2424 lines
94 KiB
C++
2424 lines
94 KiB
C++
/*****************************************************************************
|
|
* Copyright (C) 2013 x265 project
|
|
*
|
|
* Authors: Sumalatha Polureddy <sumalatha@multicorewareinc.com>
|
|
* Aarthi Priya Thirumalai <aarthi@multicorewareinc.com>
|
|
* Xun Xu, PPLive Corporation <xunxu@pptv.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
|
|
*
|
|
* This program is also available under a commercial proprietary license.
|
|
* For more information, contact us at license @ x265.com.
|
|
*****************************************************************************/
|
|
|
|
#include "common.h"
|
|
#include "param.h"
|
|
#include "frame.h"
|
|
#include "framedata.h"
|
|
#include "picyuv.h"
|
|
|
|
#include "encoder.h"
|
|
#include "slicetype.h"
|
|
#include "ratecontrol.h"
|
|
#include "sei.h"
|
|
|
|
#define BR_SHIFT 6
|
|
#define CPB_SHIFT 4
|
|
|
|
using namespace X265_NS;
|
|
|
|
/* Amortize the partial cost of I frames over the next N frames */
|
|
|
|
const int RateControl::s_slidingWindowFrames = 20;
|
|
const char *RateControl::s_defaultStatFileName = "x265_2pass.log";
|
|
|
|
namespace {
|
|
#define CMP_OPT_FIRST_PASS(opt, param_val)\
|
|
{\
|
|
bErr = 0;\
|
|
p = strstr(opts, opt "=");\
|
|
char* q = strstr(opts, "no-"opt);\
|
|
if (p && sscanf(p, opt "=%d" , &i) && param_val != i)\
|
|
bErr = 1;\
|
|
else if (!param_val && !q && !p)\
|
|
bErr = 1;\
|
|
else if (param_val && (q || !strstr(opts, opt)))\
|
|
bErr = 1;\
|
|
if (bErr)\
|
|
{\
|
|
x265_log(m_param, X265_LOG_ERROR, "different " opt " setting than first pass (%d vs %d)\n", param_val, i);\
|
|
return false;\
|
|
}\
|
|
}
|
|
|
|
inline int calcScale(uint32_t x)
|
|
{
|
|
static uint8_t lut[16] = {4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0};
|
|
int y, z = (((x & 0xffff) - 1) >> 27) & 16;
|
|
x >>= z;
|
|
z += y = (((x & 0xff) - 1) >> 28) & 8;
|
|
x >>= y;
|
|
z += y = (((x & 0xf) - 1) >> 29) & 4;
|
|
x >>= y;
|
|
return z + lut[x&0xf];
|
|
}
|
|
|
|
inline int calcLength(uint32_t x)
|
|
{
|
|
static uint8_t lut[16] = {4, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
int y, z = (((x >> 16) - 1) >> 27) & 16;
|
|
x >>= z ^ 16;
|
|
z += y = ((x - 0x100) >> 28) & 8;
|
|
x >>= y ^ 8;
|
|
z += y = ((x - 0x10) >> 29) & 4;
|
|
x >>= y ^ 4;
|
|
return z + lut[x];
|
|
}
|
|
|
|
inline void reduceFraction(int* n, int* d)
|
|
{
|
|
int a = *n;
|
|
int b = *d;
|
|
int c;
|
|
if (!a || !b)
|
|
return;
|
|
c = a % b;
|
|
while (c)
|
|
{
|
|
a = b;
|
|
b = c;
|
|
c = a % b;
|
|
}
|
|
*n /= b;
|
|
*d /= b;
|
|
}
|
|
|
|
inline char *strcatFilename(const char *input, const char *suffix)
|
|
{
|
|
char *output = X265_MALLOC(char, strlen(input) + strlen(suffix) + 1);
|
|
if (!output)
|
|
{
|
|
x265_log(NULL, X265_LOG_ERROR, "unable to allocate memory for filename\n");
|
|
return NULL;
|
|
}
|
|
strcpy(output, input);
|
|
strcat(output, suffix);
|
|
return output;
|
|
}
|
|
|
|
inline double qScale2bits(RateControlEntry *rce, double qScale)
|
|
{
|
|
if (qScale < 0.1)
|
|
qScale = 0.1;
|
|
return (rce->coeffBits + .1) * pow(rce->qScale / qScale, 1.1)
|
|
+ rce->mvBits * pow(X265_MAX(rce->qScale, 1) / X265_MAX(qScale, 1), 0.5)
|
|
+ rce->miscBits;
|
|
}
|
|
|
|
inline void copyRceData(RateControlEntry* rce, RateControlEntry* rce2Pass)
|
|
{
|
|
rce->coeffBits = rce2Pass->coeffBits;
|
|
rce->mvBits = rce2Pass->mvBits;
|
|
rce->miscBits = rce2Pass->miscBits;
|
|
rce->iCuCount = rce2Pass->iCuCount;
|
|
rce->pCuCount = rce2Pass->pCuCount;
|
|
rce->skipCuCount = rce2Pass->skipCuCount;
|
|
rce->keptAsRef = rce2Pass->keptAsRef;
|
|
rce->qScale = rce2Pass->qScale;
|
|
rce->newQScale = rce2Pass->newQScale;
