01:00

1921 lines
79 KiB
C++

/*****************************************************************************
* Copyright (C) 2013 x265 project
*
* Authors: Steve Borho <steve@borho.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*
* This program is also available under a commercial proprietary license.
* For more information, contact us at license @ x265.com.
*****************************************************************************/
#include "common.h"
#include "primitives.h"
#include "threadpool.h"
#include "param.h"
#include "frame.h"
#include "framedata.h"
#include "picyuv.h"
#include "bitcost.h"
#include "encoder.h"
#include "slicetype.h"
#include "frameencoder.h"
#include "ratecontrol.h"
#include "dpb.h"
#include "nal.h"
#include "x265.h"
#if _MSC_VER
#pragma warning(disable: 4996) // POSIX functions are just fine, thanks
#endif
namespace X265_NS {
const char g_sliceTypeToChar[] = {'B', 'P', 'I'};
}
static const char* defaultAnalysisFileName = "x265_analysis.dat";
using namespace X265_NS;
Encoder::Encoder()
{
m_aborted = false;
m_reconfigured = false;
m_encodedFrameNum = 0;
m_pocLast = -1;
m_curEncoder = 0;
m_numLumaWPFrames = 0;
m_numChromaWPFrames = 0;
m_numLumaWPBiFrames = 0;
m_numChromaWPBiFrames = 0;
m_lookahead = NULL;
m_rateControl = NULL;
m_dpb = NULL;
m_exportedPic = NULL;
m_numDelayedPic = 0;
m_outputCount = 0;
m_param = NULL;
m_latestParam = NULL;
m_threadPool = NULL;
m_analysisFile = NULL;
m_offsetEmergency = NULL;
for (int i = 0; i < X265_MAX_FRAME_THREADS; i++)
m_frameEncoder[i] = NULL;
MotionEstimate::initScales();
}
void Encoder::create()
{
if (!primitives.pu[0].sad)
{
// this should be an impossible condition when using our public API, and indicates a serious bug.
x265_log(m_param, X265_LOG_ERROR, "Primitives must be initialized before encoder is created\n");
abort();
}
x265_param* p = m_param;
int rows = (p->sourceHeight + p->maxCUSize - 1) >> g_log2Size[p->maxCUSize];
int cols = (p->sourceWidth + p->maxCUSize - 1) >> g_log2Size[p->maxCUSize];
// Do not allow WPP if only one row or fewer than 3 columns, it is pointless and unstable
if (rows == 1 || cols < 3)
{
x265_log(p, X265_LOG_WARNING, "Too few rows/columns, --wpp disabled\n");
p->bEnableWavefront = 0;
}
bool allowPools = !p->numaPools || strcmp(p->numaPools, "none");
// Trim the thread pool if --wpp, --pme, and --pmode are disabled
if (!p->bEnableWavefront && !p->bDistributeModeAnalysis && !p->bDistributeMotionEstimation && !p->lookaheadSlices)
allowPools = false;
if (!p->frameNumThreads)
{
// auto-detect frame threads
int cpuCount = ThreadPool::getCpuCount();
if (!p->bEnableWavefront)
p->frameNumThreads = X265_MIN3(cpuCount, (rows + 1) / 2, X265_MAX_FRAME_THREADS);
else if (cpuCount >= 32)
p->frameNumThreads = (p->sourceHeight > 2000) ? 8 : 6; // dual-socket 10-core IvyBridge or higher
else if (cpuCount >= 16)
p->frameNumThreads = 5; // 8 HT cores, or dual socket
else if (cpuCount >= 8)
p->frameNumThreads = 3; // 4 HT cores
else if (cpuCount >= 4)
p->frameNumThreads = 2; // Dual or Quad core
else
p->frameNumThreads = 1;
}
m_numPools = 0;
if (allowPools)
m_threadPool = ThreadPool::allocThreadPools(p, m_numPools);
if (!m_numPools)
{
// issue warnings if any of these features were requested
if (p->bEnableWavefront)
x265_log(p, X265_LOG_WARNING, "No thread pool allocated, --wpp disabled\n");
if (p->bDistributeMotionEstimation)
x265_log(p, X265_LOG_WARNING, "No thread pool allocated, --pme disabled\n");
if (p->bDistributeModeAnalysis)
x265_log(p, X265_LOG_WARNING, "No thread pool allocated, --pmode disabled\n");
if (p->lookaheadSlices)
x265_log(p, X265_LOG_WARNING, "No thread pool allocated, --lookahead-slices disabled\n");
// disable all pool features if the thread pool is disabled or unusable.
p->bEnableWavefront = p->bDistributeModeAnalysis = p->bDistributeMotionEstimation = p->lookaheadSlices = 0;
}
if (!p->bEnableWavefront && p->rc.vbvBufferSize)
{
x265_log(p, X265_LOG_ERROR, "VBV requires wavefront parallelism\n");
m_aborted = true;
}
char buf[128];
int len = 0;
if (p->bEnableWavefront)
len += sprintf(buf + len, "wpp(%d rows)", rows);
if (p->bDistributeModeAnalysis)
len += sprintf(buf + len, "%spmode", len ? "+" : "");
if (p->bDistributeMotionEstimation)
len += sprintf(buf + len, "%spme ", len ? "+" : "");
if (!len)
strcpy(buf, "none");
x265_log(p, X265_LOG_INFO, "frame threads / pool features : %d / %s\n", p->frameNumThreads, buf);
for (int i = 0; i < m_param->frameNumThreads; i++)
{
m_frameEncoder[i] = new FrameEncoder;
m_frameEncoder[i]->m_nalList.m_annexB = !!m_param->bAnnexB;
}
if (m_numPools)
{
for (int i = 0; i < m_param->frameNumThreads; i++)
{
int pool = i % m_numPools;
m_frameEncoder[i]->m_pool = &m_threadPool[pool];
m_frameEncoder[i]->m_jpId = m_threadPool[pool].m_numProviders++;
m_threadPool[pool].m_jpTable[m_frameEncoder[i]->m_jpId] = m_frameEncoder[i];
}
for (int i = 0; i < m_numPools; i++)
m_threadPool[i].start();
}
else
{
/* CU stats and noise-reduction buffers are indexed by jpId, so it cannot be left as -1 */
for (int i = 0; i < m_param->frameNumThreads; i++)
m_frameEncoder[i]->m_jpId = 0;
}
if (!m_scalingList.init())
{
x265_log(m_param, X265_LOG_ERROR, "Unable to allocate scaling list arrays\n");
m_aborted = true;
return;
}
else if (!m_param->scalingLists || !strcmp(m_param->scalingLists, "off"))
m_scalingList.m_bEnabled = false;
else if (!strcmp(m_param->scalingLists, "default"))
m_scalingList.setDefaultScalingList();
else if (m_scalingList.parseScalingList(m_param->scalingLists))
m_aborted = true;
m_lookahead = new Lookahead(m_param, m_threadPool);
if (m_numPools)
{
m_lookahead->m_jpId = m_threadPool[0].m_numProviders++;
m_threadPool[0].m_jpTable[m_lookahead->m_jpId] = m_lookahead;
}
m_dpb = new DPB(m_param);
m_rateControl = new RateControl(*m_param);
initVPS(&m_vps);
initSPS(&m_sps);
initPPS(&m_pps);
if (m_param->rc.vbvBufferSize)
{
m_offsetEmergency = (uint16_t(*)[MAX_NUM_TR_CATEGORIES][MAX_NUM_TR_COEFFS])X265_MALLOC(uint16_t, MAX_NUM_TR_CATEGORIES * MAX_NUM_TR_COEFFS * (QP_MAX_MAX - QP_MAX_SPEC));
if (!m_offsetEmergency)
{
x265_log(m_param, X265_LOG_ERROR, "Unable to allocate memory\n");
m_aborted = true;
return;
}
bool scalingEnabled = m_scalingList.m_bEnabled;
if (!scalingEnabled)
{
m_scalingList.setDefaultScalingList();
m_scalingList.setupQuantMatrices();
}
else
m_scalingList.setupQuantMatrices();
for (int q = 0; q < QP_MAX_MAX - QP_MAX_SPEC; q++)
{
for (int cat = 0; cat < MAX_NUM_TR_CATEGORIES; cat++)
{
uint16_t *nrOffset = m_offsetEmergency[q][cat];
int trSize = cat & 3;
int coefCount = 1 << ((trSize + 2) * 2);
/* Denoise chroma first then luma, then DC. */
int dcThreshold = (QP_MAX_MAX - QP_MAX_SPEC) * 2 / 3;
int lumaThreshold = (QP_MAX_MAX - QP_MAX_SPEC) * 2 / 3;
int chromaThreshold = 0;
int thresh = (cat < 4 || (cat >= 8 && cat < 12)) ? lumaThreshold : chromaThreshold;
double quantF = (double)(1ULL << (q / 6 + 16 + 8));
for (int i = 0; i < coefCount; i++)
{
/* True "emergency mode": remove all DCT coefficients */
if (q == QP_MAX_MAX - QP_MAX_SPEC - 1)
{
nrOffset[i] = INT16_MAX;
continue;
}
int iThresh = i == 0 ? dcThreshold : thresh;
if (q < iThresh)
{
nrOffset[i] = 0;
continue;
}
int numList = (cat >= 8) * 3 + ((int)!iThresh);
double pos = (double)(q - iThresh + 1) / (QP_MAX_MAX - QP_MAX_SPEC - iThresh);
double start = quantF / (m_scalingList.m_quantCoef[trSize][numList][QP_MAX_SPEC % 6][i]);
// Formula chosen as an exponential scale to vaguely mimic the effects of a higher quantizer.
