libbpg/x265/source/encoder/frameencoder.cpp
2015-10-27 11:46:00 +01:00

1312 lines
51 KiB
C++

/*****************************************************************************
* Copyright (C) 2013 x265 project
*
* Authors: Chung Shin Yee <shinyee@multicorewareinc.com>
* Min Chen <chenm003@163.com>
* Steve Borho <steve@borho.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*
* This program is also available under a commercial proprietary license.
* For more information, contact us at license @ x265.com.
*****************************************************************************/
#include "common.h"
#include "frame.h"
#include "framedata.h"
#include "wavefront.h"
#include "param.h"
#include "encoder.h"
#include "frameencoder.h"
#include "common.h"
#include "slicetype.h"
#include "nal.h"
namespace X265_NS {
void weightAnalyse(Slice& slice, Frame& frame, x265_param& param);
FrameEncoder::FrameEncoder()
{
m_prevOutputTime = x265_mdate();
m_isFrameEncoder = true;
m_threadActive = true;
m_slicetypeWaitTime = 0;
m_activeWorkerCount = 0;
m_completionCount = 0;
m_bAllRowsStop = false;
m_vbvResetTriggerRow = -1;
m_outStreams = NULL;
m_substreamSizes = NULL;
m_nr = NULL;
m_tld = NULL;
m_rows = NULL;
m_top = NULL;
m_param = NULL;
m_frame = NULL;
m_cuGeoms = NULL;
m_ctuGeomMap = NULL;
m_localTldIdx = 0;
memset(&m_rce, 0, sizeof(RateControlEntry));
}
void FrameEncoder::destroy()
{
if (m_pool)
{
if (!m_jpId)
{
int numTLD = m_pool->m_numWorkers;
if (!m_param->bEnableWavefront)
numTLD += m_pool->m_numProviders;
for (int i = 0; i < numTLD; i++)
m_tld[i].destroy();
delete [] m_tld;
}
}
else
{
m_tld->destroy();
delete m_tld;
}
delete[] m_rows;
delete[] m_outStreams;
X265_FREE(m_cuGeoms);
X265_FREE(m_ctuGeomMap);
X265_FREE(m_substreamSizes);
X265_FREE(m_nr);
m_frameFilter.destroy();
if (m_param->bEmitHRDSEI || !!m_param->interlaceMode)
{
delete m_rce.picTimingSEI;
delete m_rce.hrdTiming;
}
}
bool FrameEncoder::init(Encoder *top, int numRows, int numCols)
{
m_top = top;
m_param = top->m_param;
m_numRows = numRows;
m_numCols = numCols;
m_filterRowDelay = (m_param->bEnableSAO && m_param->bSaoNonDeblocked) ?
2 : (m_param->bEnableSAO || m_param->bEnableLoopFilter ? 1 : 0);
m_filterRowDelayCus = m_filterRowDelay * numCols;
m_rows = new CTURow[m_numRows];
bool ok = !!m_numRows;
/* determine full motion search range */
int range = m_param->searchRange; /* fpel search */
range += !!(m_param->searchMethod < 2); /* diamond/hex range check lag */
range += NTAPS_LUMA / 2; /* subpel filter half-length */
range += 2 + MotionEstimate::hpelIterationCount(m_param->subpelRefine) / 2; /* subpel refine steps */
m_refLagRows = 1 + ((range + g_maxCUSize - 1) / g_maxCUSize);
// NOTE: 2 times of numRows because both Encoder and Filter in same queue
if (!WaveFront::init(m_numRows * 2))
{
x265_log(m_param, X265_LOG_ERROR, "unable to initialize wavefront queue\n");
m_pool = NULL;
}
m_frameFilter.init(top, this, numRows);
// initialize HRD parameters of SPS
if (m_param->bEmitHRDSEI || !!m_param->interlaceMode)
{
m_rce.picTimingSEI = new SEIPictureTiming;
m_rce.hrdTiming = new HRDTiming;
ok &= m_rce.picTimingSEI && m_rce.hrdTiming;
}
if (m_param->noiseReductionIntra || m_param->noiseReductionInter || m_param->rc.vbvBufferSize)
m_nr = X265_MALLOC(NoiseReduction, 1);
if (m_nr)
memset(m_nr, 0, sizeof(NoiseReduction));
else
m_param->noiseReductionIntra = m_param->noiseReductionInter = 0;
return ok;
}
/* Generate a complete list of unique geom sets for the current picture dimensions */
bool FrameEncoder::initializeGeoms()
{
/* Geoms only vary between CTUs in the presence of picture edges */
int maxCUSize = m_param->maxCUSize;
int minCUSize = m_param->minCUSize;
int heightRem = m_param->sourceHeight & (maxCUSize - 1);
int widthRem = m_param->sourceWidth & (maxCUSize - 1);
int allocGeoms = 1; // body
if (heightRem && widthRem)
allocGeoms = 4; // body, right, bottom, corner
else if (heightRem || widthRem)
allocGeoms = 2; // body, right or bottom
m_ctuGeomMap = X265_MALLOC(uint32_t, m_numRows * m_numCols);
m_cuGeoms = X265_MALLOC(CUGeom, allocGeoms * CUGeom::MAX_GEOMS);
if (!m_cuGeoms || !m_ctuGeomMap)
return false;
// body
CUData::calcCTUGeoms(maxCUSize, maxCUSize, maxCUSize, minCUSize, m_cuGeoms);
memset(m_ctuGeomMap, 0, sizeof(uint32_t) * m_numRows * m_numCols);
if (allocGeoms == 1)
return true;
int countGeoms = 1;
if (widthRem)
{
// right
CUData::calcCTUGeoms(widthRem, maxCUSize, maxCUSize, minCUSize, m_cuGeoms + countGeoms * CUGeom::MAX_GEOMS);
for (uint32_t i = 0; i < m_numRows; i++)
{
uint32_t ctuAddr = m_numCols * (i + 1) - 1;
m_ctuGeomMap[ctuAddr] = countGeoms * CUGeom::MAX_GEOMS;
}
countGeoms++;
}
if (heightRem)
{
// bottom
CUData::calcCTUGeoms(maxCUSize, heightRem, maxCUSize, minCUSize, m_cuGeoms + countGeoms * CUGeom::MAX_GEOMS);
for (uint32_t i = 0; i < m_numCols; i++)
{
uint32_t ctuAddr = m_numCols * (m_numRows - 1) + i;
m_ctuGeomMap[ctuAddr] = countGeoms * CUGeom::MAX_GEOMS;
}
countGeoms++;
if (widthRem)
{