|
|
rce->expectedBits = rce2Pass->expectedBits;
|
|
rce->expectedVbv = rce2Pass->expectedVbv;
|
|
rce->blurredComplexity = rce2Pass->blurredComplexity;
|
|
rce->sliceType = rce2Pass->sliceType;
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
/* Returns the zone for the current frame */
|
|
x265_zone* RateControl::getZone()
|
|
{
|
|
for (int i = m_param->rc.zoneCount - 1; i >= 0; i--)
|
|
{
|
|
x265_zone *z = &m_param->rc.zones[i];
|
|
if (m_framesDone + 1 >= z->startFrame && m_framesDone < z->endFrame)
|
|
return z;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
RateControl::RateControl(x265_param& p)
|
|
{
|
|
m_param = &p;
|
|
int lowresCuWidth = ((m_param->sourceWidth / 2) + X265_LOWRES_CU_SIZE - 1) >> X265_LOWRES_CU_BITS;
|
|
int lowresCuHeight = ((m_param->sourceHeight / 2) + X265_LOWRES_CU_SIZE - 1) >> X265_LOWRES_CU_BITS;
|
|
m_ncu = lowresCuWidth * lowresCuHeight;
|
|
|
|
if (m_param->rc.cuTree)
|
|
m_qCompress = 1;
|
|
else
|
|
m_qCompress = m_param->rc.qCompress;
|
|
|
|
// validate for param->rc, maybe it is need to add a function like x265_parameters_valiate()
|
|
m_residualFrames = 0;
|
|
m_partialResidualFrames = 0;
|
|
m_residualCost = 0;
|
|
m_partialResidualCost = 0;
|
|
m_rateFactorMaxIncrement = 0;
|
|
m_rateFactorMaxDecrement = 0;
|
|
m_fps = (double)m_param->fpsNum / m_param->fpsDenom;
|
|
m_startEndOrder.set(0);
|
|
m_bTerminated = false;
|
|
m_finalFrameCount = 0;
|
|
m_numEntries = 0;
|
|
m_isSceneTransition = false;
|
|
if (m_param->rc.rateControlMode == X265_RC_CRF)
|
|
{
|
|
m_param->rc.qp = (int)m_param->rc.rfConstant;
|
|
m_param->rc.bitrate = 0;
|
|
|
|
double baseCplx = m_ncu * (m_param->bframes ? 120 : 80);
|
|
double mbtree_offset = m_param->rc.cuTree ? (1.0 - m_param->rc.qCompress) * 13.5 : 0;
|
|
m_rateFactorConstant = pow(baseCplx, 1 - m_qCompress) /
|
|
x265_qp2qScale(m_param->rc.rfConstant + mbtree_offset);
|
|
if (m_param->rc.rfConstantMax)
|
|
{
|
|
m_rateFactorMaxIncrement = m_param->rc.rfConstantMax - m_param->rc.rfConstant;
|
|
if (m_rateFactorMaxIncrement <= 0)
|
|
{
|
|
x265_log(m_param, X265_LOG_WARNING, "CRF max must be greater than CRF\n");
|
|
m_rateFactorMaxIncrement = 0;
|
|
}
|
|
}
|
|
if (m_param->rc.rfConstantMin)
|
|
m_rateFactorMaxDecrement = m_param->rc.rfConstant - m_param->rc.rfConstantMin;
|
|
}
|
|
m_isAbr = m_param->rc.rateControlMode != X265_RC_CQP && !m_param->rc.bStatRead;
|
|
m_2pass = m_param->rc.rateControlMode == X265_RC_ABR && m_param->rc.bStatRead;
|
|
m_bitrate = m_param->rc.bitrate * 1000;
|
|
m_frameDuration = (double)m_param->fpsDenom / m_param->fpsNum;
|
|
m_qp = m_param->rc.qp;
|
|
m_lastRceq = 1; /* handles the cmplxrsum when the previous frame cost is zero */
|
|
m_shortTermCplxSum = 0;
|
|
m_shortTermCplxCount = 0;
|
|
m_lastNonBPictType = I_SLICE;
|
|
m_isAbrReset = false;
|
|
m_lastAbrResetPoc = -1;
|
|
m_statFileOut = NULL;
|
|
m_cutreeStatFileOut = m_cutreeStatFileIn = NULL;
|
|
m_rce2Pass = NULL;
|
|
m_lastBsliceSatdCost = 0;
|
|
|
|
// vbv initialization
|
|
m_param->rc.vbvBufferSize = x265_clip3(0, 2000000, m_param->rc.vbvBufferSize);
|
|
m_param->rc.vbvMaxBitrate = x265_clip3(0, 2000000, m_param->rc.vbvMaxBitrate);
|
|
m_param->rc.vbvBufferInit = x265_clip3(0.0, 2000000.0, m_param->rc.vbvBufferInit);
|
|
m_singleFrameVbv = 0;
|
|
m_rateTolerance = 1.0;
|
|
|
|
if (m_param->rc.vbvBufferSize)
|
|
{
|
|
if (m_param->rc.rateControlMode == X265_RC_CQP)
|
|
{
|
|
x265_log(m_param, X265_LOG_WARNING, "VBV is incompatible with constant QP, ignored.\n");
|
|
m_param->rc.vbvBufferSize = 0;
|
|
m_param->rc.vbvMaxBitrate = 0;
|
|
}
|
|
else if (m_param->rc.vbvMaxBitrate == 0)
|
|
{
|
|
if (m_param->rc.rateControlMode == X265_RC_ABR)