double bias = (pow(2, pos * (QP_MAX_MAX - QP_MAX_SPEC)) * 0.003 - 0.003) * start;
nrOffset[i] = (uint16_t)X265_MIN(bias + 0.5, INT16_MAX);
}
}
}
if (!scalingEnabled)
{
m_scalingList.m_bEnabled = false;
m_scalingList.m_bDataPresent = false;
m_scalingList.setupQuantMatrices();
}
}
else
m_scalingList.setupQuantMatrices();
int numRows = (m_param->sourceHeight + g_maxCUSize - 1) / g_maxCUSize;
int numCols = (m_param->sourceWidth + g_maxCUSize - 1) / g_maxCUSize;
for (int i = 0; i < m_param->frameNumThreads; i++)
{
if (!m_frameEncoder[i]->init(this, numRows, numCols))
{
x265_log(m_param, X265_LOG_ERROR, "Unable to initialize frame encoder, aborting\n");
m_aborted = true;
}
}
for (int i = 0; i < m_param->frameNumThreads; i++)
{
m_frameEncoder[i]->start();
m_frameEncoder[i]->m_done.wait(); /* wait for thread to initialize */
}
if (m_param->bEmitHRDSEI)
m_rateControl->initHRD(m_sps);
if (!m_rateControl->init(m_sps))
m_aborted = true;
if (!m_lookahead->create())
m_aborted = true;
if (m_param->analysisMode)
{
const char* name = m_param->analysisFileName;
if (!name)
name = defaultAnalysisFileName;
const char* mode = m_param->analysisMode == X265_ANALYSIS_LOAD ? "rb" : "wb";
m_analysisFile = fopen(name, mode);
if (!m_analysisFile)
{
x265_log(NULL, X265_LOG_ERROR, "Analysis load/save: failed to open file %s\n", name);
m_aborted = true;
}
}
m_bZeroLatency = !m_param->bframes && !m_param->lookaheadDepth && m_param->frameNumThreads == 1;
m_aborted |= parseLambdaFile(m_param);
m_encodeStartTime = x265_mdate();
m_nalList.m_annexB = !!m_param->bAnnexB;
m_emitCLLSEI = p->maxCLL || p->maxFALL;
}
void Encoder::stopJobs()
{
if (m_rateControl)
m_rateControl->terminate(); // unblock all blocked RC calls
if (m_lookahead)
m_lookahead->stopJobs();
for (int i = 0; i < m_param->frameNumThreads; i++)
{
if (m_frameEncoder[i])
{
m_frameEncoder[i]->getEncodedPicture(m_nalList);
m_frameEncoder[i]->m_threadActive = false;
m_frameEncoder[i]->m_enable.trigger();
m_frameEncoder[i]->stop();
}
}
if (m_threadPool)
m_threadPool->stopWorkers();
}
void Encoder::destroy()
{
if (m_exportedPic)
{
ATOMIC_DEC(&m_exportedPic->m_countRefEncoders);
m_exportedPic = NULL;
}
for (int i = 0; i < m_param->frameNumThreads; i++)
{
if (m_frameEncoder[i])
{
m_frameEncoder[i]->destroy();
delete m_frameEncoder[i];
}
}
// thread pools can be cleaned up now that all the JobProviders are
// known to be shutdown
delete [] m_threadPool;
if (m_lookahead)
{
m_lookahead->destroy();
delete m_lookahead;
}
delete m_dpb;
if (m_rateControl)
{
m_rateControl->destroy();
delete m_rateControl;
}
X265_FREE(m_offsetEmergency);
if (m_analysisFile)
fclose(m_analysisFile);
if (m_param)
{
/* release string arguments that were strdup'd */
free((char*)m_param->rc.lambdaFileName);
free((char*)m_param->rc.statFileName);
free((char*)m_param->analysisFileName);
free((char*)m_param->scalingLists);
free((char*)m_param->numaPools);
free((char*)m_param->masteringDisplayColorVolume);
PARAM_NS::x265_param_free(m_param);
}
PARAM_NS::x265_param_free(m_latestParam);
}
void Encoder::updateVbvPlan(RateControl* rc)
{
for (int i = 0; i < m_param->frameNumThreads; i++)
{
FrameEncoder *encoder = m_frameEncoder[i];
if (encoder->m_rce.isActive && encoder->m_rce.poc != rc->m_curSlice->m_poc)
{
int64_t bits = (int64_t) X265_MAX(encoder->m_rce.frameSizeEstimated, encoder->m_rce.frameSizePlanned);
rc->m_bufferFill -= bits;
rc->m_bufferFill = X265_MAX(rc->m_bufferFill, 0);
rc->m_bufferFill += encoder->m_rce.bufferRate;
rc->m_bufferFill = X265_MIN(rc->m_bufferFill, rc->m_bufferSize);
if (rc->m_2pass)
rc->m_predictedBits += bits;
}
}
}
/**
* Feed one new input frame into the encoder, get one frame out. If pic_in is
* NULL, a flush condition is implied and pic_in must be NULL for all subsequent
* calls for this encoder instance.
*
* pic_in input original YUV picture or NULL
* pic_out pointer to reconstructed picture struct
*
* returns 0 if no frames are currently available for output
* 1 if frame was output, m_nalList contains access unit
* negative on malloc error or abort */
int Encoder::encode(const x265_picture* pic_in, x265_picture* pic_out)
{
#if CHECKED_BUILD || _DEBUG
if (g_checkFailures)
{
x265_log(m_param, X265_LOG_ERROR, "encoder aborting because of internal error\n");
return -1;
}
#endif
if (m_aborted)
return -1;
if (m_exportedPic)
{
ATOMIC_DEC(&m_exportedPic->m_countRefEncoders);
m_exportedPic = NULL;
m_dpb->recycleUnreferenced();
}
if (pic_in)
{
if (pic_in->colorSpace != m_param->internalCsp)
{
x265_log(m_param, X265_LOG_ERROR, "Unsupported color space (%d) on input\n",
pic_in->colorSpace);
return -1;
}
if (pic_in->bitDepth < 8 || pic_in->bitDepth > 16)
{
x265_log(m_param, X265_LOG_ERROR, "Input bit depth (%d) must be between 8 and 16\n",
pic_in->bitDepth);
return -1;
}
Frame *inFrame;
if (m_dpb->m_freeList.empty())
{
inFrame = new Frame;
x265_param* p = m_reconfigured? m_latestParam : m_param;
if (inFrame->create(p, pic_in->quantOffsets))
{
/* the first PicYuv created is asked to generate the CU and block unit offset
* arrays which are then shared with all subsequent PicYuv (orig and recon)
* allocated by this top level encoder */
if (m_sps.cuOffsetY)
{
inFrame->m_fencPic->m_cuOffsetC = m_sps.cuOffsetC;
inFrame->m_fencPic->m_cuOffsetY = m_sps.cuOffsetY;
inFrame->m_fencPic->m_buOffsetC = m_sps.buOffsetC;
inFrame->m_fencPic->m_buOffsetY = m_sps.buOffsetY;
}
else
{
if (!inFrame->m_fencPic->createOffsets(m_sps))
{
m_aborted = true;
x265_log(m_param, X265_LOG_ERROR, "memory allocation failure, aborting encode\n");
inFrame->destroy();
delete inFrame;
return -1;
}
else
{
m_sps.cuOffsetC = inFrame->m_fencPic->m_cuOffsetC;
m_sps.cuOffsetY = inFrame->m_fencPic->m_cuOffsetY;
m_sps.buOffsetC = inFrame->m_fencPic->m_buOffsetC;
m_sps.buOffsetY = inFrame->m_fencPic->m_buOffsetY;
}
}
}
else
{
m_aborted = true;
x265_log(m_param, X265_LOG_ERROR, "memory allocation failure, aborting encode\n");
inFrame->destroy();
delete inFrame;
return -1;
}
}
else
{
inFrame = m_dpb->m_freeList.popBack();
inFrame->m_lowresInit = false;
}
/* Copy input picture into a Frame and PicYuv, send to lookahead */
inFrame->m_fencPic->copyFromPicture(*pic_in, *m_param, m_sps.conformanceWindow.rightOffset, m_sps.conformanceWindow.bottomOffset);
inFrame->m_poc = ++m_pocLast;
inFrame->m_userData = pic_in->userData;
inFrame->m_pts = pic_in->pts;
inFrame->m_forceqp = pic_in->forceqp;
inFrame->m_param = m_reconfigured ? m_latestParam : m_param;
if (pic_in->quantOffsets != NULL)
{
int cuCount = inFrame->m_lowres.maxBlocksInRow * inFrame->m_lowres.maxBlocksInCol;
memcpy(inFrame->m_quantOffsets, pic_in->quantOffsets, cuCount * sizeof(float));
}
if (m_pocLast == 0)
m_firstPts = inFrame->m_pts;
if (m_bframeDelay && m_pocLast == m_bframeDelay)
m_bframeDelayTime = inFrame->m_pts - m_firstPts;
/* Encoder holds a reference count until stats collection is finished */
ATOMIC_INC(&inFrame->m_countRefEncoders);
if ((m_param->rc.aqMode || m_param->bEnableWeightedPred || m_param->bEnableWeightedBiPred) &&
(m_param->rc.cuTree && m_param->rc.bStatRead))
{
if (!m_rateControl->cuTreeReadFor2Pass(inFrame))
{
m_aborted = 1;
return -1;
}
}
/* Use the frame types from the first pass, if available */
int sliceType = (m_param->rc.bStatRead) ? m_rateControl->rateControlSliceType(inFrame->m_poc) : pic_in->sliceType;
/* In analysisSave mode, x265_analysis_data is allocated in pic_in and inFrame points to this */
/* Load analysis data before lookahead->addPicture, since sliceType has been decided */
if (m_param->analysisMode == X265_ANALYSIS_LOAD)
{
x265_picture* inputPic = const_cast<x265_picture*>(pic_in);
/* readAnalysisFile reads analysis data for the frame and allocates memory based on slicetype */
readAnalysisFile(&inputPic->analysisData, inFrame->m_poc);
inFrame->m_analysisData.poc = inFrame->m_poc;
inFrame->m_analysisData.sliceType = inputPic->analysisData.sliceType;
inFrame->m_analysisData.numCUsInFrame = inputPic->analysisData.numCUsInFrame;
inFrame->m_analysisData.numPartitions = inputPic->analysisData.numPartitions;
inFrame->m_analysisData.interData = inputPic->analysisData.interData;
inFrame->m_analysisData.intraData = inputPic->analysisData.intraData;
sliceType = inputPic->analysisData.sliceType;
}
m_lookahead->addPicture(*inFrame, sliceType);
m_numDelayedPic++;
}
else
m_lookahead->flush();
FrameEncoder *curEncoder = m_frameEncoder[m_curEncoder];
m_curEncoder = (m_curEncoder + 1) % m_param->frameNumThreads;