// corner
CUData::calcCTUGeoms(widthRem, heightRem, maxCUSize, minCUSize, m_cuGeoms + countGeoms * CUGeom::MAX_GEOMS);
uint32_t ctuAddr = m_numCols * m_numRows - 1;
m_ctuGeomMap[ctuAddr] = countGeoms * CUGeom::MAX_GEOMS;
countGeoms++;
}
X265_CHECK(countGeoms == allocGeoms, "geometry match check failure\n");
}
return true;
}
bool FrameEncoder::startCompressFrame(Frame* curFrame)
{
m_slicetypeWaitTime = x265_mdate() - m_prevOutputTime;
m_frame = curFrame;
m_param = curFrame->m_param;
m_sliceType = curFrame->m_lowres.sliceType;
curFrame->m_encData->m_frameEncoderID = m_jpId;
curFrame->m_encData->m_jobProvider = this;
curFrame->m_encData->m_slice->m_mref = m_mref;
if (!m_cuGeoms)
{
if (!initializeGeoms())
return false;
}
m_enable.trigger();
return true;
}
void FrameEncoder::threadMain()
{
THREAD_NAME("Frame", m_jpId);
if (m_pool)
{
m_pool->setCurrentThreadAffinity();
/* the first FE on each NUMA node is responsible for allocating thread
* local data for all worker threads in that pool. If WPP is disabled, then
* each FE also needs a TLD instance */
if (!m_jpId)
{
int numTLD = m_pool->m_numWorkers;
if (!m_param->bEnableWavefront)
numTLD += m_pool->m_numProviders;
m_tld = new ThreadLocalData[numTLD];
for (int i = 0; i < numTLD; i++)
{
m_tld[i].analysis.initSearch(*m_param, m_top->m_scalingList);
m_tld[i].analysis.create(m_tld);
}
for (int i = 0; i < m_pool->m_numProviders; i++)
{
if (m_pool->m_jpTable[i]->m_isFrameEncoder) /* ugh; over-allocation and other issues here */
{
FrameEncoder *peer = dynamic_cast<FrameEncoder*>(m_pool->m_jpTable[i]);
peer->m_tld = m_tld;
}
}
}
if (m_param->bEnableWavefront)
m_localTldIdx = -1; // cause exception if used
else
m_localTldIdx = m_pool->m_numWorkers + m_jpId;
}
else
{
m_tld = new ThreadLocalData;
m_tld->analysis.initSearch(*m_param, m_top->m_scalingList);
m_tld->analysis.create(NULL);
m_localTldIdx = 0;
}
m_done.trigger(); /* signal that thread is initialized */
m_enable.wait(); /* Encoder::encode() triggers this event */
while (m_threadActive)
{
compressFrame();
m_done.trigger(); /* FrameEncoder::getEncodedPicture() blocks for this event */
m_enable.wait();
}
}
void FrameEncoder::WeightAnalysis::processTasks(int /* workerThreadId */)
{
Frame* frame = master.m_frame;
weightAnalyse(*frame->m_encData->m_slice, *frame, *master.m_param);
}
void FrameEncoder::compressFrame()
{
ProfileScopeEvent(frameThread);
m_startCompressTime = x265_mdate();
m_totalActiveWorkerCount = 0;
m_activeWorkerCountSamples = 0;
m_totalWorkerElapsedTime = 0;
m_totalNoWorkerTime = 0;
m_countRowBlocks = 0;
m_allRowsAvailableTime = 0;
m_stallStartTime = 0;
m_completionCount = 0;
m_bAllRowsStop = false;
m_vbvResetTriggerRow = -1;
m_SSDY = m_SSDU = m_SSDV = 0;
m_ssim = 0;
m_ssimCnt = 0;
memset(&(m_frame->m_encData->m_frameStats), 0, sizeof(m_frame->m_encData->m_frameStats));
/* Emit access unit delimiter unless this is the first frame and the user is
* not repeating headers (since AUD is supposed to be the first NAL in the access
* unit) */
Slice* slice = m_frame->m_encData->m_slice;
if (m_param->bEnableAccessUnitDelimiters && (m_frame->m_poc || m_param->bRepeatHeaders))
{
m_bs.resetBits();
m_entropyCoder.setBitstream(&m_bs);
m_entropyCoder.codeAUD(*slice);
m_bs.writeByteAlignment();
m_nalList.serialize(NAL_UNIT_ACCESS_UNIT_DELIMITER, m_bs);
}
if (m_frame->m_lowres.bKeyframe && m_param->bRepeatHeaders)
m_top->getStreamHeaders(m_nalList, m_entropyCoder, m_bs);
// Weighted Prediction parameters estimation.
bool bUseWeightP = slice->m_sliceType == P_SLICE && slice->m_pps->bUseWeightPred;
bool bUseWeightB = slice->m_sliceType == B_SLICE && slice->m_pps->bUseWeightedBiPred;
if (bUseWeightP || bUseWeightB)
{
#if DETAILED_CU_STATS
m_cuStats.countWeightAnalyze++;
ScopedElapsedTime time(m_cuStats.weightAnalyzeTime);
#endif
WeightAnalysis wa(*this);
if (m_pool && wa.tryBondPeers(*this, 1))
/* use an idle worker for weight analysis */
wa.waitForExit();
else
weightAnalyse(*slice, *m_frame, *m_param);
}
else
slice->disableWeights();
// Generate motion references
int numPredDir = slice->isInterP() ? 1 : slice->isInterB() ? 2 : 0;
for (int l = 0; l < numPredDir; l++)
{
for (int ref = 0; ref < slice->m_numRefIdx[l]; ref++)
{
WeightParam *w = NULL;
if ((bUseWeightP || bUseWeightB) && slice->m_weightPredTable[l][ref][0].bPresentFlag)
w = slice->m_weightPredTable[l][ref];
slice->m_refReconPicList[l][ref] = slice->m_refFrameList[l][ref]->m_reconPic;
m_mref[l][ref].init(slice->m_refReconPicList[l][ref], w, *m_param);
}
}
int numTLD;
if (m_pool)
numTLD = m_param->bEnableWavefront ? m_pool->m_numWorkers : m_pool->m_numWorkers + m_pool->m_numProviders;
else
numTLD = 1;
/* Get the QP for this frame from rate control. This call may block until
* frames ahead of it in encode order have called rateControlEnd() */
int qp = m_top->m_rateControl->rateControlStart(m_frame, &m_rce, m_top);
m_rce.newQp = qp;
if (m_nr)
{
if (qp > QP_MAX_SPEC && m_frame->m_param->rc.vbvBufferSize)
{
for (int i = 0; i < numTLD; i++)