|
|
{
|
|
x265_log(m_param, X265_LOG_WARNING, "VBV maxrate unspecified, assuming CBR\n");
|
|
m_param->rc.vbvMaxBitrate = m_param->rc.bitrate;
|
|
}
|
|
else
|
|
{
|
|
x265_log(m_param, X265_LOG_WARNING, "VBV bufsize set but maxrate unspecified, ignored\n");
|
|
m_param->rc.vbvBufferSize = 0;
|
|
}
|
|
}
|
|
else if (m_param->rc.vbvMaxBitrate < m_param->rc.bitrate &&
|
|
m_param->rc.rateControlMode == X265_RC_ABR)
|
|
{
|
|
x265_log(m_param, X265_LOG_WARNING, "max bitrate less than average bitrate, assuming CBR\n");
|
|
m_param->rc.bitrate = m_param->rc.vbvMaxBitrate;
|
|
}
|
|
}
|
|
else if (m_param->rc.vbvMaxBitrate)
|
|
{
|
|
x265_log(m_param, X265_LOG_WARNING, "VBV maxrate specified, but no bufsize, ignored\n");
|
|
m_param->rc.vbvMaxBitrate = 0;
|
|
}
|
|
m_isVbv = m_param->rc.vbvMaxBitrate > 0 && m_param->rc.vbvBufferSize > 0;
|
|
if (m_param->bEmitHRDSEI && !m_isVbv)
|
|
{
|
|
x265_log(m_param, X265_LOG_WARNING, "NAL HRD parameters require VBV parameters, ignored\n");
|
|
m_param->bEmitHRDSEI = 0;
|
|
}
|
|
m_isCbr = m_param->rc.rateControlMode == X265_RC_ABR && m_isVbv && !m_2pass && m_param->rc.vbvMaxBitrate <= m_param->rc.bitrate;
|
|
if (m_param->rc.bStrictCbr && !m_isCbr)
|
|
{
|
|
x265_log(m_param, X265_LOG_WARNING, "strict CBR set without CBR mode, ignored\n");
|
|
m_param->rc.bStrictCbr = 0;
|
|
}
|
|
if(m_param->rc.bStrictCbr)
|
|
m_rateTolerance = 0.7;
|
|
|
|
m_bframeBits = 0;
|
|
m_leadingNoBSatd = 0;
|
|
m_ipOffset = 6.0 * X265_LOG2(m_param->rc.ipFactor);
|
|
m_pbOffset = 6.0 * X265_LOG2(m_param->rc.pbFactor);
|
|
|
|
/* Adjust the first frame in order to stabilize the quality level compared to the rest */
|
|
#define ABR_INIT_QP_MIN (24)
|
|
#define ABR_INIT_QP_MAX (40)
|
|
#define ABR_SCENECUT_INIT_QP_MIN (12)
|
|
#define CRF_INIT_QP (int)m_param->rc.rfConstant
|
|
for (int i = 0; i < 3; i++)
|
|
m_lastQScaleFor[i] = x265_qp2qScale(m_param->rc.rateControlMode == X265_RC_CRF ? CRF_INIT_QP : ABR_INIT_QP_MIN);
|
|
|
|
if (m_param->rc.rateControlMode == X265_RC_CQP)
|
|
{
|
|
if (m_qp && !m_param->bLossless)
|
|
{
|
|
m_qpConstant[P_SLICE] = m_qp;
|
|
m_qpConstant[I_SLICE] = x265_clip3(QP_MIN, QP_MAX_MAX, (int)(m_qp - m_ipOffset + 0.5));
|
|
m_qpConstant[B_SLICE] = x265_clip3(QP_MIN, QP_MAX_MAX, (int)(m_qp + m_pbOffset + 0.5));
|
|
}
|
|
else
|
|
{
|
|
m_qpConstant[P_SLICE] = m_qpConstant[I_SLICE] = m_qpConstant[B_SLICE] = m_qp;
|
|
}
|
|
}
|
|
|
|
/* qpstep - value set as encoder specific */
|
|
m_lstep = pow(2, m_param->rc.qpStep / 6.0);
|
|
|
|
for (int i = 0; i < 2; i++)
|
|
m_cuTreeStats.qpBuffer[i] = NULL;
|
|
}
|
|
|
|
bool RateControl::init(const SPS& sps)
|
|
{
|
|
if (m_isVbv)
|
|
{
|
|
/* We don't support changing the ABR bitrate right now,
|
|
* so if the stream starts as CBR, keep it CBR. */
|
|
if (m_param->rc.vbvBufferSize < (int)(m_param->rc.vbvMaxBitrate / m_fps))
|
|
{
|
|
m_param->rc.vbvBufferSize = (int)(m_param->rc.vbvMaxBitrate / m_fps);
|
|
x265_log(m_param, X265_LOG_WARNING, "VBV buffer size cannot be smaller than one frame, using %d kbit\n",
|
|
m_param->rc.vbvBufferSize);
|
|
}
|
|
int vbvBufferSize = m_param->rc.vbvBufferSize * 1000;
|
|
int vbvMaxBitrate = m_param->rc.vbvMaxBitrate * 1000;
|
|
|
|
if (m_param->bEmitHRDSEI)
|
|
{
|
|
const HRDInfo* hrd = &sps.vuiParameters.hrdParameters;
|
|
vbvBufferSize = hrd->cpbSizeValue << (hrd->cpbSizeScale + CPB_SHIFT);
|
|
vbvMaxBitrate = hrd->bitRateValue << (hrd->bitRateScale + BR_SHIFT);
|
|
}
|
|
m_bufferRate = vbvMaxBitrate / m_fps;
|
|
m_vbvMaxRate = vbvMaxBitrate;
|
|
m_bufferSize = vbvBufferSize;
|
|
m_singleFrameVbv = m_bufferRate * 1.1 > m_bufferSize;
|
|
|
|
if (m_param->rc.vbvBufferInit > 1.)