int ret = 0;
/* Normal operation is to wait for the current frame encoder to complete its current frame
* and then to give it a new frame to work on. In zero-latency mode, we must encode this
* input picture before returning so the order must be reversed. This do/while() loop allows
* us to alternate the order of the calls without ugly code replication */
Frame* outFrame = NULL;
Frame* frameEnc = NULL;
int pass = 0;
do
{
/* getEncodedPicture() should block until the FrameEncoder has completed
* encoding the frame. This is how back-pressure through the API is
* accomplished when the encoder is full */
if (!m_bZeroLatency || pass)
outFrame = curEncoder->getEncodedPicture(m_nalList);
if (outFrame)
{
Slice *slice = outFrame->m_encData->m_slice;
x265_frame_stats* frameData = NULL;
/* Free up pic_in->analysisData since it has already been used */
if (m_param->analysisMode == X265_ANALYSIS_LOAD)
freeAnalysis(&outFrame->m_analysisData);
if (pic_out)
{
PicYuv *recpic = outFrame->m_reconPic;
pic_out->poc = slice->m_poc;
pic_out->bitDepth = X265_DEPTH;
pic_out->userData = outFrame->m_userData;
pic_out->colorSpace = m_param->internalCsp;
frameData = &(pic_out->frameData);
pic_out->pts = outFrame->m_pts;
pic_out->dts = outFrame->m_dts;
switch (slice->m_sliceType)
{
case I_SLICE:
pic_out->sliceType = outFrame->m_lowres.bKeyframe ? X265_TYPE_IDR : X265_TYPE_I;
break;
case P_SLICE:
pic_out->sliceType = X265_TYPE_P;
break;
case B_SLICE:
pic_out->sliceType = X265_TYPE_B;
break;
}
pic_out->planes[0] = recpic->m_picOrg[0];
pic_out->stride[0] = (int)(recpic->m_stride * sizeof(pixel));
pic_out->planes[1] = recpic->m_picOrg[1];
pic_out->stride[1] = (int)(recpic->m_strideC * sizeof(pixel));
pic_out->planes[2] = recpic->m_picOrg[2];
pic_out->stride[2] = (int)(recpic->m_strideC * sizeof(pixel));
/* Dump analysis data from pic_out to file in save mode and free */
if (m_param->analysisMode == X265_ANALYSIS_SAVE)
{
pic_out->analysisData.poc = pic_out->poc;
pic_out->analysisData.sliceType = pic_out->sliceType;
pic_out->analysisData.numCUsInFrame = outFrame->m_analysisData.numCUsInFrame;
pic_out->analysisData.numPartitions = outFrame->m_analysisData.numPartitions;
pic_out->analysisData.interData = outFrame->m_analysisData.interData;
pic_out->analysisData.intraData = outFrame->m_analysisData.intraData;
writeAnalysisFile(&pic_out->analysisData);
freeAnalysis(&pic_out->analysisData);
}
}
if (slice->m_sliceType == P_SLICE)
{
if (slice->m_weightPredTable[0][0][0].bPresentFlag)
m_numLumaWPFrames++;
if (slice->m_weightPredTable[0][0][1].bPresentFlag ||
slice->m_weightPredTable[0][0][2].bPresentFlag)
m_numChromaWPFrames++;
}
else if (slice->m_sliceType == B_SLICE)
{
bool bLuma = false, bChroma = false;
for (int l = 0; l < 2; l++)
{
if (slice->m_weightPredTable[l][0][0].bPresentFlag)
bLuma = true;
if (slice->m_weightPredTable[l][0][1].bPresentFlag ||
slice->m_weightPredTable[l][0][2].bPresentFlag)
bChroma = true;
}
if (bLuma)
m_numLumaWPBiFrames++;
if (bChroma)
m_numChromaWPBiFrames++;
}
if (m_aborted)
return -1;
finishFrameStats(outFrame, curEncoder, curEncoder->m_accessUnitBits, frameData);
/* Write RateControl Frame level stats in multipass encodes */
if (m_param->rc.bStatWrite)
if (m_rateControl->writeRateControlFrameStats(outFrame, &curEncoder->m_rce))
m_aborted = true;
/* Allow this frame to be recycled if no frame encoders are using it for reference */
if (!pic_out)
{
ATOMIC_DEC(&outFrame->m_countRefEncoders);
m_dpb->recycleUnreferenced();
}
else
m_exportedPic = outFrame;
m_numDelayedPic--;
ret = 1;
}
/* pop a single frame from decided list, then provide to frame encoder
* curEncoder is guaranteed to be idle at this point */
if (!pass)
frameEnc = m_lookahead->getDecidedPicture();
if (frameEnc && !pass)
{
/* give this frame a FrameData instance before encoding */
if (m_dpb->m_frameDataFreeList)
{
frameEnc->m_encData = m_dpb->m_frameDataFreeList;
m_dpb->m_frameDataFreeList = m_dpb->m_frameDataFreeList->m_freeListNext;
frameEnc->reinit(m_sps);
}
else
{
frameEnc->allocEncodeData(m_param, m_sps);
Slice* slice = frameEnc->m_encData->m_slice;
slice->m_sps = &m_sps;
slice->m_pps = &m_pps;
slice->m_maxNumMergeCand = m_param->maxNumMergeCand;
slice->m_endCUAddr = slice->realEndAddress(m_sps.numCUsInFrame * NUM_4x4_PARTITIONS);
}
curEncoder->m_rce.encodeOrder = m_encodedFrameNum++;
if (m_bframeDelay)
{
int64_t *prevReorderedPts = m_prevReorderedPts;
frameEnc->m_dts = m_encodedFrameNum > m_bframeDelay
? prevReorderedPts[(m_encodedFrameNum - m_bframeDelay) % m_bframeDelay]
: frameEnc->m_reorderedPts - m_bframeDelayTime;
prevReorderedPts[m_encodedFrameNum % m_bframeDelay] = frameEnc->m_reorderedPts;
}
else
frameEnc->m_dts = frameEnc->m_reorderedPts;
/* Allocate analysis data before encode in save mode. This is allocated in frameEnc */
if (m_param->analysisMode == X265_ANALYSIS_SAVE)
{
x265_analysis_data* analysis = &frameEnc->m_analysisData;
analysis->poc = frameEnc->m_poc;
analysis->sliceType = frameEnc->m_lowres.sliceType;
uint32_t widthInCU = (m_param->sourceWidth + g_maxCUSize - 1) >> g_maxLog2CUSize;
uint32_t heightInCU = (m_param->sourceHeight + g_maxCUSize - 1) >> g_maxLog2CUSize;
uint32_t numCUsInFrame = widthInCU * heightInCU;
analysis->numCUsInFrame = numCUsInFrame;
analysis->numPartitions = NUM_4x4_PARTITIONS;
allocAnalysis(analysis);
}
/* determine references, setup RPS, etc */
m_dpb->prepareEncode(frameEnc);
if (m_param->rc.rateControlMode != X265_RC_CQP)
m_lookahead->getEstimatedPictureCost(frameEnc);
/* Allow FrameEncoder::compressFrame() to start in the frame encoder thread */
if (!curEncoder->startCompressFrame(frameEnc))
m_aborted = true;
}
else if (m_encodedFrameNum)
m_rateControl->setFinalFrameCount(m_encodedFrameNum);
}
while (m_bZeroLatency && ++pass < 2);
return ret;
}
int Encoder::reconfigureParam(x265_param* encParam, x265_param* param)
{
encParam->maxNumReferences = param->maxNumReferences; // never uses more refs than specified in stream headers
encParam->bEnableLoopFilter = param->bEnableLoopFilter;
encParam->deblockingFilterTCOffset = param->deblockingFilterTCOffset;
encParam->deblockingFilterBetaOffset = param->deblockingFilterBetaOffset;
encParam->bEnableFastIntra = param->bEnableFastIntra;
encParam->bEnableEarlySkip = param->bEnableEarlySkip;
encParam->bEnableTemporalMvp = param->bEnableTemporalMvp;
/* Scratch buffer prevents me_range from being increased for esa/tesa
if (param->searchMethod < X265_FULL_SEARCH || param->searchMethod < encParam->searchRange)
encParam->searchRange = param->searchRange; */
encParam->noiseReductionInter = param->noiseReductionInter;
encParam->noiseReductionIntra = param->noiseReductionIntra;
/* We can't switch out of subme=0 during encoding. */
if (encParam->subpelRefine)
encParam->subpelRefine = param->subpelRefine;
encParam->rdoqLevel = param->rdoqLevel;
encParam->rdLevel = param->rdLevel;
encParam->bEnableTSkipFast = param->bEnableTSkipFast;
encParam->psyRd = param->psyRd;
encParam->psyRdoq = param->psyRdoq;
encParam->bEnableSignHiding = param->bEnableSignHiding;
encParam->bEnableFastIntra = param->bEnableFastIntra;
encParam->maxTUSize = param->maxTUSize;
return x265_check_params(encParam);
}
void EncStats::addPsnr(double psnrY, double psnrU, double psnrV)
{
m_psnrSumY += psnrY;
m_psnrSumU += psnrU;
m_psnrSumV += psnrV;
}
void EncStats::addBits(uint64_t bits)
{
m_accBits += bits;
m_numPics++;
}
void EncStats::addSsim(double ssim)
{
m_globalSsim += ssim;
}
void EncStats::addQP(double aveQp)
{
m_totalQp += aveQp;
}
char* Encoder::statsString(EncStats& stat, char* buffer)
{
double fps = (double)m_param->fpsNum / m_param->fpsDenom;
double scale = fps / 1000 / (double)stat.m_numPics;
int len = sprintf(buffer, "%6u, ", stat.m_numPics);
len += sprintf(buffer + len, "Avg QP:%2.2lf", stat.m_totalQp / (double)stat.m_numPics);
len += sprintf(buffer + len, " kb/s: %-8.2lf", stat.m_accBits * scale);
if (m_param->bEnablePsnr)
{
len += sprintf(buffer + len, " PSNR Mean: Y:%.3lf U:%.3lf V:%.3lf",
stat.m_psnrSumY / (double)stat.m_numPics,
stat.m_psnrSumU / (double)stat.m_numPics,
stat.m_psnrSumV / (double)stat.m_numPics);
}
if (m_param->bEnableSsim)
{
sprintf(buffer + len, " SSIM Mean: %.6lf (%.3lfdB)",
stat.m_globalSsim / (double)stat.m_numPics,
x265_ssim2dB(stat.m_globalSsim / (double)stat.m_numPics));
}
return buffer;
}
void Encoder::printSummary()
{
if (m_param->logLevel < X265_LOG_INFO)
return;
char buffer[200];