{
m_tld[i].analysis.m_quant.m_frameNr[m_jpId].offset = m_top->m_offsetEmergency[qp - QP_MAX_SPEC - 1];
m_tld[i].analysis.m_quant.m_frameNr[m_jpId].residualSum = m_top->m_residualSumEmergency;
m_tld[i].analysis.m_quant.m_frameNr[m_jpId].count = m_top->m_countEmergency;
}
}
else
{
if (m_param->noiseReductionIntra || m_param->noiseReductionInter)
{
for (int i = 0; i < numTLD; i++)
{
m_tld[i].analysis.m_quant.m_frameNr[m_jpId].offset = m_tld[i].analysis.m_quant.m_frameNr[m_jpId].nrOffsetDenoise;
m_tld[i].analysis.m_quant.m_frameNr[m_jpId].residualSum = m_tld[i].analysis.m_quant.m_frameNr[m_jpId].nrResidualSum;
m_tld[i].analysis.m_quant.m_frameNr[m_jpId].count = m_tld[i].analysis.m_quant.m_frameNr[m_jpId].nrCount;
}
}
else
{
for (int i = 0; i < numTLD; i++)
m_tld[i].analysis.m_quant.m_frameNr[m_jpId].offset = NULL;
}
}
}
/* Clip slice QP to 0-51 spec range before encoding */
slice->m_sliceQp = x265_clip3(-QP_BD_OFFSET, QP_MAX_SPEC, qp);
m_initSliceContext.resetEntropy(*slice);
m_frameFilter.start(m_frame, m_initSliceContext, qp);
/* ensure all rows are blocked prior to initializing row CTU counters */
WaveFront::clearEnabledRowMask();
/* reset entropy coders */
m_entropyCoder.load(m_initSliceContext);
for (uint32_t i = 0; i < m_numRows; i++)
m_rows[i].init(m_initSliceContext);
uint32_t numSubstreams = m_param->bEnableWavefront ? slice->m_sps->numCuInHeight : 1;
if (!m_outStreams)
{
m_outStreams = new Bitstream[numSubstreams];
m_substreamSizes = X265_MALLOC(uint32_t, numSubstreams);
if (!m_param->bEnableSAO)
for (uint32_t i = 0; i < numSubstreams; i++)
m_rows[i].rowGoOnCoder.setBitstream(&m_outStreams[i]);
}
else
for (uint32_t i = 0; i < numSubstreams; i++)
m_outStreams[i].resetBits();
int prevBPSEI = m_rce.encodeOrder ? m_top->m_lastBPSEI : 0;
if (m_frame->m_lowres.bKeyframe)
{
if (m_param->bEmitHRDSEI)
{
SEIBufferingPeriod* bpSei = &m_top->m_rateControl->m_bufPeriodSEI;
// since the temporal layer HRD is not ready, we assumed it is fixed
bpSei->m_auCpbRemovalDelayDelta = 1;
bpSei->m_cpbDelayOffset = 0;
bpSei->m_dpbDelayOffset = 0;
// hrdFullness() calculates the initial CPB removal delay and offset
m_top->m_rateControl->hrdFullness(bpSei);
m_bs.resetBits();
bpSei->write(m_bs, *slice->m_sps);
m_bs.writeByteAlignment();
m_nalList.serialize(NAL_UNIT_PREFIX_SEI, m_bs);
m_top->m_lastBPSEI = m_rce.encodeOrder;
}
}
if (m_param->bEmitHRDSEI || !!m_param->interlaceMode)
{
SEIPictureTiming *sei = m_rce.picTimingSEI;
const VUI *vui = &slice->m_sps->vuiParameters;
const HRDInfo *hrd = &vui->hrdParameters;
int poc = slice->m_poc;
if (vui->frameFieldInfoPresentFlag)
{
if (m_param->interlaceMode == 2)
sei->m_picStruct = (poc & 1) ? 1 /* top */ : 2 /* bottom */;
else if (m_param->interlaceMode == 1)
sei->m_picStruct = (poc & 1) ? 2 /* bottom */ : 1 /* top */;
else
sei->m_picStruct = 0;
sei->m_sourceScanType = 0;
sei->m_duplicateFlag = false;
}
if (vui->hrdParametersPresentFlag)
{
// The m_aucpbremoval delay specifies how many clock ticks the
// access unit associated with the picture timing SEI message has to
// wait after removal of the access unit with the most recent
// buffering period SEI message
sei->m_auCpbRemovalDelay = X265_MIN(X265_MAX(1, m_rce.encodeOrder - prevBPSEI), (1 << hrd->cpbRemovalDelayLength));
sei->m_picDpbOutputDelay = slice->m_sps->numReorderPics + poc - m_rce.encodeOrder;
}
m_bs.resetBits();
sei->write(m_bs, *slice->m_sps);
m_bs.writeByteAlignment();
m_nalList.serialize(NAL_UNIT_PREFIX_SEI, m_bs);
}
/* CQP and CRF (without capped VBV) doesn't use mid-frame statistics to
* tune RateControl parameters for other frames.
* Hence, for these modes, update m_startEndOrder and unlock RC for previous threads waiting in
* RateControlEnd here, after the slice contexts are initialized. For the rest - ABR
* and VBV, unlock only after rateControlUpdateStats of this frame is called */
if (m_param->rc.rateControlMode != X265_RC_ABR && !m_top->m_rateControl->m_isVbv)
{
m_top->m_rateControl->m_startEndOrder.incr();
if (m_rce.encodeOrder < m_param->frameNumThreads - 1)
m_top->m_rateControl->m_startEndOrder.incr(); // faked rateControlEnd calls for negative frames
}
/* Analyze CTU rows, most of the hard work is done here. Frame is
* compressed in a wave-front pattern if WPP is enabled. Row based loop
* filters runs behind the CTU compression and reconstruction */
m_rows[0].active = true;
if (m_param->bEnableWavefront)
{
for (uint32_t row = 0; row < m_numRows; row++)
{
// block until all reference frames have reconstructed the rows we need
for (int l = 0; l < numPredDir; l++)
{
for (int ref = 0; ref < slice->m_numRefIdx[l]; ref++)
{
Frame *refpic = slice->m_refFrameList[l][ref];
uint32_t reconRowCount = refpic->m_reconRowCount.get();
while ((reconRowCount != m_numRows) && (reconRowCount < row + m_refLagRows))
reconRowCount = refpic->m_reconRowCount.waitForChange(reconRowCount);
if ((bUseWeightP || bUseWeightB) && m_mref[l][ref].isWeighted)
m_mref[l][ref].applyWeight(row + m_refLagRows, m_numRows);