|
|
m_param->rc.vbvBufferInit = x265_clip3(0.0, 1.0, m_param->rc.vbvBufferInit / m_param->rc.vbvBufferSize);
|
|
m_param->rc.vbvBufferInit = x265_clip3(0.0, 1.0, X265_MAX(m_param->rc.vbvBufferInit, m_bufferRate / m_bufferSize));
|
|
m_bufferFillFinal = m_bufferSize * m_param->rc.vbvBufferInit;
|
|
}
|
|
|
|
m_totalBits = 0;
|
|
m_encodedBits = 0;
|
|
m_framesDone = 0;
|
|
m_residualCost = 0;
|
|
m_partialResidualCost = 0;
|
|
m_amortizeFraction = 0.85;
|
|
m_amortizeFrames = 75;
|
|
if (m_param->totalFrames && m_param->totalFrames <= 2 * m_fps && m_param->rc.bStrictCbr) /* Strict CBR segment encode */
|
|
{
|
|
m_amortizeFraction = 0.85;
|
|
m_amortizeFrames = m_param->totalFrames / 2;
|
|
}
|
|
for (int i = 0; i < s_slidingWindowFrames; i++)
|
|
{
|
|
m_satdCostWindow[i] = 0;
|
|
m_encodedBitsWindow[i] = 0;
|
|
}
|
|
m_sliderPos = 0;
|
|
m_isPatternPresent = false;
|
|
m_numBframesInPattern = 0;
|
|
|
|
/* 720p videos seem to be a good cutoff for cplxrSum */
|
|
double tuneCplxFactor = (m_param->rc.cuTree && m_ncu > 3600) ? 2.5 : 1;
|
|
|
|
/* estimated ratio that produces a reasonable QP for the first I-frame */
|
|
m_cplxrSum = .01 * pow(7.0e5, m_qCompress) * pow(m_ncu, 0.5) * tuneCplxFactor;
|
|
m_wantedBitsWindow = m_bitrate * m_frameDuration;
|
|
m_accumPNorm = .01;
|
|
m_accumPQp = (m_param->rc.rateControlMode == X265_RC_CRF ? CRF_INIT_QP : ABR_INIT_QP_MIN) * m_accumPNorm;
|
|
|
|
/* Frame Predictors and Row predictors used in vbv */
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
m_pred[i].coeff = 1.0;
|
|
m_pred[i].count = 1.0;
|
|
m_pred[i].decay = 0.5;
|
|
m_pred[i].offset = 0.0;
|
|
}
|
|
m_pred[0].coeff = m_pred[3].coeff = 0.75;
|
|
if (m_param->rc.qCompress >= 0.8) // when tuned for grain
|
|
{
|
|
m_pred[1].coeff = 0.75;
|
|
m_pred[0].coeff = m_pred[3].coeff = 0.50;
|
|
}
|
|
if (!m_statFileOut && (m_param->rc.bStatWrite || m_param->rc.bStatRead))
|
|
{
|
|
/* If the user hasn't defined the stat filename, use the default value */
|
|
const char *fileName = m_param->rc.statFileName;
|
|
if (!fileName)
|
|
fileName = s_defaultStatFileName;
|
|
/* Load stat file and init 2pass algo */
|
|
if (m_param->rc.bStatRead)
|
|
{
|
|
m_expectedBitsSum = 0;
|
|
char *p, *statsIn, *statsBuf;
|
|
/* read 1st pass stats */
|
|
statsIn = statsBuf = x265_slurp_file(fileName);
|
|
if (!statsBuf)
|
|
return false;
|
|
if (m_param->rc.cuTree)
|
|
{
|
|
char *tmpFile = strcatFilename(fileName, ".cutree");
|
|
if (!tmpFile)
|
|
return false;
|
|
m_cutreeStatFileIn = fopen(tmpFile, "rb");
|
|
X265_FREE(tmpFile);
|
|
if (!m_cutreeStatFileIn)
|
|
{
|
|
x265_log(m_param, X265_LOG_ERROR, "can't open stats file %s\n", tmpFile);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* check whether 1st pass options were compatible with current options */
|
|
if (strncmp(statsBuf, "#options:", 9))
|
|
{
|
|
x265_log(m_param, X265_LOG_ERROR,"options list in stats file not valid\n");
|
|
return false;
|
|
}
|
|
{
|
|
int i, j;
|
|
uint32_t k , l;
|
|
bool bErr = false;
|
|
char *opts = statsBuf;
|
|
statsIn = strchr(statsBuf, '\n');
|
|
if (!statsIn)
|
|
{
|
|
x265_log(m_param, X265_LOG_ERROR, "Malformed stats file\n");
|
|
return false;
|
|
}
|
|
*statsIn = '\0';
|
|
statsIn++;
|
|
if (sscanf(opts, "#options: %dx%d", &i, &j) != 2)
|
|
{
|
|
x265_log(m_param, X265_LOG_ERROR, "Resolution specified in stats file not valid\n");
|
|
return false;
|
|
}
|
|
if ((p = strstr(opts, " fps=")) == 0 || sscanf(p, " fps=%u/%u", &k, &l) != 2)
|
|
{
|
|
x265_log(m_param, X265_LOG_ERROR, "fps specified in stats file not valid\n");
|
|
return false;
|
|
}
|
|
if (k != m_param->fpsNum || l != m_param->fpsDenom)
|
|
{
|
|
x265_log(m_param, X265_LOG_ERROR, "fps mismatch with 1st pass (%u/%u vs %u/%u)\n",
|
|
m_param->fpsNum, m_param->fpsDenom, k, l);
|
|
return false;
|
|
}
|
|
CMP_OPT_FIRST_PASS("bitdepth", m_param->internalBitDepth);
|
|
CMP_OPT_FIRST_PASS("weightp", m_param->bEnableWeightedPred);
|
|
CMP_OPT_FIRST_PASS("bframes", m_param->bframes);
|
|
CMP_OPT_FIRST_PASS("b-pyramid", m_param->bBPyramid);
|
|
CMP_OPT_FIRST_PASS("open-gop", m_param->bOpenGOP);
|
|
CMP_OPT_FIRST_PASS("keyint", m_param->keyframeMax);
|
|
CMP_OPT_FIRST_PASS("scenecut", m_param->scenecutThreshold);
|
|
|
|
if ((p = strstr(opts, "b-adapt=")) != 0 && sscanf(p, "b-adapt=%d", &i) && i >= X265_B_ADAPT_NONE && i <= X265_B_ADAPT_TRELLIS)
|
|
{
|
|
m_param->bFrameAdaptive = i;
|
|
}
|