if (m_analyzeI.m_numPics)
x265_log(m_param, X265_LOG_INFO, "frame I: %s\n", statsString(m_analyzeI, buffer));
if (m_analyzeP.m_numPics)
x265_log(m_param, X265_LOG_INFO, "frame P: %s\n", statsString(m_analyzeP, buffer));
if (m_analyzeB.m_numPics)
x265_log(m_param, X265_LOG_INFO, "frame B: %s\n", statsString(m_analyzeB, buffer));
if (m_param->bEnableWeightedPred && m_analyzeP.m_numPics)
{
x265_log(m_param, X265_LOG_INFO, "Weighted P-Frames: Y:%.1f%% UV:%.1f%%\n",
(float)100.0 * m_numLumaWPFrames / m_analyzeP.m_numPics,
(float)100.0 * m_numChromaWPFrames / m_analyzeP.m_numPics);
}
if (m_param->bEnableWeightedBiPred && m_analyzeB.m_numPics)
{
x265_log(m_param, X265_LOG_INFO, "Weighted B-Frames: Y:%.1f%% UV:%.1f%%\n",
(float)100.0 * m_numLumaWPBiFrames / m_analyzeB.m_numPics,
(float)100.0 * m_numChromaWPBiFrames / m_analyzeB.m_numPics);
}
int pWithB = 0;
for (int i = 0; i <= m_param->bframes; i++)
pWithB += m_lookahead->m_histogram[i];
if (pWithB)
{
int p = 0;
for (int i = 0; i <= m_param->bframes; i++)
p += sprintf(buffer + p, "%.1f%% ", 100. * m_lookahead->m_histogram[i] / pWithB);
x265_log(m_param, X265_LOG_INFO, "consecutive B-frames: %s\n", buffer);
}
if (m_param->bLossless)
{
float frameSize = (float)(m_param->sourceWidth - m_sps.conformanceWindow.rightOffset) *
(m_param->sourceHeight - m_sps.conformanceWindow.bottomOffset);
float uncompressed = frameSize * X265_DEPTH * m_analyzeAll.m_numPics;
x265_log(m_param, X265_LOG_INFO, "lossless compression ratio %.2f::1\n", uncompressed / m_analyzeAll.m_accBits);
}
if (m_analyzeAll.m_numPics)
{
int p = 0;
double elapsedEncodeTime = (double)(x265_mdate() - m_encodeStartTime) / 1000000;
double elapsedVideoTime = (double)m_analyzeAll.m_numPics * m_param->fpsDenom / m_param->fpsNum;
double bitrate = (0.001f * m_analyzeAll.m_accBits) / elapsedVideoTime;
p += sprintf(buffer + p, "\nencoded %d frames in %.2fs (%.2f fps), %.2f kb/s, Avg QP:%2.2lf", m_analyzeAll.m_numPics,
elapsedEncodeTime, m_analyzeAll.m_numPics / elapsedEncodeTime, bitrate, m_analyzeAll.m_totalQp / (double)m_analyzeAll.m_numPics);
if (m_param->bEnablePsnr)
{
double globalPsnr = (m_analyzeAll.m_psnrSumY * 6 + m_analyzeAll.m_psnrSumU + m_analyzeAll.m_psnrSumV) / (8 * m_analyzeAll.m_numPics);
p += sprintf(buffer + p, ", Global PSNR: %.3f", globalPsnr);
}
if (m_param->bEnableSsim)
p += sprintf(buffer + p, ", SSIM Mean Y: %.7f (%6.3f dB)", m_analyzeAll.m_globalSsim / m_analyzeAll.m_numPics, x265_ssim2dB(m_analyzeAll.m_globalSsim / m_analyzeAll.m_numPics));
sprintf(buffer + p, "\n");
general_log(m_param, NULL, X265_LOG_INFO, buffer);
}
else
general_log(m_param, NULL, X265_LOG_INFO, "\nencoded 0 frames\n");
#if DETAILED_CU_STATS
/* Summarize stats from all frame encoders */
CUStats cuStats;
for (int i = 0; i < m_param->frameNumThreads; i++)
cuStats.accumulate(m_frameEncoder[i]->m_cuStats);
if (!cuStats.totalCTUTime)
return;
int totalWorkerCount = 0;
for (int i = 0; i < m_numPools; i++)
totalWorkerCount += m_threadPool[i].m_numWorkers;
int64_t batchElapsedTime, coopSliceElapsedTime;
uint64_t batchCount, coopSliceCount;
m_lookahead->getWorkerStats(batchElapsedTime, batchCount, coopSliceElapsedTime, coopSliceCount);
int64_t lookaheadWorkerTime = m_lookahead->m_slicetypeDecideElapsedTime + m_lookahead->m_preLookaheadElapsedTime +
batchElapsedTime + coopSliceElapsedTime;
int64_t totalWorkerTime = cuStats.totalCTUTime + cuStats.loopFilterElapsedTime + cuStats.pmodeTime +
cuStats.pmeTime + lookaheadWorkerTime + cuStats.weightAnalyzeTime;
int64_t elapsedEncodeTime = x265_mdate() - m_encodeStartTime;
int64_t interRDOTotalTime = 0, intraRDOTotalTime = 0;
uint64_t interRDOTotalCount = 0, intraRDOTotalCount = 0;
for (uint32_t i = 0; i <= g_maxCUDepth; i++)
{
interRDOTotalTime += cuStats.interRDOElapsedTime[i];
intraRDOTotalTime += cuStats.intraRDOElapsedTime[i];
interRDOTotalCount += cuStats.countInterRDO[i];
intraRDOTotalCount += cuStats.countIntraRDO[i];
}
/* Time within compressCTU() and pmode tasks not captured by ME, Intra mode selection, or RDO (2Nx2N merge, 2Nx2N bidir, etc) */
int64_t unaccounted = (cuStats.totalCTUTime + cuStats.pmodeTime) -
(cuStats.intraAnalysisElapsedTime + cuStats.motionEstimationElapsedTime + interRDOTotalTime + intraRDOTotalTime);
#define ELAPSED_SEC(val) ((double)(val) / 1000000)
#define ELAPSED_MSEC(val) ((double)(val) / 1000)
if (m_param->bDistributeMotionEstimation && cuStats.countPMEMasters)
{
x265_log(m_param, X265_LOG_INFO, "CU: %%%05.2lf time spent in motion estimation, averaging %.3lf CU inter modes per CTU\n",
100.0 * (cuStats.motionEstimationElapsedTime + cuStats.pmeTime) / totalWorkerTime,
(double)cuStats.countMotionEstimate / cuStats.totalCTUs);
x265_log(m_param, X265_LOG_INFO, "CU: %.3lf PME masters per inter CU, each blocked an average of %.3lf ns\n",
(double)cuStats.countPMEMasters / cuStats.countMotionEstimate,
(double)cuStats.pmeBlockTime / cuStats.countPMEMasters);
x265_log(m_param, X265_LOG_INFO, "CU: %.3lf slaves per PME master, each took an average of %.3lf ms\n",
(double)cuStats.countPMETasks / cuStats.countPMEMasters,
ELAPSED_MSEC(cuStats.pmeTime) / cuStats.countPMETasks);
}
else
{
x265_log(m_param, X265_LOG_INFO, "CU: %%%05.2lf time spent in motion estimation, averaging %.3lf CU inter modes per CTU\n",
100.0 * cuStats.motionEstimationElapsedTime / totalWorkerTime,
(double)cuStats.countMotionEstimate / cuStats.totalCTUs);
if (cuStats.skippedMotionReferences[0] || cuStats.skippedMotionReferences[1] || cuStats.skippedMotionReferences[2])
x265_log(m_param, X265_LOG_INFO, "CU: Skipped motion searches per depth %%%.2lf %%%.2lf %%%.2lf %%%.2lf\n",
100.0 * cuStats.skippedMotionReferences[0] / cuStats.totalMotionReferences[0],
100.0 * cuStats.skippedMotionReferences[1] / cuStats.totalMotionReferences[1],
100.0 * cuStats.skippedMotionReferences[2] / cuStats.totalMotionReferences[2],
100.0 * cuStats.skippedMotionReferences[3] / cuStats.totalMotionReferences[3]);
}
x265_log(m_param, X265_LOG_INFO, "CU: %%%05.2lf time spent in intra analysis, averaging %.3lf Intra PUs per CTU\n",
100.0 * cuStats.intraAnalysisElapsedTime / totalWorkerTime,
(double)cuStats.countIntraAnalysis / cuStats.totalCTUs);
if (cuStats.skippedIntraCU[0] || cuStats.skippedIntraCU[1] || cuStats.skippedIntraCU[2])
x265_log(m_param, X265_LOG_INFO, "CU: Skipped intra CUs at depth %%%.2lf %%%.2lf %%%.2lf\n",
100.0 * cuStats.skippedIntraCU[0] / cuStats.totalIntraCU[0],
100.0 * cuStats.skippedIntraCU[1] / cuStats.totalIntraCU[1],
100.0 * cuStats.skippedIntraCU[2] / cuStats.totalIntraCU[2]);
x265_log(m_param, X265_LOG_INFO, "CU: %%%05.2lf time spent in inter RDO, measuring %.3lf inter/merge predictions per CTU\n",
100.0 * interRDOTotalTime / totalWorkerTime,
(double)interRDOTotalCount / cuStats.totalCTUs);
x265_log(m_param, X265_LOG_INFO, "CU: %%%05.2lf time spent in intra RDO, measuring %.3lf intra predictions per CTU\n",
100.0 * intraRDOTotalTime / totalWorkerTime,
(double)intraRDOTotalCount / cuStats.totalCTUs);
x265_log(m_param, X265_LOG_INFO, "CU: %%%05.2lf time spent in loop filters, average %.3lf ms per call\n",
100.0 * cuStats.loopFilterElapsedTime / totalWorkerTime,
ELAPSED_MSEC(cuStats.loopFilterElapsedTime) / cuStats.countLoopFilter);
if (cuStats.countWeightAnalyze && cuStats.weightAnalyzeTime)
{
x265_log(m_param, X265_LOG_INFO, "CU: %%%05.2lf time spent in weight analysis, average %.3lf ms per call\n",
100.0 * cuStats.weightAnalyzeTime / totalWorkerTime,
ELAPSED_MSEC(cuStats.weightAnalyzeTime) / cuStats.countWeightAnalyze);
}
if (m_param->bDistributeModeAnalysis && cuStats.countPModeMasters)
{
x265_log(m_param, X265_LOG_INFO, "CU: %.3lf PMODE masters per CTU, each blocked an average of %.3lf ns\n",
(double)cuStats.countPModeMasters / cuStats.totalCTUs,
(double)cuStats.pmodeBlockTime / cuStats.countPModeMasters);
x265_log(m_param, X265_LOG_INFO, "CU: %.3lf slaves per PMODE master, each took average of %.3lf ms\n",
(double)cuStats.countPModeTasks / cuStats.countPModeMasters,
ELAPSED_MSEC(cuStats.pmodeTime) / cuStats.countPModeTasks);
}
x265_log(m_param, X265_LOG_INFO, "CU: %%%05.2lf time spent in slicetypeDecide (avg %.3lfms) and prelookahead (avg %.3lfms)\n",
100.0 * lookaheadWorkerTime / totalWorkerTime,
ELAPSED_MSEC(m_lookahead->m_slicetypeDecideElapsedTime) / m_lookahead->m_countSlicetypeDecide,
ELAPSED_MSEC(m_lookahead->m_preLookaheadElapsedTime) / m_lookahead->m_countPreLookahead);
x265_log(m_param, X265_LOG_INFO, "CU: %%%05.2lf time spent in other tasks\n",