}
}
enableRowEncoder(row); /* clear external dependency for this row */
if (!row)
{
m_row0WaitTime = x265_mdate();
enqueueRowEncoder(0); /* clear internal dependency, start wavefront */
}
tryWakeOne();
}
m_allRowsAvailableTime = x265_mdate();
tryWakeOne(); /* ensure one thread is active or help-wanted flag is set prior to blocking */
static const int block_ms = 250;
while (m_completionEvent.timedWait(block_ms))
tryWakeOne();
}
else
{
for (uint32_t i = 0; i < m_numRows + m_filterRowDelay; i++)
{
// compress
if (i < m_numRows)
{
// block until all reference frames have reconstructed the rows we need
for (int l = 0; l < numPredDir; l++)
{
int list = l;
for (int ref = 0; ref < slice->m_numRefIdx[list]; ref++)
{
Frame *refpic = slice->m_refFrameList[list][ref];
uint32_t reconRowCount = refpic->m_reconRowCount.get();
while ((reconRowCount != m_numRows) && (reconRowCount < i + m_refLagRows))
reconRowCount = refpic->m_reconRowCount.waitForChange(reconRowCount);
if ((bUseWeightP || bUseWeightB) && m_mref[l][ref].isWeighted)
m_mref[list][ref].applyWeight(i + m_refLagRows, m_numRows);
}
}
if (!i)
m_row0WaitTime = x265_mdate();
else if (i == m_numRows - 1)
m_allRowsAvailableTime = x265_mdate();
processRowEncoder(i, m_tld[m_localTldIdx]);
}
// filter
if (i >= m_filterRowDelay)
m_frameFilter.processRow(i - m_filterRowDelay);
}
}
if (m_param->rc.bStatWrite)
{
int totalI = 0, totalP = 0, totalSkip = 0;
// accumulate intra,inter,skip cu count per frame for 2 pass
for (uint32_t i = 0; i < m_numRows; i++)
{
m_frame->m_encData->m_frameStats.mvBits += m_rows[i].rowStats.mvBits;
m_frame->m_encData->m_frameStats.coeffBits += m_rows[i].rowStats.coeffBits;
m_frame->m_encData->m_frameStats.miscBits += m_rows[i].rowStats.miscBits;
totalI += m_rows[i].rowStats.intra8x8Cnt;
totalP += m_rows[i].rowStats.inter8x8Cnt;
totalSkip += m_rows[i].rowStats.skip8x8Cnt;
}
int totalCuCount = totalI + totalP + totalSkip;
m_frame->m_encData->m_frameStats.percent8x8Intra = (double)totalI / totalCuCount;
m_frame->m_encData->m_frameStats.percent8x8Inter = (double)totalP / totalCuCount;
m_frame->m_encData->m_frameStats.percent8x8Skip = (double)totalSkip / totalCuCount;
}
for (uint32_t i = 0; i < m_numRows; i++)
{
m_frame->m_encData->m_frameStats.cntIntraNxN += m_rows[i].rowStats.cntIntraNxN;
m_frame->m_encData->m_frameStats.totalCu += m_rows[i].rowStats.totalCu;
m_frame->m_encData->m_frameStats.totalCtu += m_rows[i].rowStats.totalCtu;
m_frame->m_encData->m_frameStats.lumaDistortion += m_rows[i].rowStats.lumaDistortion;
m_frame->m_encData->m_frameStats.chromaDistortion += m_rows[i].rowStats.chromaDistortion;
m_frame->m_encData->m_frameStats.psyEnergy += m_rows[i].rowStats.psyEnergy;
m_frame->m_encData->m_frameStats.resEnergy += m_rows[i].rowStats.resEnergy;
for (uint32_t depth = 0; depth <= g_maxCUDepth; depth++)
{
m_frame->m_encData->m_frameStats.cntSkipCu[depth] += m_rows[i].rowStats.cntSkipCu[depth];
m_frame->m_encData->m_frameStats.cntMergeCu[depth] += m_rows[i].rowStats.cntMergeCu[depth];
for (int m = 0; m < INTER_MODES; m++)
m_frame->m_encData->m_frameStats.cuInterDistribution[depth][m] += m_rows[i].rowStats.cuInterDistribution[depth][m];
for (int n = 0; n < INTRA_MODES; n++)
m_frame->m_encData->m_frameStats.cuIntraDistribution[depth][n] += m_rows[i].rowStats.cuIntraDistribution[depth][n];
}
}
m_frame->m_encData->m_frameStats.avgLumaDistortion = (double)(m_frame->m_encData->m_frameStats.lumaDistortion) / m_frame->m_encData->m_frameStats.totalCtu;
m_frame->m_encData->m_frameStats.avgChromaDistortion = (double)(m_frame->m_encData->m_frameStats.chromaDistortion) / m_frame->m_encData->m_frameStats.totalCtu;
m_frame->m_encData->m_frameStats.avgPsyEnergy = (double)(m_frame->m_encData->m_frameStats.psyEnergy) / m_frame->m_encData->m_frameStats.totalCtu;
m_frame->m_encData->m_frameStats.avgResEnergy = (double)(m_frame->m_encData->m_frameStats.resEnergy) / m_frame->m_encData->m_frameStats.totalCtu;
m_frame->m_encData->m_frameStats.percentIntraNxN = (double)(m_frame->m_encData->m_frameStats.cntIntraNxN * 100) / m_frame->m_encData->m_frameStats.totalCu;
for (uint32_t depth = 0; depth <= g_maxCUDepth; depth++)
{
m_frame->m_encData->m_frameStats.percentSkipCu[depth] = (double)(m_frame->m_encData->m_frameStats.cntSkipCu[depth] * 100) / m_frame->m_encData->m_frameStats.totalCu;
m_frame->m_encData->m_frameStats.percentMergeCu[depth] = (double)(m_frame->m_encData->m_frameStats.cntMergeCu[depth] * 100) / m_frame->m_encData->m_frameStats.totalCu;
for (int n = 0; n < INTRA_MODES; n++)
m_frame->m_encData->m_frameStats.percentIntraDistribution[depth][n] = (double)(m_frame->m_encData->m_frameStats.cuIntraDistribution[depth][n] * 100) / m_frame->m_encData->m_frameStats.totalCu;
uint64_t cuInterRectCnt = 0; // sum of Nx2N, 2NxN counts
cuInterRectCnt += m_frame->m_encData->m_frameStats.cuInterDistribution[depth][1] + m_frame->m_encData->m_frameStats.cuInterDistribution[depth][2];