|
else if (m_param->bframes)
|
|
{
|
|
x265_log(m_param, X265_LOG_ERROR, "b-adapt method specified in stats file not valid\n");
|
|
return false;
|
|
}
|
|
|
|
if ((p = strstr(opts, "rc-lookahead=")) != 0 && sscanf(p, "rc-lookahead=%d", &i))
|
|
m_param->lookaheadDepth = i;
|
|
}
|
|
/* find number of pics */
|
|
p = statsIn;
|
|
int numEntries;
|
|
for (numEntries = -1; p; numEntries++)
|
|
p = strchr(p + 1, ';');
|
|
if (!numEntries)
|
|
{
|
|
x265_log(m_param, X265_LOG_ERROR, "empty stats file\n");
|
|
return false;
|
|
}
|
|
m_numEntries = numEntries;
|
|
|
|
if (m_param->totalFrames < m_numEntries && m_param->totalFrames > 0)
|
|
{
|
|
x265_log(m_param, X265_LOG_WARNING, "2nd pass has fewer frames than 1st pass (%d vs %d)\n",
|
|
m_param->totalFrames, m_numEntries);
|
|
}
|
|
if (m_param->totalFrames > m_numEntries)
|
|
{
|
|
x265_log(m_param, X265_LOG_ERROR, "2nd pass has more frames than 1st pass (%d vs %d)\n",
|
|
m_param->totalFrames, m_numEntries);
|
|
return false;
|
|
}
|
|
|
|
m_rce2Pass = X265_MALLOC(RateControlEntry, m_numEntries);
|
|
if (!m_rce2Pass)
|
|
{
|
|
x265_log(m_param, X265_LOG_ERROR, "Rce Entries for 2 pass cannot be allocated\n");
|
|
return false;
|
|
}
|
|
/* init all to skipped p frames */
|
|
for (int i = 0; i < m_numEntries; i++)
|
|
{
|
|
RateControlEntry *rce = &m_rce2Pass[i];
|
|
rce->sliceType = P_SLICE;
|
|
rce->qScale = rce->newQScale = x265_qp2qScale(20);
|
|
rce->miscBits = m_ncu + 10;
|
|
rce->newQp = 0;
|
|
}
|
|
/* read stats */
|
|
p = statsIn;
|
|
double totalQpAq = 0;
|
|
for (int i = 0; i < m_numEntries; i++)
|
|
{
|
|
RateControlEntry *rce;
|
|
int frameNumber;
|
|
char picType;
|
|
int e;
|
|
char *next;
|
|
double qpRc, qpAq;
|
|
next = strstr(p, ";");
|
|
if (next)
|
|
*next++ = 0;
|
|
e = sscanf(p, " in:%d ", &frameNumber);
|
|
if (frameNumber < 0 || frameNumber >= m_numEntries)
|
|
{
|
|
x265_log(m_param, X265_LOG_ERROR, "bad frame number (%d) at stats line %d\n", frameNumber, i);
|
|
return false;
|
|
}
|
|
rce = &m_rce2Pass[frameNumber];
|
|
e += sscanf(p, " in:%*d out:%*d type:%c q:%lf q-aq:%lf tex:%d mv:%d misc:%d icu:%lf pcu:%lf scu:%lf",
|
|
&picType, &qpRc, &qpAq, &rce->coeffBits,
|
|
&rce->mvBits, &rce->miscBits, &rce->iCuCount, &rce->pCuCount,
|
|
&rce->skipCuCount);
|
|
rce->keptAsRef = true;
|
|
if (picType == 'b' || picType == 'p')
|
|
rce->keptAsRef = false;
|
|
if (picType == 'I' || picType == 'i')
|
|
rce->sliceType = I_SLICE;
|
|
else if (picType == 'P' || picType == 'p')
|
|
rce->sliceType = P_SLICE;
|
|
else if (picType == 'B' || picType == 'b')
|
|
rce->sliceType = B_SLICE;
|
|
else
|
|
e = -1;
|
|
if (e < 10)
|
|
{
|
|
x265_log(m_param, X265_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e);
|
|
return false;
|
|
}
|
|
rce->qScale = x265_qp2qScale(qpRc);
|
|
totalQpAq += qpAq;
|
|
p = next;
|
|
}
|
|
X265_FREE(statsBuf);
|
|
|
|
if (m_param->rc.rateControlMode == X265_RC_ABR)
|
|
{
|
|
if (!initPass2())
|
|
return false;
|
|
} /* else we're using constant quant, so no need to run the bitrate allocation */
|
|
}
|
|
/* Open output file */
|
|
/* If input and output files are the same, output to a temp file
|
|
* and move it to the real name only when it's complete */
|
|
if (m_param->rc.bStatWrite)
|
|
{
|
|
char *p, *statFileTmpname;
|
|
statFileTmpname = strcatFilename(fileName, ".temp");
|
|
if (!statFileTmpname)
|
|
return false;
|
|
m_statFileOut = fopen(statFileTmpname, "wb");
|
|
X265_FREE(statFileTmpname);
|
|
if (!m_statFileOut)
|
|
{
|
|
x265_log(m_param, X265_LOG_ERROR, "can't open stats file %s\n", statFileTmpname);
|
|
return false;
|
|
}
|
|
p = x265_param2string(m_param);
|
|
if (p)
|
|
fprintf(m_statFileOut, "#options: %s\n", p);
|
|
X265_FREE(p);
|
|
if (m_param->rc.cuTree && !m_param->rc.bStatRead)
|
|
{
|
|
statFileTmpname = strcatFilename(fileName, ".cutree.temp");
|
|
if (!statFileTmpname)
|
|
return false;
|
|
m_cutreeStatFileOut = fopen(statFileTmpname, "wb");
|
|
X265_FREE(statFileTmpname);
|
|
if (!m_cutreeStatFileOut)
|
|
{
|
|
x265_log(m_param, X265_LOG_ERROR, "can't open mbtree stats file %s\n", statFileTmpname);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
if (m_param->rc.cuTree)
|
|
{
|
|
m_cuTreeStats.qpBuffer[0] = X265_MALLOC(uint16_t, m_ncu * sizeof(uint16_t));
|
|
if (m_param->bBPyramid && m_param->rc.bStatRead)
|
|
m_cuTreeStats.qpBuffer[1] = X265_MALLOC(uint16_t, m_ncu * sizeof(uint16_t));
|
|