100.0 * unaccounted / totalWorkerTime);
if (intraRDOTotalTime && intraRDOTotalCount)
{
x265_log(m_param, X265_LOG_INFO, "CU: Intra RDO time per depth %%%05.2lf %%%05.2lf %%%05.2lf %%%05.2lf\n",
100.0 * cuStats.intraRDOElapsedTime[0] / intraRDOTotalTime, // 64
100.0 * cuStats.intraRDOElapsedTime[1] / intraRDOTotalTime, // 32
100.0 * cuStats.intraRDOElapsedTime[2] / intraRDOTotalTime, // 16
100.0 * cuStats.intraRDOElapsedTime[3] / intraRDOTotalTime); // 8
x265_log(m_param, X265_LOG_INFO, "CU: Intra RDO calls per depth %%%05.2lf %%%05.2lf %%%05.2lf %%%05.2lf\n",
100.0 * cuStats.countIntraRDO[0] / intraRDOTotalCount, // 64
100.0 * cuStats.countIntraRDO[1] / intraRDOTotalCount, // 32
100.0 * cuStats.countIntraRDO[2] / intraRDOTotalCount, // 16
100.0 * cuStats.countIntraRDO[3] / intraRDOTotalCount); // 8
}
if (interRDOTotalTime && interRDOTotalCount)
{
x265_log(m_param, X265_LOG_INFO, "CU: Inter RDO time per depth %%%05.2lf %%%05.2lf %%%05.2lf %%%05.2lf\n",
100.0 * cuStats.interRDOElapsedTime[0] / interRDOTotalTime, // 64
100.0 * cuStats.interRDOElapsedTime[1] / interRDOTotalTime, // 32
100.0 * cuStats.interRDOElapsedTime[2] / interRDOTotalTime, // 16
100.0 * cuStats.interRDOElapsedTime[3] / interRDOTotalTime); // 8
x265_log(m_param, X265_LOG_INFO, "CU: Inter RDO calls per depth %%%05.2lf %%%05.2lf %%%05.2lf %%%05.2lf\n",
100.0 * cuStats.countInterRDO[0] / interRDOTotalCount, // 64
100.0 * cuStats.countInterRDO[1] / interRDOTotalCount, // 32
100.0 * cuStats.countInterRDO[2] / interRDOTotalCount, // 16
100.0 * cuStats.countInterRDO[3] / interRDOTotalCount); // 8
}
x265_log(m_param, X265_LOG_INFO, "CU: " X265_LL " %dX%d CTUs compressed in %.3lf seconds, %.3lf CTUs per worker-second\n",
cuStats.totalCTUs, g_maxCUSize, g_maxCUSize,
ELAPSED_SEC(totalWorkerTime),
cuStats.totalCTUs / ELAPSED_SEC(totalWorkerTime));
if (m_threadPool)
x265_log(m_param, X265_LOG_INFO, "CU: %.3lf average worker utilization, %%%05.2lf of theoretical maximum utilization\n",
(double)totalWorkerTime / elapsedEncodeTime,
100.0 * totalWorkerTime / (elapsedEncodeTime * totalWorkerCount));
#undef ELAPSED_SEC
#undef ELAPSED_MSEC
#endif
}
void Encoder::fetchStats(x265_stats *stats, size_t statsSizeBytes)
{
if (statsSizeBytes >= sizeof(stats))
{
stats->globalPsnrY = m_analyzeAll.m_psnrSumY;
stats->globalPsnrU = m_analyzeAll.m_psnrSumU;
stats->globalPsnrV = m_analyzeAll.m_psnrSumV;
stats->encodedPictureCount = m_analyzeAll.m_numPics;
stats->totalWPFrames = m_numLumaWPFrames;
stats->accBits = m_analyzeAll.m_accBits;
stats->elapsedEncodeTime = (double)(x265_mdate() - m_encodeStartTime) / 1000000;
if (stats->encodedPictureCount > 0)
{
stats->globalSsim = m_analyzeAll.m_globalSsim / stats->encodedPictureCount;
stats->globalPsnr = (stats->globalPsnrY * 6 + stats->globalPsnrU + stats->globalPsnrV) / (8 * stats->encodedPictureCount);
stats->elapsedVideoTime = (double)stats->encodedPictureCount * m_param->fpsDenom / m_param->fpsNum;
stats->bitrate = (0.001f * stats->accBits) / stats->elapsedVideoTime;
}
else
{
stats->globalSsim = 0;
stats->globalPsnr = 0;
stats->bitrate = 0;
stats->elapsedVideoTime = 0;
}
double fps = (double)m_param->fpsNum / m_param->fpsDenom;
double scale = fps / 1000;
stats->statsI.numPics = m_analyzeI.m_numPics;
stats->statsI.avgQp = m_analyzeI.m_totalQp / (double)m_analyzeI.m_numPics;
stats->statsI.bitrate = m_analyzeI.m_accBits * scale / (double)m_analyzeI.m_numPics;
stats->statsI.psnrY = m_analyzeI.m_psnrSumY / (double)m_analyzeI.m_numPics;
stats->statsI.psnrU = m_analyzeI.m_psnrSumU / (double)m_analyzeI.m_numPics;
stats->statsI.psnrV = m_analyzeI.m_psnrSumV / (double)m_analyzeI.m_numPics;
stats->statsI.ssim = x265_ssim2dB(m_analyzeI.m_globalSsim / (double)m_analyzeI.m_numPics);
stats->statsP.numPics = m_analyzeP.m_numPics;
stats->statsP.avgQp = m_analyzeP.m_totalQp / (double)m_analyzeP.m_numPics;
stats->statsP.bitrate = m_analyzeP.m_accBits * scale / (double)m_analyzeP.m_numPics;
stats->statsP.psnrY = m_analyzeP.m_psnrSumY / (double)m_analyzeP.m_numPics;
stats->statsP.psnrU = m_analyzeP.m_psnrSumU / (double)m_analyzeP.m_numPics;
stats->statsP.psnrV = m_analyzeP.m_psnrSumV / (double)m_analyzeP.m_numPics;
stats->statsP.ssim = x265_ssim2dB(m_analyzeP.m_globalSsim / (double)m_analyzeP.m_numPics);
stats->statsB.numPics = m_analyzeB.m_numPics;
stats->statsB.avgQp = m_analyzeB.m_totalQp / (double)m_analyzeB.m_numPics;
stats->statsB.bitrate = m_analyzeB.m_accBits * scale / (double)m_analyzeB.m_numPics;
stats->statsB.psnrY = m_analyzeB.m_psnrSumY / (double)m_analyzeB.m_numPics;
stats->statsB.psnrU = m_analyzeB.m_psnrSumU / (double)m_analyzeB.m_numPics;
stats->statsB.psnrV = m_analyzeB.m_psnrSumV / (double)m_analyzeB.m_numPics;
stats->statsB.ssim = x265_ssim2dB(m_analyzeB.m_globalSsim / (double)m_analyzeB.m_numPics);
stats->maxCLL = m_analyzeAll.m_maxCLL;
stats->maxFALL = (uint16_t)(m_analyzeAll.m_maxFALL / m_analyzeAll.m_numPics);
if (m_emitCLLSEI)
{
m_param->maxCLL = stats->maxCLL;
m_param->maxFALL = stats->maxFALL;
}
}
/* If new statistics are added to x265_stats, we must check here whether the
* structure provided by the user is the new structure or an older one (for
* future safety) */
}
void Encoder::finishFrameStats(Frame* curFrame, FrameEncoder *curEncoder, uint64_t bits, x265_frame_stats* frameStats)
{
PicYuv* reconPic = curFrame->m_reconPic;
//===== calculate PSNR =====
int width = reconPic->m_picWidth - m_sps.conformanceWindow.rightOffset;
int height = reconPic->m_picHeight - m_sps.conformanceWindow.bottomOffset;
int size = width * height;
int maxvalY = 255 << (X265_DEPTH - 8);
int maxvalC = 255 << (X265_DEPTH - 8);
double refValueY = (double)maxvalY * maxvalY * size;
double refValueC = (double)maxvalC * maxvalC * size / 4.0;
uint64_t ssdY, ssdU, ssdV;
ssdY = curEncoder->m_SSDY;
ssdU = curEncoder->m_SSDU;
ssdV = curEncoder->m_SSDV;
double psnrY = (ssdY ? 10.0 * log10(refValueY / (double)ssdY) : 99.99);
double psnrU = (ssdU ? 10.0 * log10(refValueC / (double)ssdU) : 99.99);
double psnrV = (ssdV ? 10.0 * log10(refValueC / (double)ssdV) : 99.99);
FrameData& curEncData = *curFrame->m_encData;
Slice* slice = curEncData.m_slice;
//===== add bits, psnr and ssim =====
m_analyzeAll.addBits(bits);
m_analyzeAll.addQP(curEncData.m_avgQpAq);
if (m_param->bEnablePsnr)
m_analyzeAll.addPsnr(psnrY, psnrU, psnrV);
double ssim = 0.0;
if (m_param->bEnableSsim && curEncoder->m_ssimCnt)
{
ssim = curEncoder->m_ssim / curEncoder->m_ssimCnt;
m_analyzeAll.addSsim(ssim);
}
if (slice->isIntra())
{
m_analyzeI.addBits(bits);
m_analyzeI.addQP(curEncData.m_avgQpAq);
if (m_param->bEnablePsnr)
m_analyzeI.addPsnr(psnrY, psnrU, psnrV);
if (m_param->bEnableSsim)
m_analyzeI.addSsim(ssim);
}
else if (slice->isInterP())
{
m_analyzeP.addBits(bits);
m_analyzeP.addQP(curEncData.m_avgQpAq);
if (m_param->bEnablePsnr)
m_analyzeP.addPsnr(psnrY, psnrU, psnrV);
if (m_param->bEnableSsim)
m_analyzeP.addSsim(ssim);
}
else if (slice->isInterB())
{
m_analyzeB.addBits(bits);
m_analyzeB.addQP(curEncData.m_avgQpAq);
if (m_param->bEnablePsnr)
m_analyzeB.addPsnr(psnrY, psnrU, psnrV);
if (m_param->bEnableSsim)
m_analyzeB.addSsim(ssim);
}
m_analyzeAll.m_maxFALL += curFrame->m_fencPic->m_avgLumaLevel;
m_analyzeAll.m_maxCLL = X265_MAX(m_analyzeAll.m_maxCLL, curFrame->m_fencPic->m_maxLumaLevel);
char c = (slice->isIntra() ? 'I' : slice->isInterP() ? 'P' : 'B');
int poc = slice->m_poc;
if (!IS_REFERENCED(curFrame))
c += 32; // lower case if unreferenced
if (frameStats)
{
frameStats->encoderOrder = m_outputCount++;
frameStats->sliceType = c;
frameStats->poc = poc;
frameStats->qp = curEncData.m_avgQpAq;
frameStats->bits = bits;
frameStats->bScenecut = curFrame->m_lowres.bScenecut;
if (m_param->rc.rateControlMode == X265_RC_CRF)
frameStats->rateFactor = curEncData.m_rateFactor;
frameStats->psnrY = psnrY;
frameStats->psnrU = psnrU;
frameStats->psnrV = psnrV;
double psnr = (psnrY * 6 + psnrU + psnrV) / 8;
frameStats->psnr = psnr;
frameStats->ssim = ssim;
if (!slice->isIntra())
{
for (int ref = 0; ref < 16; ref++)
frameStats->list0POC[ref] = ref < slice->m_numRefIdx[0] ? slice->m_refPOCList[0][ref] - slice->m_lastIDR : -1;
if (!slice->isInterP())
{
for (int ref = 0; ref < 16; ref++)
frameStats->list1POC[ref] = ref < slice->m_numRefIdx[1] ? slice->m_refPOCList[1][ref] - slice->m_lastIDR : -1;
}
}
#define ELAPSED_MSEC(start, end) (((double)(end) - (start)) / 1000)