m_frame->m_encData->m_frameStats.percentInterDistribution[depth][0] = (double)(m_frame->m_encData->m_frameStats.cuInterDistribution[depth][0] * 100) / m_frame->m_encData->m_frameStats.totalCu;
m_frame->m_encData->m_frameStats.percentInterDistribution[depth][1] = (double)(cuInterRectCnt * 100) / m_frame->m_encData->m_frameStats.totalCu;
m_frame->m_encData->m_frameStats.percentInterDistribution[depth][2] = (double)(m_frame->m_encData->m_frameStats.cuInterDistribution[depth][3] * 100) / m_frame->m_encData->m_frameStats.totalCu;
}
m_bs.resetBits();
m_entropyCoder.load(m_initSliceContext);
m_entropyCoder.setBitstream(&m_bs);
m_entropyCoder.codeSliceHeader(*slice, *m_frame->m_encData);
// finish encode of each CTU row, only required when SAO is enabled
if (m_param->bEnableSAO)
encodeSlice();
// serialize each row, record final lengths in slice header
uint32_t maxStreamSize = m_nalList.serializeSubstreams(m_substreamSizes, numSubstreams, m_outStreams);
// complete the slice header by writing WPP row-starts
m_entropyCoder.setBitstream(&m_bs);
if (slice->m_pps->bEntropyCodingSyncEnabled)
m_entropyCoder.codeSliceHeaderWPPEntryPoints(*slice, m_substreamSizes, maxStreamSize);
m_bs.writeByteAlignment();
m_nalList.serialize(slice->m_nalUnitType, m_bs);
if (m_param->decodedPictureHashSEI)
{
if (m_param->decodedPictureHashSEI == 1)
{
m_seiReconPictureDigest.m_method = SEIDecodedPictureHash::MD5;
for (int i = 0; i < 3; i++)
MD5Final(&m_state[i], m_seiReconPictureDigest.m_digest[i]);
}
else if (m_param->decodedPictureHashSEI == 2)
{
m_seiReconPictureDigest.m_method = SEIDecodedPictureHash::CRC;
for (int i = 0; i < 3; i++)
crcFinish(m_crc[i], m_seiReconPictureDigest.m_digest[i]);
}
else if (m_param->decodedPictureHashSEI == 3)
{
m_seiReconPictureDigest.m_method = SEIDecodedPictureHash::CHECKSUM;
for (int i = 0; i < 3; i++)
checksumFinish(m_checksum[i], m_seiReconPictureDigest.m_digest[i]);
}
m_bs.resetBits();
m_seiReconPictureDigest.write(m_bs, *slice->m_sps);
m_bs.writeByteAlignment();
m_nalList.serialize(NAL_UNIT_SUFFIX_SEI, m_bs);
}
uint64_t bytes = 0;
for (uint32_t i = 0; i < m_nalList.m_numNal; i++)
{
int type = m_nalList.m_nal[i].type;
// exclude SEI
if (type != NAL_UNIT_PREFIX_SEI && type != NAL_UNIT_SUFFIX_SEI)
{
bytes += m_nalList.m_nal[i].sizeBytes;
// and exclude start code prefix
bytes -= (!i || type == NAL_UNIT_SPS || type == NAL_UNIT_PPS) ? 4 : 3;
}
}
m_accessUnitBits = bytes << 3;
m_endCompressTime = x265_mdate();
/* rateControlEnd may also block for earlier frames to call rateControlUpdateStats */
if (m_top->m_rateControl->rateControlEnd(m_frame, m_accessUnitBits, &m_rce) < 0)
m_top->m_aborted = true;
/* Decrement referenced frame reference counts, allow them to be recycled */
for (int l = 0; l < numPredDir; l++)
{
for (int ref = 0; ref < slice->m_numRefIdx[l]; ref++)
{
Frame *refpic = slice->m_refFrameList[l][ref];
ATOMIC_DEC(&refpic->m_countRefEncoders);
}
}
if (m_nr)
{
bool nrEnabled = (m_rce.newQp < QP_MAX_SPEC || !m_param->rc.vbvBufferSize) && (m_param->noiseReductionIntra || m_param->noiseReductionInter);
if (nrEnabled)
{
/* Accumulate NR statistics from all worker threads */
for (int i = 0; i < numTLD; i++)
{
NoiseReduction* nr = &m_tld[i].analysis.m_quant.m_frameNr[m_jpId];
for (int cat = 0; cat < MAX_NUM_TR_CATEGORIES; cat++)
{
for (int coeff = 0; coeff < MAX_NUM_TR_COEFFS; coeff++)
m_nr->nrResidualSum[cat][coeff] += nr->nrResidualSum[cat][coeff];
m_nr->nrCount[cat] += nr->nrCount[cat];
}
}
noiseReductionUpdate();
/* Copy updated NR coefficients back to all worker threads */
for (int i = 0; i < numTLD; i++)
{
NoiseReduction* nr = &m_tld[i].analysis.m_quant.m_frameNr[m_jpId];
memcpy(nr->nrOffsetDenoise, m_nr->nrOffsetDenoise, sizeof(uint16_t)* MAX_NUM_TR_CATEGORIES * MAX_NUM_TR_COEFFS);
memset(nr->nrCount, 0, sizeof(uint32_t)* MAX_NUM_TR_CATEGORIES);
memset(nr->nrResidualSum, 0, sizeof(uint32_t)* MAX_NUM_TR_CATEGORIES * MAX_NUM_TR_COEFFS);
}
}
}
#if DETAILED_CU_STATS
/* Accumulate CU statistics from each worker thread, we could report
* per-frame stats here, but currently we do not. */
for (int i = 0; i < numTLD; i++)
m_cuStats.accumulate(m_tld[i].analysis.m_stats[m_jpId]);
#endif
m_endFrameTime = x265_mdate();
}
void FrameEncoder::encodeSlice()
{
Slice* slice = m_frame->m_encData->m_slice;
const uint32_t widthInLCUs = slice->m_sps->numCuInWidth;
const uint32_t lastCUAddr = (slice->m_endCUAddr + NUM_4x4_PARTITIONS - 1) / NUM_4x4_PARTITIONS;
const uint32_t numSubstreams = m_param->bEnableWavefront ? slice->m_sps->numCuInHeight : 1;
SAOParam* saoParam = slice->m_sps->bUseSAO ? m_frame->m_encData->m_saoParam : NULL;
for (uint32_t cuAddr = 0; cuAddr < lastCUAddr; cuAddr++)
{
uint32_t col = cuAddr % widthInLCUs;
uint32_t lin = cuAddr / widthInLCUs;
uint32_t subStrm = lin % numSubstreams;
CUData* ctu = m_frame->m_encData->getPicCTU(cuAddr);
m_entropyCoder.setBitstream(&m_outStreams[subStrm]);
// Synchronize cabac probabilities with upper-right CTU if it's available and we're at the start of a line.