m_cuTreeStats.qpBufPos = -1;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void RateControl::initHRD(SPS& sps)
|
|
{
|
|
int vbvBufferSize = m_param->rc.vbvBufferSize * 1000;
|
|
int vbvMaxBitrate = m_param->rc.vbvMaxBitrate * 1000;
|
|
|
|
// Init HRD
|
|
HRDInfo* hrd = &sps.vuiParameters.hrdParameters;
|
|
hrd->cbrFlag = m_isCbr;
|
|
|
|
// normalize HRD size and rate to the value / scale notation
|
|
hrd->bitRateScale = x265_clip3(0, 15, calcScale(vbvMaxBitrate) - BR_SHIFT);
|
|
hrd->bitRateValue = (vbvMaxBitrate >> (hrd->bitRateScale + BR_SHIFT));
|
|
|
|
hrd->cpbSizeScale = x265_clip3(0, 15, calcScale(vbvBufferSize) - CPB_SHIFT);
|
|
hrd->cpbSizeValue = (vbvBufferSize >> (hrd->cpbSizeScale + CPB_SHIFT));
|
|
int bitRateUnscale = hrd->bitRateValue << (hrd->bitRateScale + BR_SHIFT);
|
|
int cpbSizeUnscale = hrd->cpbSizeValue << (hrd->cpbSizeScale + CPB_SHIFT);
|
|
|
|
// arbitrary
|
|
#define MAX_DURATION 0.5
|
|
|
|
TimingInfo *time = &sps.vuiParameters.timingInfo;
|
|
int maxCpbOutputDelay = (int)(X265_MIN(m_param->keyframeMax * MAX_DURATION * time->timeScale / time->numUnitsInTick, INT_MAX));
|
|
int maxDpbOutputDelay = (int)(sps.maxDecPicBuffering * MAX_DURATION * time->timeScale / time->numUnitsInTick);
|
|
int maxDelay = (int)(90000.0 * cpbSizeUnscale / bitRateUnscale + 0.5);
|
|
|
|
hrd->initialCpbRemovalDelayLength = 2 + x265_clip3(4, 22, 32 - calcLength(maxDelay));
|
|
hrd->cpbRemovalDelayLength = x265_clip3(4, 31, 32 - calcLength(maxCpbOutputDelay));
|
|
hrd->dpbOutputDelayLength = x265_clip3(4, 31, 32 - calcLength(maxDpbOutputDelay));
|
|
|
|
#undef MAX_DURATION
|
|
}
|
|
|
|
bool RateControl::initPass2()
|
|
{
|
|
uint64_t allConstBits = 0;
|
|
uint64_t allAvailableBits = uint64_t(m_param->rc.bitrate * 1000. * m_numEntries * m_frameDuration);
|
|
double rateFactor, stepMult;
|
|
double qBlur = m_param->rc.qblur;
|
|
double cplxBlur = m_param->rc.complexityBlur;
|
|
const int filterSize = (int)(qBlur * 4) | 1;
|
|
double expectedBits;
|
|
double *qScale, *blurredQscale;
|
|
double baseCplx = m_ncu * (m_param->bframes ? 120 : 80);
|
|
double clippedDuration = CLIP_DURATION(m_frameDuration) / BASE_FRAME_DURATION;
|
|
|
|
/* find total/average complexity & const_bits */
|
|
for (int i = 0; i < m_numEntries; i++)
|
|
allConstBits += m_rce2Pass[i].miscBits;
|
|
|
|
if (allAvailableBits < allConstBits)
|
|
{
|
|
x265_log(m_param, X265_LOG_ERROR, "requested bitrate is too low. estimated minimum is %d kbps\n",
|
|
(int)(allConstBits * m_fps / m_numEntries * 1000.));
|
|
return false;
|
|
}
|
|
|
|
/* Blur complexities, to reduce local fluctuation of QP.
|
|
* We don't blur the QPs directly, because then one very simple frame
|
|
* could drag down the QP of a nearby complex frame and give it more
|
|
* bits than intended. */
|
|
for (int i = 0; i < m_numEntries; i++)
|
|
{
|
|
double weightSum = 0;
|
|
double cplxSum = 0;
|
|
double weight = 1.0;
|
|
double gaussianWeight;
|
|
/* weighted average of cplx of future frames */
|
|
for (int j = 1; j < cplxBlur * 2 && j < m_numEntries - i; j++)
|
|
{
|
|
RateControlEntry *rcj = &m_rce2Pass[i + j];
|
|
weight *= 1 - pow(rcj->iCuCount / m_ncu, 2);
|
|
if (weight < 0.0001)
|
|
break;
|
|
gaussianWeight = weight * exp(-j * j / 200.0);
|
|
weightSum += gaussianWeight;
|
|
cplxSum += gaussianWeight * (qScale2bits(rcj, 1) - rcj->miscBits) / clippedDuration;
|
|
}
|
|
/* weighted average of cplx of past frames */
|
|
weight = 1.0;
|
|
for (int j = 0; j <= cplxBlur * 2 && j <= i; j++)
|
|
{
|
|
RateControlEntry *rcj = &m_rce2Pass[i - j];
|
|
gaussianWeight = weight * exp(-j * j / 200.0);
|
|
weightSum += gaussianWeight;
|
|
cplxSum += gaussianWeight * (qScale2bits(rcj, 1) - rcj->miscBits) / clippedDuration;
|
|
weight *= 1 - pow(rcj->iCuCount / m_ncu, 2);
|
|
if (weight < .0001)
|
|
break;
|
|
}
|
|
m_rce2Pass[i].blurredComplexity = cplxSum / weightSum;
|
|
}
|
|
|
|
CHECKED_MALLOC(qScale, double, m_numEntries);
|
|
if (filterSize > 1)
|
|
{
|
|
CHECKED_MALLOC(blurredQscale, double, m_numEntries);
|
|
}
|
|
else
|
|
blurredQscale = qScale;
|
|
|
|
/* Search for a factor which, when multiplied by the RCEQ values from
|
|
* each frame, adds up to the desired total size.
|
|
* There is no exact closed-form solution because of VBV constraints and
|
|
* because qscale2bits is not invertible, but we can start with the simple
|
|
* approximation of scaling the 1st pass by the ratio of bitrates.