frameStats->decideWaitTime = ELAPSED_MSEC(0, curEncoder->m_slicetypeWaitTime);
frameStats->row0WaitTime = ELAPSED_MSEC(curEncoder->m_startCompressTime, curEncoder->m_row0WaitTime);
frameStats->wallTime = ELAPSED_MSEC(curEncoder->m_row0WaitTime, curEncoder->m_endCompressTime);
frameStats->refWaitWallTime = ELAPSED_MSEC(curEncoder->m_row0WaitTime, curEncoder->m_allRowsAvailableTime);
frameStats->totalCTUTime = ELAPSED_MSEC(0, curEncoder->m_totalWorkerElapsedTime);
frameStats->stallTime = ELAPSED_MSEC(0, curEncoder->m_totalNoWorkerTime);
if (curEncoder->m_totalActiveWorkerCount)
frameStats->avgWPP = (double)curEncoder->m_totalActiveWorkerCount / curEncoder->m_activeWorkerCountSamples;
else
frameStats->avgWPP = 1;
frameStats->countRowBlocks = curEncoder->m_countRowBlocks;
frameStats->cuStats.percentIntraNxN = curFrame->m_encData->m_frameStats.percentIntraNxN;
frameStats->avgChromaDistortion = curFrame->m_encData->m_frameStats.avgChromaDistortion;
frameStats->avgLumaDistortion = curFrame->m_encData->m_frameStats.avgLumaDistortion;
frameStats->avgPsyEnergy = curFrame->m_encData->m_frameStats.avgPsyEnergy;
frameStats->avgResEnergy = curFrame->m_encData->m_frameStats.avgResEnergy;
frameStats->avgLumaLevel = curFrame->m_fencPic->m_avgLumaLevel;
frameStats->maxLumaLevel = curFrame->m_fencPic->m_maxLumaLevel;
for (uint32_t depth = 0; depth <= g_maxCUDepth; depth++)
{
frameStats->cuStats.percentSkipCu[depth] = curFrame->m_encData->m_frameStats.percentSkipCu[depth];
frameStats->cuStats.percentMergeCu[depth] = curFrame->m_encData->m_frameStats.percentMergeCu[depth];
frameStats->cuStats.percentInterDistribution[depth][0] = curFrame->m_encData->m_frameStats.percentInterDistribution[depth][0];
frameStats->cuStats.percentInterDistribution[depth][1] = curFrame->m_encData->m_frameStats.percentInterDistribution[depth][1];
frameStats->cuStats.percentInterDistribution[depth][2] = curFrame->m_encData->m_frameStats.percentInterDistribution[depth][2];
for (int n = 0; n < INTRA_MODES; n++)
frameStats->cuStats.percentIntraDistribution[depth][n] = curFrame->m_encData->m_frameStats.percentIntraDistribution[depth][n];
}
}
}
#if defined(_MSC_VER)
#pragma warning(disable: 4800) // forcing int to bool
#pragma warning(disable: 4127) // conditional expression is constant
#endif
void Encoder::getStreamHeaders(NALList& list, Entropy& sbacCoder, Bitstream& bs)
{
sbacCoder.setBitstream(&bs);
/* headers for start of bitstream */
bs.resetBits();
sbacCoder.codeVPS(m_vps);
bs.writeByteAlignment();
list.serialize(NAL_UNIT_VPS, bs);
bs.resetBits();
sbacCoder.codeSPS(m_sps, m_scalingList, m_vps.ptl);
bs.writeByteAlignment();
list.serialize(NAL_UNIT_SPS, bs);
bs.resetBits();
sbacCoder.codePPS(m_pps);
bs.writeByteAlignment();
list.serialize(NAL_UNIT_PPS, bs);
if (m_param->masteringDisplayColorVolume)
{
SEIMasteringDisplayColorVolume mdsei;
if (mdsei.parse(m_param->masteringDisplayColorVolume))
{
bs.resetBits();
mdsei.write(bs, m_sps);
bs.writeByteAlignment();
list.serialize(NAL_UNIT_PREFIX_SEI, bs);
}
else
x265_log(m_param, X265_LOG_WARNING, "unable to parse mastering display color volume info\n");
}
if (m_emitCLLSEI)
{
SEIContentLightLevel cllsei;
cllsei.max_content_light_level = m_param->maxCLL;
cllsei.max_pic_average_light_level = m_param->maxFALL;
bs.resetBits();
cllsei.write(bs, m_sps);
bs.writeByteAlignment();
list.serialize(NAL_UNIT_PREFIX_SEI, bs);
}
if (m_param->bEmitInfoSEI)
{
char *opts = x265_param2string(m_param);
if (opts)
{
char *buffer = X265_MALLOC(char, strlen(opts) + strlen(PFX(version_str)) +
strlen(PFX(build_info_str)) + 200);
if (buffer)
{
sprintf(buffer, "x265 (build %d) - %s:%s - H.265/HEVC codec - "
"Copyright 2013-2015 (c) Multicoreware Inc - "
"http://x265.org - options: %s",
X265_BUILD, PFX(version_str), PFX(build_info_str), opts);
bs.resetBits();
SEIuserDataUnregistered idsei;
idsei.m_userData = (uint8_t*)buffer;
idsei.m_userDataLength = (uint32_t)strlen(buffer);
idsei.write(bs, m_sps);
bs.writeByteAlignment();
list.serialize(NAL_UNIT_PREFIX_SEI, bs);
X265_FREE(buffer);
}
X265_FREE(opts);
}
}
if (m_param->bEmitHRDSEI || !!m_param->interlaceMode)
{
/* Picture Timing and Buffering Period SEI require the SPS to be "activated" */
SEIActiveParameterSets sei;
sei.m_selfContainedCvsFlag = true;
sei.m_noParamSetUpdateFlag = true;
bs.resetBits();
sei.write(bs, m_sps);
bs.writeByteAlignment();
list.serialize(NAL_UNIT_PREFIX_SEI, bs);
}
}
void Encoder::initVPS(VPS *vps)
{
/* Note that much of the VPS is initialized by determineLevel() */
vps->ptl.progressiveSourceFlag = !m_param->interlaceMode;
vps->ptl.interlacedSourceFlag = !!m_param->interlaceMode;
vps->ptl.nonPackedConstraintFlag = false;
vps->ptl.frameOnlyConstraintFlag = !m_param->interlaceMode;
}
void Encoder::initSPS(SPS *sps)
{
sps->conformanceWindow = m_conformanceWindow;
sps->chromaFormatIdc = m_param->internalCsp;
sps->picWidthInLumaSamples = m_param->sourceWidth;
sps->picHeightInLumaSamples = m_param->sourceHeight;
sps->numCuInWidth = (m_param->sourceWidth + g_maxCUSize - 1) / g_maxCUSize;
sps->numCuInHeight = (m_param->sourceHeight + g_maxCUSize - 1) / g_maxCUSize;
sps->numCUsInFrame = sps->numCuInWidth * sps->numCuInHeight;
sps->numPartitions = NUM_4x4_PARTITIONS;
sps->numPartInCUSize = 1 << g_unitSizeDepth;
sps->log2MinCodingBlockSize = g_maxLog2CUSize - g_maxCUDepth;
sps->log2DiffMaxMinCodingBlockSize = g_maxCUDepth;
uint32_t maxLog2TUSize = (uint32_t)g_log2Size[m_param->maxTUSize];
sps->quadtreeTULog2MaxSize = X265_MIN(g_maxLog2CUSize, maxLog2TUSize);
sps->quadtreeTULog2MinSize = 2;
sps->quadtreeTUMaxDepthInter = m_param->tuQTMaxInterDepth;
sps->quadtreeTUMaxDepthIntra = m_param->tuQTMaxIntraDepth;
sps->bUseSAO = m_param->bEnableSAO;
sps->bUseAMP = m_param->bEnableAMP;
sps->maxAMPDepth = m_param->bEnableAMP ? g_maxCUDepth : 0;
sps->maxTempSubLayers = m_param->bEnableTemporalSubLayers ? 2 : 1;
sps->maxDecPicBuffering = m_vps.maxDecPicBuffering;
sps->numReorderPics = m_vps.numReorderPics;
sps->maxLatencyIncrease = m_vps.maxLatencyIncrease = m_param->bframes;
sps->bUseStrongIntraSmoothing = m_param->bEnableStrongIntraSmoothing;
sps->bTemporalMVPEnabled = m_param->bEnableTemporalMvp;
VUI& vui = sps->vuiParameters;
vui.aspectRatioInfoPresentFlag = !!m_param->vui.aspectRatioIdc;
vui.aspectRatioIdc = m_param->vui.aspectRatioIdc;
vui.sarWidth = m_param->vui.sarWidth;
vui.sarHeight = m_param->vui.sarHeight;
vui.overscanInfoPresentFlag = m_param->vui.bEnableOverscanInfoPresentFlag;
vui.overscanAppropriateFlag = m_param->vui.bEnableOverscanAppropriateFlag;
vui.videoSignalTypePresentFlag = m_param->vui.bEnableVideoSignalTypePresentFlag;
vui.videoFormat = m_param->vui.videoFormat;
vui.videoFullRangeFlag = m_param->vui.bEnableVideoFullRangeFlag;
vui.colourDescriptionPresentFlag = m_param->vui.bEnableColorDescriptionPresentFlag;
vui.colourPrimaries = m_param->vui.colorPrimaries;
vui.transferCharacteristics = m_param->vui.transferCharacteristics;
vui.matrixCoefficients = m_param->vui.matrixCoeffs;
vui.chromaLocInfoPresentFlag = m_param->vui.bEnableChromaLocInfoPresentFlag;
vui.chromaSampleLocTypeTopField = m_param->vui.chromaSampleLocTypeTopField;
vui.chromaSampleLocTypeBottomField = m_param->vui.chromaSampleLocTypeBottomField;
vui.defaultDisplayWindow.bEnabled = m_param->vui.bEnableDefaultDisplayWindowFlag;
vui.defaultDisplayWindow.rightOffset = m_param->vui.defDispWinRightOffset;
vui.defaultDisplayWindow.topOffset = m_param->vui.defDispWinTopOffset;
vui.defaultDisplayWindow.bottomOffset = m_param->vui.defDispWinBottomOffset;
vui.defaultDisplayWindow.leftOffset = m_param->vui.defDispWinLeftOffset;
vui.frameFieldInfoPresentFlag = !!m_param->interlaceMode;
vui.fieldSeqFlag = !!m_param->interlaceMode;
vui.hrdParametersPresentFlag = m_param->bEmitHRDSEI;
vui.timingInfo.numUnitsInTick = m_param->fpsDenom;
vui.timingInfo.timeScale = m_param->fpsNum;
}
void Encoder::initPPS(PPS *pps)
{
bool bIsVbv = m_param->rc.vbvBufferSize > 0 && m_param->rc.vbvMaxBitrate > 0;
if (!m_param->bLossless && (m_param->rc.aqMode || bIsVbv))
{
pps->bUseDQP = true;
pps->maxCuDQPDepth = g_log2Size[m_param->maxCUSize] - g_log2Size[m_param->rc.qgSize];
X265_CHECK(pps->maxCuDQPDepth <= 2, "max CU DQP depth cannot be greater than 2\n");
}
else
{
pps->bUseDQP = false;
pps->maxCuDQPDepth = 0;
}
pps->chromaQpOffset[0] = m_param->cbQpOffset;
pps->chromaQpOffset[1] = m_param->crQpOffset;
pps->bConstrainedIntraPred = m_param->bEnableConstrainedIntra;