if (m_param->bEnableWavefront && !col && lin)
{
m_entropyCoder.copyState(m_initSliceContext);
m_entropyCoder.loadContexts(m_rows[lin - 1].bufferedEntropy);
}
if (saoParam)
{
if (saoParam->bSaoFlag[0] || saoParam->bSaoFlag[1])
{
int mergeLeft = col && saoParam->ctuParam[0][cuAddr].mergeMode == SAO_MERGE_LEFT;
int mergeUp = lin && saoParam->ctuParam[0][cuAddr].mergeMode == SAO_MERGE_UP;
if (col)
m_entropyCoder.codeSaoMerge(mergeLeft);
if (lin && !mergeLeft)
m_entropyCoder.codeSaoMerge(mergeUp);
if (!mergeLeft && !mergeUp)
{
if (saoParam->bSaoFlag[0])
m_entropyCoder.codeSaoOffset(saoParam->ctuParam[0][cuAddr], 0);
if (saoParam->bSaoFlag[1])
{
m_entropyCoder.codeSaoOffset(saoParam->ctuParam[1][cuAddr], 1);
m_entropyCoder.codeSaoOffset(saoParam->ctuParam[2][cuAddr], 2);
}
}
}
else
{
for (int i = 0; i < 3; i++)
saoParam->ctuParam[i][cuAddr].reset();
}
}
// final coding (bitstream generation) for this CU
m_entropyCoder.encodeCTU(*ctu, m_cuGeoms[m_ctuGeomMap[cuAddr]]);
if (m_param->bEnableWavefront)
{
if (col == 1)
// Store probabilities of second CTU in line into buffer
m_rows[lin].bufferedEntropy.loadContexts(m_entropyCoder);
if (col == widthInLCUs - 1)
m_entropyCoder.finishSlice();
}
}
if (!m_param->bEnableWavefront)
m_entropyCoder.finishSlice();
}
void FrameEncoder::processRow(int row, int threadId)
{
int64_t startTime = x265_mdate();
if (ATOMIC_INC(&m_activeWorkerCount) == 1 && m_stallStartTime)
m_totalNoWorkerTime += x265_mdate() - m_stallStartTime;
const uint32_t realRow = row >> 1;
const uint32_t typeNum = row & 1;
if (!typeNum)
processRowEncoder(realRow, m_tld[threadId]);
else
{
m_frameFilter.processRow(realRow);
// NOTE: Active next row
if (realRow != m_numRows - 1)
enqueueRowFilter(realRow + 1);
}
if (ATOMIC_DEC(&m_activeWorkerCount) == 0)
m_stallStartTime = x265_mdate();
m_totalWorkerElapsedTime += x265_mdate() - startTime; // not thread safe, but good enough
}
// Called by worker threads
void FrameEncoder::processRowEncoder(int intRow, ThreadLocalData& tld)
{
uint32_t row = (uint32_t)intRow;
CTURow& curRow = m_rows[row];
tld.analysis.m_param = m_param;
if (m_param->bEnableWavefront)
{
ScopedLock self(curRow.lock);
if (!curRow.active)
/* VBV restart is in progress, exit out */
return;
if (curRow.busy)
{
/* On multi-socket Windows servers, we have seen problems with
* ATOMIC_CAS which resulted in multiple worker threads processing
* the same CU row, which often resulted in bad pointer accesses. We
* believe the problem is fixed, but are leaving this check in place
* to prevent crashes in case it is not */
x265_log(m_param, X265_LOG_WARNING,
"internal error - simultaneous row access detected. Please report HW to x265-devel@videolan.org\n");
return;
}
curRow.busy = true;
}
/* When WPP is enabled, every row has its own row coder instance. Otherwise
* they share row 0 */
Entropy& rowCoder = m_param->bEnableWavefront ? m_rows[row].rowGoOnCoder : m_rows[0].rowGoOnCoder;
FrameData& curEncData = *m_frame->m_encData;
Slice *slice = curEncData.m_slice;
const uint32_t numCols = m_numCols;
const uint32_t lineStartCUAddr = row * numCols;
bool bIsVbv = m_param->rc.vbvBufferSize > 0 && m_param->rc.vbvMaxBitrate > 0;
uint32_t maxBlockCols = (m_frame->m_fencPic->m_picWidth + (16 - 1)) / 16;
uint32_t maxBlockRows = (m_frame->m_fencPic->m_picHeight + (16 - 1)) / 16;
uint32_t noOfBlocks = g_maxCUSize / 16;
while (curRow.completed < numCols)
{
ProfileScopeEvent(encodeCTU);
uint32_t col = curRow.completed;
const uint32_t cuAddr = lineStartCUAddr + col;
CUData* ctu = curEncData.getPicCTU(cuAddr);
ctu->initCTU(*m_frame, cuAddr, slice->m_sliceQp);
if (bIsVbv)
{
if (!row)
{
curEncData.m_rowStat[row].diagQp = curEncData.m_avgQpRc;
curEncData.m_rowStat[row].diagQpScale = x265_qp2qScale(curEncData.m_avgQpRc);
}
FrameData::RCStatCU& cuStat = curEncData.m_cuStat[cuAddr];
if (row >= col && row && m_vbvResetTriggerRow != intRow)
cuStat.baseQp = curEncData.m_cuStat[cuAddr - numCols + 1].baseQp;
else
cuStat.baseQp = curEncData.m_rowStat[row].diagQp;
/* TODO: use defines from slicetype.h for lowres block size */
uint32_t block_y = (ctu->m_cuPelY >> g_maxLog2CUSize) * noOfBlocks;
uint32_t block_x = (ctu->m_cuPelX >> g_maxLog2CUSize) * noOfBlocks;
cuStat.vbvCost = 0;
cuStat.intraVbvCost = 0;
for (uint32_t h = 0; h < noOfBlocks && block_y < maxBlockRows; h++, block_y++)
{
uint32_t idx = block_x + (block_y * maxBlockCols);
for (uint32_t w = 0; w < noOfBlocks && (block_x + w) < maxBlockCols; w++, idx++)
{
cuStat.vbvCost += m_frame->m_lowres.lowresCostForRc[idx] & LOWRES_COST_MASK;
cuStat.intraVbvCost += m_frame->m_lowres.intraCost[idx];
}
}
}
else
curEncData.m_cuStat[cuAddr].baseQp = curEncData.m_avgQpRc;
if (m_param->bEnableWavefront && !col && row)
{
// Load SBAC coder context from previous row and initialize row state.
rowCoder.copyState(m_initSliceContext);
rowCoder.loadContexts(m_rows[row - 1].bufferedEntropy);
}
// Does all the CU analysis, returns best top level mode decision
Mode& best = tld.analysis.compressCTU(*ctu, *m_frame, m_cuGeoms[m_ctuGeomMap[cuAddr]], rowCoder);
// take a sample of the current active worker count
ATOMIC_ADD(&m_totalActiveWorkerCount, m_activeWorkerCount);
ATOMIC_INC(&m_activeWorkerCountSamples);
/* advance top-level row coder to include the context of this CTU.