|
|
* The search range is probably overkill, but speed doesn't matter here. */
|
|
|
|
expectedBits = 1;
|
|
for (int i = 0; i < m_numEntries; i++)
|
|
{
|
|
RateControlEntry* rce = &m_rce2Pass[i];
|
|
double q = getQScale(rce, 1.0);
|
|
expectedBits += qScale2bits(rce, q);
|
|
m_lastQScaleFor[rce->sliceType] = q;
|
|
}
|
|
stepMult = allAvailableBits / expectedBits;
|
|
|
|
rateFactor = 0;
|
|
for (double step = 1E4 * stepMult; step > 1E-7 * stepMult; step *= 0.5)
|
|
{
|
|
expectedBits = 0;
|
|
rateFactor += step;
|
|
|
|
m_lastNonBPictType = -1;
|
|
m_lastAccumPNorm = 1;
|
|
m_accumPNorm = 0;
|
|
|
|
m_lastQScaleFor[0] = m_lastQScaleFor[1] =
|
|
m_lastQScaleFor[2] = pow(baseCplx, 1 - m_qCompress) / rateFactor;
|
|
|
|
/* find qscale */
|
|
for (int i = 0; i < m_numEntries; i++)
|
|
{
|
|
RateControlEntry *rce = &m_rce2Pass[i];
|
|
qScale[i] = getQScale(rce, rateFactor);
|
|
m_lastQScaleFor[rce->sliceType] = qScale[i];
|
|
}
|
|
|
|
/* fixed I/B qscale relative to P */
|
|
for (int i = m_numEntries - 1; i >= 0; i--)
|
|
{
|
|
qScale[i] = getDiffLimitedQScale(&m_rce2Pass[i], qScale[i]);
|
|
X265_CHECK(qScale[i] >= 0, "qScale became negative\n");
|
|
}
|
|
|
|
/* smooth curve */
|
|
if (filterSize > 1)
|
|
{
|
|
X265_CHECK(filterSize % 2 == 1, "filterSize not an odd number\n");
|
|
for (int i = 0; i < m_numEntries; i++)
|
|
{
|
|
double q = 0.0, sum = 0.0;
|
|
|
|
for (int j = 0; j < filterSize; j++)
|
|
{
|
|
int idx = i + j - filterSize / 2;
|
|
double d = idx - i;
|
|
double coeff = qBlur == 0 ? 1.0 : exp(-d * d / (qBlur * qBlur));
|
|
if (idx < 0 || idx >= m_numEntries)
|
|
continue;
|
|
if (m_rce2Pass[i].sliceType != m_rce2Pass[idx].sliceType)
|
|
continue;
|
|
q += qScale[idx] * coeff;
|
|
sum += coeff;
|
|
}
|
|
blurredQscale[i] = q / sum;
|
|
}
|
|
}
|
|
|
|
/* find expected bits */
|
|
for (int i = 0; i < m_numEntries; i++)
|
|
{
|
|
RateControlEntry *rce = &m_rce2Pass[i];
|
|
rce->newQScale = clipQscale(NULL, rce, blurredQscale[i]); // check if needed
|
|
X265_CHECK(rce->newQScale >= 0, "new Qscale is negative\n");
|
|
expectedBits += qScale2bits(rce, rce->newQScale);
|
|
}
|
|
|
|
if (expectedBits > allAvailableBits)
|
|
rateFactor -= step;
|
|
}
|
|
|
|
X265_FREE(qScale);
|
|
if (filterSize > 1)
|
|
X265_FREE(blurredQscale);
|
|
|
|
if (m_isVbv)
|
|
if (!vbv2Pass(allAvailableBits))
|
|
return false;
|
|
expectedBits = countExpectedBits();
|
|
|
|
if (fabs(expectedBits / allAvailableBits - 1.0) > 0.01)
|
|
{
|
|
double avgq = 0;
|
|
for (int i = 0; i < m_numEntries; i++)
|
|
avgq += m_rce2Pass[i].newQScale;
|
|
avgq = x265_qScale2qp(avgq / m_numEntries);
|
|
|
|
if (expectedBits > allAvailableBits || !m_isVbv)
|
|
x265_log(m_param, X265_LOG_WARNING, "Error: 2pass curve failed to converge\n");
|
|
x265_log(m_param, X265_LOG_WARNING, "target: %.2f kbit/s, expected: %.2f kbit/s, avg QP: %.4f\n",
|
|
(double)m_param->rc.bitrate,
|
|
expectedBits * m_fps / (m_numEntries * 1000.),
|
|
avgq);
|
|
if (expectedBits < allAvailableBits && avgq < QP_MIN + 2)
|
|
{
|
|
x265_log(m_param, X265_LOG_WARNING, "try reducing target bitrate\n");
|
|
}
|
|
else if (expectedBits > allAvailableBits && avgq > QP_MAX_SPEC - 2)
|
|
{
|
|
x265_log(m_param, X265_LOG_WARNING, "try increasing target bitrate\n");
|
|
}
|
|
else if (!(m_2pass && m_isVbv))
|
|
x265_log(m_param, X265_LOG_WARNING, "internal error\n");
|
|
}
|
|
|
|
return true;
|
|
|
|
fail:
|
|
x265_log(m_param, X265_LOG_WARNING, "two-pass ABR initialization failed\n");
|
|
return false;
|
|
}
|
|
|
|
bool RateControl::vbv2Pass(uint64_t allAvailableBits)
|
|
{
|
|
/* for each interval of bufferFull .. underflow, uniformly increase the qp of all
|
|
* frames in the interval until either buffer is full at some intermediate frame or the
|
|
* last frame in the interval no longer underflows. Recompute intervals and repeat.