pps->bUseWeightPred = m_param->bEnableWeightedPred;
pps->bUseWeightedBiPred = m_param->bEnableWeightedBiPred;
pps->bTransquantBypassEnabled = m_param->bCULossless || m_param->bLossless;
pps->bTransformSkipEnabled = m_param->bEnableTransformSkip;
pps->bSignHideEnabled = m_param->bEnableSignHiding;
pps->bDeblockingFilterControlPresent = !m_param->bEnableLoopFilter || m_param->deblockingFilterBetaOffset || m_param->deblockingFilterTCOffset;
pps->bPicDisableDeblockingFilter = !m_param->bEnableLoopFilter;
pps->deblockingFilterBetaOffsetDiv2 = m_param->deblockingFilterBetaOffset;
pps->deblockingFilterTcOffsetDiv2 = m_param->deblockingFilterTCOffset;
pps->bEntropyCodingSyncEnabled = m_param->bEnableWavefront;
}
void Encoder::configure(x265_param *p)
{
this->m_param = p;
if (p->keyframeMax < 0)
{
/* A negative max GOP size indicates the user wants only one I frame at
* the start of the stream. Set an infinite GOP distance and disable
* adaptive I frame placement */
p->keyframeMax = INT_MAX;
p->scenecutThreshold = 0;
}
else if (p->keyframeMax <= 1)
{
p->keyframeMax = 1;
// disable lookahead for all-intra encodes
p->bFrameAdaptive = 0;
p->bframes = 0;
p->bOpenGOP = 0;
p->bRepeatHeaders = 1;
p->lookaheadDepth = 0;
p->bframes = 0;
p->scenecutThreshold = 0;
p->bFrameAdaptive = 0;
p->rc.cuTree = 0;
p->bEnableWeightedPred = 0;
p->bEnableWeightedBiPred = 0;
/* SPSs shall have sps_max_dec_pic_buffering_minus1[ sps_max_sub_layers_minus1 ] equal to 0 only */
p->maxNumReferences = 1;
}
if (!p->keyframeMin)
{
double fps = (double)p->fpsNum / p->fpsDenom;
p->keyframeMin = X265_MIN((int)fps, p->keyframeMax / 10);
}
p->keyframeMin = X265_MAX(1, X265_MIN(p->keyframeMin, p->keyframeMax / 2 + 1));
if (!p->bframes)
p->bBPyramid = 0;
if (!p->rdoqLevel)
p->psyRdoq = 0;
/* Disable features which are not supported by the current RD level */
if (p->rdLevel < 3)
{
if (p->bCULossless) /* impossible */
x265_log(p, X265_LOG_WARNING, "--cu-lossless disabled, requires --rdlevel 3 or higher\n");
if (p->bEnableTransformSkip) /* impossible */
x265_log(p, X265_LOG_WARNING, "--tskip disabled, requires --rdlevel 3 or higher\n");
p->bCULossless = p->bEnableTransformSkip = 0;
}
if (p->rdLevel < 2)
{
if (p->bDistributeModeAnalysis) /* not useful */
x265_log(p, X265_LOG_WARNING, "--pmode disabled, requires --rdlevel 2 or higher\n");
p->bDistributeModeAnalysis = 0;
p->psyRd = 0; /* impossible */
if (p->bEnableRectInter) /* broken, not very useful */
x265_log(p, X265_LOG_WARNING, "--rect disabled, requires --rdlevel 2 or higher\n");
p->bEnableRectInter = 0;
}
if (!p->bEnableRectInter) /* not useful */
p->bEnableAMP = false;
/* In 444, chroma gets twice as much resolution, so halve quality when psy-rd is enabled */
if (p->internalCsp == X265_CSP_I444 && p->psyRd)
{
p->cbQpOffset += 6;
p->crQpOffset += 6;
}
if (p->bLossless)
{
p->rc.rateControlMode = X265_RC_CQP;
p->rc.qp = 4; // An oddity, QP=4 is more lossless than QP=0 and gives better lambdas
p->bEnableSsim = 0;
p->bEnablePsnr = 0;
}
if (p->rc.rateControlMode == X265_RC_CQP)
{
p->rc.aqMode = X265_AQ_NONE;
p->rc.bitrate = 0;
p->rc.cuTree = 0;
p->rc.aqStrength = 0;
}
if (p->rc.aqMode == 0 && p->rc.cuTree)
{
p->rc.aqMode = X265_AQ_VARIANCE;
p->rc.aqStrength = 0.0;
}
if (p->lookaheadDepth == 0 && p->rc.cuTree && !p->rc.bStatRead)
{
x265_log(p, X265_LOG_WARNING, "cuTree disabled, requires lookahead to be enabled\n");
p->rc.cuTree = 0;
}
if (p->maxTUSize > p->maxCUSize)
{
x265_log(p, X265_LOG_WARNING, "Max TU size should be less than or equal to max CU size, setting max TU size = %d\n", p->maxCUSize);
p->maxTUSize = p->maxCUSize;
}
if (p->rc.aqStrength == 0 && p->rc.cuTree == 0)
p->rc.aqMode = X265_AQ_NONE;
if (p->rc.aqMode == X265_AQ_NONE && p->rc.cuTree == 0)
p->rc.aqStrength = 0;
if (p->totalFrames && p->totalFrames <= 2 * ((float)p->fpsNum) / p->fpsDenom && p->rc.bStrictCbr)
p->lookaheadDepth = p->totalFrames;
if (p->scalingLists && p->internalCsp == X265_CSP_I444)
{
x265_log(p, X265_LOG_WARNING, "Scaling lists are not yet supported for 4:4:4 color space\n");
p->scalingLists = 0;
}
if (p->interlaceMode)
x265_log(p, X265_LOG_WARNING, "Support for interlaced video is experimental\n");
if (p->rc.rfConstantMin > p->rc.rfConstant)
{
x265_log(m_param, X265_LOG_WARNING, "CRF min must be less than CRF\n");
p->rc.rfConstantMin = 0;
}
if (p->analysisMode && (p->bDistributeModeAnalysis || p->bDistributeMotionEstimation))
{
x265_log(p, X265_LOG_WARNING, "Analysis load/save options incompatible with pmode/pme, Disabling pmode/pme\n");
p->bDistributeMotionEstimation = p->bDistributeModeAnalysis = 0;
}
if (p->bDistributeModeAnalysis && (p->limitReferences >> 1) && 1)
{
x265_log(p, X265_LOG_WARNING, "Limit reference options 2 and 3 are not supported with pmode. Disabling limit reference\n");
p->limitReferences = 0;
}
if (p->bEnableTemporalSubLayers && !p->bframes)
{
x265_log(p, X265_LOG_WARNING, "B frames not enabled, temporal sublayer disabled\n");
p->bEnableTemporalSubLayers = 0;
}
m_bframeDelay = p->bframes ? (p->bBPyramid ? 2 : 1) : 0;
p->bFrameBias = X265_MIN(X265_MAX(-90, p->bFrameBias), 100);
if (p->logLevel < X265_LOG_INFO)
{
/* don't measure these metrics if they will not be reported */
p->bEnablePsnr = 0;
p->bEnableSsim = 0;
}
/* Warn users trying to measure PSNR/SSIM with psy opts on. */
if (p->bEnablePsnr || p->bEnableSsim)
{
const char *s = NULL;
if (p->psyRd || p->psyRdoq)
{
s = p->bEnablePsnr ? "psnr" : "ssim";
x265_log(p, X265_LOG_WARNING, "--%s used with psy on: results will be invalid!\n", s);
}
else if (!p->rc.aqMode && p->bEnableSsim)
{
x265_log(p, X265_LOG_WARNING, "--ssim used with AQ off: results will be invalid!\n");
s = "ssim";
}
else if (p->rc.aqStrength > 0 && p->bEnablePsnr)
{
x265_log(p, X265_LOG_WARNING, "--psnr used with AQ on: results will be invalid!\n");
s = "psnr";
}
if (s)
x265_log(p, X265_LOG_WARNING, "--tune %s should be used if attempting to benchmark %s!\n", s, s);
}
/* some options make no sense if others are disabled */
p->bSaoNonDeblocked &= p->bEnableSAO;
p->bEnableTSkipFast &= p->bEnableTransformSkip;
/* initialize the conformance window */
m_conformanceWindow.bEnabled = false;
m_conformanceWindow.rightOffset = 0;
m_conformanceWindow.topOffset = 0;
m_conformanceWindow.bottomOffset = 0;
m_conformanceWindow.leftOffset = 0;
/* set pad size if width is not multiple of the minimum CU size */
if (p->sourceWidth & (p->minCUSize - 1))
{
uint32_t rem = p->sourceWidth & (p->minCUSize - 1);
uint32_t padsize = p->minCUSize - rem;
p->sourceWidth += padsize;
m_conformanceWindow.bEnabled = true;
m_conformanceWindow.rightOffset = padsize;
}
/* set pad size if height is not multiple of the minimum CU size */
if (p->sourceHeight & (p->minCUSize - 1))
{
uint32_t rem = p->sourceHeight & (p->minCUSize - 1);
uint32_t padsize = p->minCUSize - rem;
p->sourceHeight += padsize;
m_conformanceWindow.bEnabled = true;
m_conformanceWindow.bottomOffset = padsize;
}
if (p->bDistributeModeAnalysis && p->analysisMode)
{
p->analysisMode = X265_ANALYSIS_OFF;
x265_log(p, X265_LOG_WARNING, "Analysis save and load mode not supported for distributed mode analysis\n");
}
bool bIsVbv = m_param->rc.vbvBufferSize > 0 && m_param->rc.vbvMaxBitrate > 0;
if (!m_param->bLossless && (m_param->rc.aqMode || bIsVbv))
{
if (p->rc.qgSize < X265_MAX(16, p->minCUSize))
{
p->rc.qgSize = X265_MAX(16, p->minCUSize);
x265_log(p, X265_LOG_WARNING, "QGSize should be greater than or equal to 16 and minCUSize, setting QGSize = %d\n", p->rc.qgSize);
}
if (p->rc.qgSize > p->maxCUSize)
{
p->rc.qgSize = p->maxCUSize;
x265_log(p, X265_LOG_WARNING, "QGSize should be less than or equal to maxCUSize, setting QGSize = %d\n", p->rc.qgSize);
}
}
else
m_param->rc.qgSize = p->maxCUSize;
if (p->bLogCuStats)
x265_log(p, X265_LOG_WARNING, "--cu-stats option is now deprecated\n");
if (p->csvfn)
x265_log(p, X265_LOG_WARNING, "libx265 no longer supports CSV file statistics\n");
}
void Encoder::allocAnalysis(x265_analysis_data* analysis)
{
analysis->interData = analysis->intraData = NULL;
if (analysis->sliceType == X265_TYPE_IDR || analysis->sliceType == X265_TYPE_I)
{
analysis_intra_data *intraData = (analysis_intra_data*)analysis->intraData;
CHECKED_MALLOC_ZERO(intraData, analysis_intra_data, 1);
CHECKED_MALLOC(intraData->depth, uint8_t, analysis->numPartitions * analysis->numCUsInFrame);
CHECKED_MALLOC(intraData->modes, uint8_t, analysis->numPartitions * analysis->numCUsInFrame);