* if SAO is disabled, rowCoder writes the final CTU bitstream */
rowCoder.encodeCTU(*ctu, m_cuGeoms[m_ctuGeomMap[cuAddr]]);
if (m_param->bEnableWavefront && col == 1)
// Save CABAC state for next row
curRow.bufferedEntropy.loadContexts(rowCoder);
// Completed CU processing
curRow.completed++;
FrameStats frameLog;
curEncData.m_rowStat[row].sumQpAq += collectCTUStatistics(*ctu, &frameLog);
// copy no. of intra, inter Cu cnt per row into frame stats for 2 pass
if (m_param->rc.bStatWrite)
{
curRow.rowStats.mvBits += best.mvBits;
curRow.rowStats.coeffBits += best.coeffBits;
curRow.rowStats.miscBits += best.totalBits - (best.mvBits + best.coeffBits);
for (uint32_t depth = 0; depth <= g_maxCUDepth; depth++)
{
/* 1 << shift == number of 8x8 blocks at current depth */
int shift = 2 * (g_maxCUDepth - depth);
int cuSize = g_maxCUSize >> depth;
if (cuSize == 8)
curRow.rowStats.intra8x8Cnt += (int)(frameLog.cntIntra[depth] + frameLog.cntIntraNxN);
else
curRow.rowStats.intra8x8Cnt += (int)(frameLog.cntIntra[depth] << shift);
curRow.rowStats.inter8x8Cnt += (int)(frameLog.cntInter[depth] << shift);
curRow.rowStats.skip8x8Cnt += (int)((frameLog.cntSkipCu[depth] + frameLog.cntMergeCu[depth]) << shift);
}
}
curRow.rowStats.totalCtu++;
curRow.rowStats.lumaDistortion += best.lumaDistortion;
curRow.rowStats.chromaDistortion += best.chromaDistortion;
curRow.rowStats.psyEnergy += best.psyEnergy;
curRow.rowStats.resEnergy += best.resEnergy;
curRow.rowStats.cntIntraNxN += frameLog.cntIntraNxN;
curRow.rowStats.totalCu += frameLog.totalCu;
for (uint32_t depth = 0; depth <= g_maxCUDepth; depth++)
{
curRow.rowStats.cntSkipCu[depth] += frameLog.cntSkipCu[depth];
curRow.rowStats.cntMergeCu[depth] += frameLog.cntMergeCu[depth];
for (int m = 0; m < INTER_MODES; m++)
curRow.rowStats.cuInterDistribution[depth][m] += frameLog.cuInterDistribution[depth][m];
for (int n = 0; n < INTRA_MODES; n++)
curRow.rowStats.cuIntraDistribution[depth][n] += frameLog.cuIntraDistribution[depth][n];
}
curEncData.m_cuStat[cuAddr].totalBits = best.totalBits;
x265_emms();
if (bIsVbv)
{
// Update encoded bits, satdCost, baseQP for each CU
curEncData.m_rowStat[row].diagSatd += curEncData.m_cuStat[cuAddr].vbvCost;
curEncData.m_rowStat[row].diagIntraSatd += curEncData.m_cuStat[cuAddr].intraVbvCost;
curEncData.m_rowStat[row].encodedBits += curEncData.m_cuStat[cuAddr].totalBits;
curEncData.m_rowStat[row].sumQpRc += curEncData.m_cuStat[cuAddr].baseQp;
curEncData.m_rowStat[row].numEncodedCUs = cuAddr;
// If current block is at row diagonal checkpoint, call vbv ratecontrol.
if (row == col && row)
{
double qpBase = curEncData.m_cuStat[cuAddr].baseQp;
int reEncode = m_top->m_rateControl->rowDiagonalVbvRateControl(m_frame, row, &m_rce, qpBase);
qpBase = x265_clip3((double)QP_MIN, (double)QP_MAX_MAX, qpBase);
curEncData.m_rowStat[row].diagQp = qpBase;
curEncData.m_rowStat[row].diagQpScale = x265_qp2qScale(qpBase);
if (reEncode < 0)
{
x265_log(m_param, X265_LOG_DEBUG, "POC %d row %d - encode restart required for VBV, to %.2f from %.2f\n",
m_frame->m_poc, row, qpBase, curEncData.m_cuStat[cuAddr].baseQp);
// prevent the WaveFront::findJob() method from providing new jobs
m_vbvResetTriggerRow = row;
m_bAllRowsStop = true;
for (uint32_t r = m_numRows - 1; r >= row; r--)
{
CTURow& stopRow = m_rows[r];
if (r != row)
{
/* if row was active (ready to be run) clear active bit and bitmap bit for this row */
stopRow.lock.acquire();
while (stopRow.active)
{
if (dequeueRow(r * 2))
stopRow.active = false;
else
{
/* we must release the row lock to allow the thread to exit */
stopRow.lock.release();
GIVE_UP_TIME();
stopRow.lock.acquire();
}
}
stopRow.lock.release();
bool bRowBusy = true;
do
{
stopRow.lock.acquire();
bRowBusy = stopRow.busy;
stopRow.lock.release();
if (bRowBusy)
{
GIVE_UP_TIME();
}
}
while (bRowBusy);
}
m_outStreams[r].resetBits();
stopRow.completed = 0;
memset(&stopRow.rowStats, 0, sizeof(stopRow.rowStats));
curEncData.m_rowStat[r].numEncodedCUs = 0;
curEncData.m_rowStat[r].encodedBits = 0;
curEncData.m_rowStat[r].diagSatd = 0;
curEncData.m_rowStat[r].diagIntraSatd = 0;
curEncData.m_rowStat[r].sumQpRc = 0;
curEncData.m_rowStat[r].sumQpAq = 0;
}
m_bAllRowsStop = false;
}
}
}
/* SAO parameter estimation using non-deblocked pixels for CTU bottom and right boundary areas */
if (m_param->bEnableSAO && m_param->bSaoNonDeblocked)
m_frameFilter.m_sao.calcSaoStatsCu_BeforeDblk(m_frame, col, row);
if (m_param->bEnableWavefront && curRow.completed >= 2 && row < m_numRows - 1 &&
(!m_bAllRowsStop || intRow + 1 < m_vbvResetTriggerRow))
{
/* activate next row */
ScopedLock below(m_rows[row + 1].lock);
if (m_rows[row + 1].active == false &&
m_rows[row + 1].completed + 2 <= curRow.completed)
{
m_rows[row + 1].active = true;
enqueueRowEncoder(row + 1);
tryWakeOne(); /* wake up a sleeping thread or set the help wanted flag */
}
}
ScopedLock self(curRow.lock);
if ((m_bAllRowsStop && intRow > m_vbvResetTriggerRow) ||
(row > 0 && curRow.completed < numCols - 1 && m_rows[row - 1].completed < m_rows[row].completed + 2))
{
curRow.active = false;
curRow.busy = false;
ATOMIC_INC(&m_countRowBlocks);
return;
}
}
/** this row of CTUs has been compressed **/
/* If encoding with ABR, update update bits and complexity in rate control
* after a number of rows so the next frame's rateControlStart has more
* accurate data for estimation. At the start of the encode we update stats
* after half the frame is encoded, but after this initial period we update
* after refLagRows (the number of rows reference frames must have completed
* before referencees may begin encoding) */
uint32_t rowCount = 0;
if (m_param->rc.rateControlMode == X265_RC_ABR || bIsVbv)
{
if ((uint32_t)m_rce.encodeOrder <= 2 * (m_param->fpsNum / m_param->fpsDenom))
rowCount = X265_MIN((m_numRows + 1) / 2, m_numRows - 1);
else
rowCount = X265_MIN(m_refLagRows, m_numRows - 1);
if (row == rowCount)
{
m_rce.rowTotalBits = 0;
if (bIsVbv)
for (uint32_t i = 0; i < rowCount; i++)
m_rce.rowTotalBits += curEncData.m_rowStat[i].encodedBits;
else
for (uint32_t cuAddr = 0; cuAddr < rowCount * numCols; cuAddr++)
m_rce.rowTotalBits += curEncData.m_cuStat[cuAddr].totalBits;
m_top->m_rateControl->rateControlUpdateStats(&m_rce);
}
}
/* flush row bitstream (if WPP and no SAO) or flush frame if no WPP and no SAO */
if (!m_param->bEnableSAO && (m_param->bEnableWavefront || row == m_numRows - 1))
rowCoder.finishSlice();
if (m_param->bEnableWavefront)
{
/* trigger row-wise loop filters */
if (row >= m_filterRowDelay)
{
enableRowFilter(row - m_filterRowDelay);
/* NOTE: Activate filter if first row (row 0) */
if (row == m_filterRowDelay)
enqueueRowFilter(0);
tryWakeOne();
}
if (row == m_numRows - 1)
{
for (uint32_t i = m_numRows - m_filterRowDelay; i < m_numRows; i++)
enableRowFilter(i);
tryWakeOne();
}
}
tld.analysis.m_param = NULL;
curRow.busy = false;
if (ATOMIC_INC(&m_completionCount) == 2 * (int)m_numRows)
m_completionEvent.trigger();
}
/* collect statistics about CU coding decisions, return total QP */
int FrameEncoder::collectCTUStatistics(const CUData& ctu, FrameStats* log)
{
int totQP = 0;
if (ctu.m_slice->m_sliceType == I_SLICE)
{
uint32_t depth = 0;
for (uint32_t absPartIdx = 0; absPartIdx < ctu.m_numPartitions; absPartIdx += ctu.m_numPartitions >> (depth * 2))
{
depth = ctu.m_cuDepth[absPartIdx];
log->totalCu++;
log->cntIntra[depth]++;
totQP += ctu.m_qp[absPartIdx] * (ctu.m_numPartitions >> (depth * 2));
if (ctu.m_predMode[absPartIdx] == MODE_NONE)
{
log->totalCu--;
log->cntIntra[depth]--;
}
else if (ctu.m_partSize[absPartIdx] != SIZE_2Nx2N)
{
/* TODO: log intra modes at absPartIdx +0 to +3 */
X265_CHECK(ctu.m_log2CUSize[absPartIdx] == 3 && ctu.m_slice->m_sps->quadtreeTULog2MinSize < 3, "Intra NxN found at improbable depth\n");
log->cntIntraNxN++;
log->cntIntra[depth]--;
}
else if (ctu.m_lumaIntraDir[absPartIdx] > 1)
log->cuIntraDistribution[depth][ANGULAR_MODE_ID]++;
else
log->cuIntraDistribution[depth][ctu.m_lumaIntraDir[absPartIdx]]++;
}
}
else
{
uint32_t depth = 0;
for (uint32_t absPartIdx = 0; absPartIdx < ctu.m_numPartitions; absPartIdx += ctu.m_numPartitions >> (depth * 2))
{
depth = ctu.m_cuDepth[absPartIdx];
log->totalCu++;
totQP += ctu.m_qp[absPartIdx] * (ctu.m_numPartitions >> (depth * 2));
if (ctu.m_predMode[absPartIdx] == MODE_NONE)
log->totalCu--;
else if (ctu.isSkipped(absPartIdx))
{
if (ctu.m_mergeFlag[0])
log->cntMergeCu[depth]++;
else
log->cntSkipCu[depth]++;
}
else if (ctu.isInter(absPartIdx))
{
log->cntInter[depth]++;
if (ctu.m_partSize[absPartIdx] < AMP_ID)
log->cuInterDistribution[depth][ctu.m_partSize[absPartIdx]]++;
else
log->cuInterDistribution[depth][AMP_ID]++;
}
else if (ctu.isIntra(absPartIdx))
{
log->cntIntra[depth]++;
if (ctu.m_partSize[absPartIdx] != SIZE_2Nx2N)
{
X265_CHECK(ctu.m_log2CUSize[absPartIdx] == 3 && ctu.m_slice->m_sps->quadtreeTULog2MinSize < 3, "Intra NxN found at improbable depth\n");
log->cntIntraNxN++;
log->cntIntra[depth]--;
/* TODO: log intra modes at absPartIdx +0 to +3 */
}
else if (ctu.m_lumaIntraDir[absPartIdx] > 1)
log->cuIntraDistribution[depth][ANGULAR_MODE_ID]++;
else
log->cuIntraDistribution[depth][ctu.m_lumaIntraDir[absPartIdx]]++;
}
}
}
return totQP;
}
/* DCT-domain noise reduction / adaptive deadzone from libavcodec */
void FrameEncoder::noiseReductionUpdate()
{
static const uint32_t maxBlocksPerTrSize[4] = {1 << 18, 1 << 16, 1 << 14, 1 << 12};
for (int cat = 0; cat < MAX_NUM_TR_CATEGORIES; cat++)
{
int trSize = cat & 3;
int coefCount = 1 << ((trSize + 2) * 2);
if (m_nr->nrCount[cat] > maxBlocksPerTrSize[trSize])
{
for (int i = 0; i < coefCount; i++)
m_nr->nrResidualSum[cat][i] >>= 1;
m_nr->nrCount[cat] >>= 1;
}
int nrStrength = cat < 8 ? m_param->noiseReductionIntra : m_param->noiseReductionInter;
uint64_t scaledCount = (uint64_t)nrStrength * m_nr->nrCount[cat];
for (int i = 0; i < coefCount; i++)
{
uint64_t value = scaledCount + m_nr->nrResidualSum[cat][i] / 2;
uint64_t denom = m_nr->nrResidualSum[cat][i] + 1;
m_nr->nrOffsetDenoise[cat][i] = (uint16_t)(value / denom);
}
// Don't denoise DC coefficients
m_nr->nrOffsetDenoise[cat][0] = 0;
}
}
Frame *FrameEncoder::getEncodedPicture(NALList& output)
{
if (m_frame)
{
/* block here until worker thread completes */
m_done.wait();
Frame *ret = m_frame;
m_frame = NULL;
output.takeContents(m_nalList);
m_prevOutputTime = x265_mdate();
return ret;
}
return NULL;
}
}