CHECKED_MALLOC(intraData->partSizes, char, analysis->numPartitions * analysis->numCUsInFrame);
CHECKED_MALLOC(intraData->chromaModes, uint8_t, analysis->numPartitions * analysis->numCUsInFrame);
analysis->intraData = intraData;
}
else
{
analysis_inter_data *interData = (analysis_inter_data*)analysis->interData;
CHECKED_MALLOC_ZERO(interData, analysis_inter_data, 1);
CHECKED_MALLOC_ZERO(interData->ref, int32_t, analysis->numCUsInFrame * X265_MAX_PRED_MODE_PER_CTU * 2);
CHECKED_MALLOC(interData->depth, uint8_t, analysis->numPartitions * analysis->numCUsInFrame);
CHECKED_MALLOC(interData->modes, uint8_t, analysis->numPartitions * analysis->numCUsInFrame);
CHECKED_MALLOC_ZERO(interData->bestMergeCand, uint32_t, analysis->numCUsInFrame * CUGeom::MAX_GEOMS);
analysis->interData = interData;
}
return;
fail:
freeAnalysis(analysis);
m_aborted = true;
}
void Encoder::freeAnalysis(x265_analysis_data* analysis)
{
if (analysis->intraData)
{
X265_FREE(((analysis_intra_data*)analysis->intraData)->depth);
X265_FREE(((analysis_intra_data*)analysis->intraData)->modes);
X265_FREE(((analysis_intra_data*)analysis->intraData)->partSizes);
X265_FREE(((analysis_intra_data*)analysis->intraData)->chromaModes);
X265_FREE(analysis->intraData);
}
else
{
X265_FREE(((analysis_inter_data*)analysis->interData)->ref);
X265_FREE(((analysis_inter_data*)analysis->interData)->depth);
X265_FREE(((analysis_inter_data*)analysis->interData)->modes);
X265_FREE(((analysis_inter_data*)analysis->interData)->bestMergeCand);
X265_FREE(analysis->interData);
}
}
void Encoder::readAnalysisFile(x265_analysis_data* analysis, int curPoc)
{
#define X265_FREAD(val, size, readSize, fileOffset)\
if (fread(val, size, readSize, fileOffset) != readSize)\
{\
x265_log(NULL, X265_LOG_ERROR, "Error reading analysis data\n");\
freeAnalysis(analysis);\
m_aborted = true;\
return;\
}\
static uint64_t consumedBytes = 0;
static uint64_t totalConsumedBytes = 0;
fseeko(m_analysisFile, totalConsumedBytes, SEEK_SET);
int poc; uint32_t frameRecordSize;
X265_FREAD(&frameRecordSize, sizeof(uint32_t), 1, m_analysisFile);
X265_FREAD(&poc, sizeof(int), 1, m_analysisFile);
uint64_t currentOffset = totalConsumedBytes;
/* Seeking to the right frame Record */
while (poc != curPoc && !feof(m_analysisFile))
{
currentOffset += frameRecordSize;
fseeko(m_analysisFile, currentOffset, SEEK_SET);
X265_FREAD(&frameRecordSize, sizeof(uint32_t), 1, m_analysisFile);
X265_FREAD(&poc, sizeof(int), 1, m_analysisFile);
}
if (poc != curPoc || feof(m_analysisFile))
{
x265_log(NULL, X265_LOG_WARNING, "Error reading analysis data: Cannot find POC %d\n", curPoc);
freeAnalysis(analysis);
return;
}
/* Now arrived at the right frame, read the record */
analysis->poc = poc;
analysis->frameRecordSize = frameRecordSize;
X265_FREAD(&analysis->sliceType, sizeof(int), 1, m_analysisFile);
X265_FREAD(&analysis->numCUsInFrame, sizeof(int), 1, m_analysisFile);
X265_FREAD(&analysis->numPartitions, sizeof(int), 1, m_analysisFile);
/* Memory is allocated for inter and intra analysis data based on the slicetype */
allocAnalysis(analysis);
if (analysis->sliceType == X265_TYPE_IDR || analysis->sliceType == X265_TYPE_I)
{
X265_FREAD(((analysis_intra_data *)analysis->intraData)->depth, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
X265_FREAD(((analysis_intra_data *)analysis->intraData)->modes, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
X265_FREAD(((analysis_intra_data *)analysis->intraData)->partSizes, sizeof(char), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
X265_FREAD(((analysis_intra_data *)analysis->intraData)->chromaModes, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
analysis->sliceType = X265_TYPE_I;
consumedBytes += frameRecordSize;
}
else if (analysis->sliceType == X265_TYPE_P)
{
X265_FREAD(((analysis_inter_data *)analysis->interData)->ref, sizeof(int32_t), analysis->numCUsInFrame * X265_MAX_PRED_MODE_PER_CTU, m_analysisFile);
X265_FREAD(((analysis_inter_data *)analysis->interData)->depth, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
X265_FREAD(((analysis_inter_data *)analysis->interData)->modes, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
X265_FREAD(((analysis_inter_data *)analysis->interData)->bestMergeCand, sizeof(uint32_t), analysis->numCUsInFrame * CUGeom::MAX_GEOMS, m_analysisFile);
consumedBytes += frameRecordSize;
totalConsumedBytes = consumedBytes;
}
else
{
X265_FREAD(((analysis_inter_data *)analysis->interData)->ref, sizeof(int32_t), analysis->numCUsInFrame * X265_MAX_PRED_MODE_PER_CTU * 2, m_analysisFile);
X265_FREAD(((analysis_inter_data *)analysis->interData)->depth, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
X265_FREAD(((analysis_inter_data *)analysis->interData)->modes, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
X265_FREAD(((analysis_inter_data *)analysis->interData)->bestMergeCand, sizeof(uint32_t), analysis->numCUsInFrame * CUGeom::MAX_GEOMS, m_analysisFile);
consumedBytes += frameRecordSize;
}
#undef X265_FREAD
}
void Encoder::writeAnalysisFile(x265_analysis_data* analysis)
{
#define X265_FWRITE(val, size, writeSize, fileOffset)\
if (fwrite(val, size, writeSize, fileOffset) < writeSize)\
{\
x265_log(NULL, X265_LOG_ERROR, "Error writing analysis data\n");\
freeAnalysis(analysis);\
m_aborted = true;\
return;\
}\
/* calculate frameRecordSize */
analysis->frameRecordSize = sizeof(analysis->frameRecordSize) + sizeof(analysis->poc) + sizeof(analysis->sliceType) +
sizeof(analysis->numCUsInFrame) + sizeof(analysis->numPartitions);
if (analysis->sliceType == X265_TYPE_IDR || analysis->sliceType == X265_TYPE_I)
analysis->frameRecordSize += sizeof(uint8_t) * analysis->numCUsInFrame * analysis->numPartitions * 4;
else if (analysis->sliceType == X265_TYPE_P)
{
analysis->frameRecordSize += sizeof(int32_t) * analysis->numCUsInFrame * X265_MAX_PRED_MODE_PER_CTU;
analysis->frameRecordSize += sizeof(uint8_t) * analysis->numCUsInFrame * analysis->numPartitions * 2;
analysis->frameRecordSize += sizeof(uint32_t) * analysis->numCUsInFrame * CUGeom::MAX_GEOMS;
}
else
{
analysis->frameRecordSize += sizeof(int32_t) * analysis->numCUsInFrame * X265_MAX_PRED_MODE_PER_CTU * 2;
analysis->frameRecordSize += sizeof(uint8_t) * analysis->numCUsInFrame * analysis->numPartitions * 2;
analysis->frameRecordSize += sizeof(uint32_t) * analysis->numCUsInFrame * CUGeom::MAX_GEOMS;
}
X265_FWRITE(&analysis->frameRecordSize, sizeof(uint32_t), 1, m_analysisFile);
X265_FWRITE(&analysis->poc, sizeof(int), 1, m_analysisFile);
X265_FWRITE(&analysis->sliceType, sizeof(int), 1, m_analysisFile);
X265_FWRITE(&analysis->numCUsInFrame, sizeof(int), 1, m_analysisFile);
X265_FWRITE(&analysis->numPartitions, sizeof(int), 1, m_analysisFile);
if (analysis->sliceType == X265_TYPE_IDR || analysis->sliceType == X265_TYPE_I)
{
X265_FWRITE(((analysis_intra_data*)analysis->intraData)->depth, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
X265_FWRITE(((analysis_intra_data*)analysis->intraData)->modes, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
X265_FWRITE(((analysis_intra_data*)analysis->intraData)->partSizes, sizeof(char), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
X265_FWRITE(((analysis_intra_data*)analysis->intraData)->chromaModes, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
}
else if (analysis->sliceType == X265_TYPE_P)
{
X265_FWRITE(((analysis_inter_data*)analysis->interData)->ref, sizeof(int32_t), analysis->numCUsInFrame * X265_MAX_PRED_MODE_PER_CTU, m_analysisFile);
X265_FWRITE(((analysis_inter_data*)analysis->interData)->depth, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
X265_FWRITE(((analysis_inter_data*)analysis->interData)->modes, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
X265_FWRITE(((analysis_inter_data*)analysis->interData)->bestMergeCand, sizeof(uint32_t), analysis->numCUsInFrame * CUGeom::MAX_GEOMS, m_analysisFile);
}
else
{
X265_FWRITE(((analysis_inter_data*)analysis->interData)->ref, sizeof(int32_t), analysis->numCUsInFrame * X265_MAX_PRED_MODE_PER_CTU * 2, m_analysisFile);
X265_FWRITE(((analysis_inter_data*)analysis->interData)->depth, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
X265_FWRITE(((analysis_inter_data*)analysis->interData)->modes, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
X265_FWRITE(((analysis_inter_data*)analysis->interData)->bestMergeCand, sizeof(uint32_t), analysis->numCUsInFrame * CUGeom::MAX_GEOMS, m_analysisFile);
}
#undef X265_FWRITE
}