|
|
* Then do the converse to put bits back into overflow areas until target size is met */
|
|
|
|
double *fills;
|
|
double expectedBits = 0;
|
|
double adjustment;
|
|
double prevBits = 0;
|
|
int t0, t1;
|
|
int iterations = 0 , adjMin, adjMax;
|
|
CHECKED_MALLOC(fills, double, m_numEntries + 1);
|
|
fills++;
|
|
|
|
/* adjust overall stream size */
|
|
do
|
|
{
|
|
iterations++;
|
|
prevBits = expectedBits;
|
|
|
|
if (expectedBits)
|
|
{ /* not first iteration */
|
|
adjustment = X265_MAX(X265_MIN(expectedBits / allAvailableBits, 0.999), 0.9);
|
|
fills[-1] = m_bufferSize * m_param->rc.vbvBufferInit;
|
|
t0 = 0;
|
|
/* fix overflows */
|
|
adjMin = 1;
|
|
while (adjMin && findUnderflow(fills, &t0, &t1, 1))
|
|
{
|
|
adjMin = fixUnderflow(t0, t1, adjustment, MIN_QPSCALE, MAX_MAX_QPSCALE);
|
|
t0 = t1;
|
|
}
|
|
}
|
|
|
|
fills[-1] = m_bufferSize * (1. - m_param->rc.vbvBufferInit);
|
|
t0 = 0;
|
|
/* fix underflows -- should be done after overflow, as we'd better undersize target than underflowing VBV */
|
|
adjMax = 1;
|
|
while (adjMax && findUnderflow(fills, &t0, &t1, 0))
|
|
adjMax = fixUnderflow(t0, t1, 1.001, MIN_QPSCALE, MAX_MAX_QPSCALE );
|
|
|
|
expectedBits = countExpectedBits();
|
|
}
|
|
while ((expectedBits < .995 * allAvailableBits) && ((int64_t)(expectedBits+.5) > (int64_t)(prevBits+.5)));
|
|
|
|
if (!adjMax)
|
|
x265_log(m_param, X265_LOG_WARNING, "vbv-maxrate issue, qpmax or vbv-maxrate too low\n");
|
|
|
|
/* store expected vbv filling values for tracking when encoding */
|
|
for (int i = 0; i < m_numEntries; i++)
|
|
m_rce2Pass[i].expectedVbv = m_bufferSize - fills[i];
|
|
|
|
X265_FREE(fills - 1);
|
|
return true;
|
|
|
|
fail:
|
|
x265_log(m_param, X265_LOG_ERROR, "malloc failure in two-pass VBV init\n");
|
|
return false;
|
|
}
|
|
|
|
/* In 2pass, force the same frame types as in the 1st pass */
|
|
int RateControl::rateControlSliceType(int frameNum)
|
|
{
|
|
if (m_param->rc.bStatRead)
|
|
{
|
|
if (frameNum >= m_numEntries)
|
|
{
|
|
/* We could try to initialize everything required for ABR and
|
|
* adaptive B-frames, but that would be complicated.
|
|
* So just calculate the average QP used so far. */
|
|
m_param->rc.qp = (m_accumPQp < 1) ? ABR_INIT_QP_MAX : (int)(m_accumPQp + 0.5);
|
|
m_qpConstant[P_SLICE] = x265_clip3(QP_MIN, QP_MAX_MAX, m_param->rc.qp);
|
|
m_qpConstant[I_SLICE] = x265_clip3(QP_MIN, QP_MAX_MAX, (int)(m_param->rc.qp - m_ipOffset + 0.5));
|
|
m_qpConstant[B_SLICE] = x265_clip3(QP_MIN, QP_MAX_MAX, (int)(m_param->rc.qp + m_pbOffset + 0.5));
|
|
|
|
x265_log(m_param, X265_LOG_ERROR, "2nd pass has more frames than 1st pass (%d)\n", m_numEntries);
|
|
x265_log(m_param, X265_LOG_ERROR, "continuing anyway, at constant QP=%d\n", m_param->rc.qp);
|
|
if (m_param->bFrameAdaptive)
|
|
x265_log(m_param, X265_LOG_ERROR, "disabling adaptive B-frames\n");
|
|
|
|
m_isAbr = 0;
|
|
m_2pass = 0;
|
|
m_param->rc.rateControlMode = X265_RC_CQP;
|
|
m_param->rc.bStatRead = 0;
|
|
m_param->bFrameAdaptive = 0;
|
|
m_param->scenecutThreshold = 0;
|
|
m_param->rc.cuTree = 0;
|
|
if (m_param->bframes > 1)
|
|
m_param->bframes = 1;
|
|
return X265_TYPE_AUTO;
|
|
}
|
|
int frameType = m_rce2Pass[frameNum].sliceType == I_SLICE ? (frameNum > 0 && m_param->bOpenGOP ? X265_TYPE_I : X265_TYPE_IDR)
|
|
: m_rce2Pass[frameNum].sliceType == P_SLICE ? X265_TYPE_P
|
|
: (m_rce2Pass[frameNum].sliceType == B_SLICE && m_rce2Pass[frameNum].keptAsRef? X265_TYPE_BREF : X265_TYPE_B);
|
|
return frameType;
|
|
}
|
|
else
|
|
return X265_TYPE_AUTO;
|
|
}
|
|
|
|
int RateControl::rateControlStart(Frame* curFrame, RateControlEntry* rce, Encoder* enc)
|
|
{
|
|
int orderValue = m_startEndOrder.get();
|
|
int startOrdinal = rce->encodeOrder * 2;
|
|
|
|
while (orderValue < startOrdinal && !m_bTerminated)
|
|
orderValue = m_startEndOrder.waitForChange(orderValue);
|
|
|
|
if (!curFrame)
|
|
{
|
|
// faked rateControlStart calls when the encoder is flushing
|
|
m_startEndOrder.incr();
|
|
return 0;
|
|
}
|
|
|
|
FrameData& curEncData = *curFrame->m_encData;
|
|
m_curSlice = curEncData.m_slice;
|
|
m_sliceType = m_curSlice->m_sliceType;
|
|
rce->sliceType = m_sliceType;
|
|
if (!m_2pass)
|
|
rce->keptAsRef = IS_REFERENCED(curFrame);
|
|
m_predType = getPredictorType(curFrame->m_lowres.sliceType, m_sliceType);
|
|
rce->poc = m_curSlice->m_poc;
|
|
if (m_param->rc.bStatRead)
|
|
{
|
|
X265_CHECK(rce->poc >= 0 && rce->poc < m_numEntries, "bad encode ordinal\n");
|
|
copyRceData(rce, &m_rce2Pass[rce->poc]);
|
|
}
|
|
rce->isActive = true;
|
|
bool isframeAfterKeyframe = m_sliceType != I_SLICE && m_curSlice->m_refFrameList[0][0]->m_encData->m_slice->m_sliceType == I_SLICE;
|
|
if (curFrame->m_lowres.bScenecut)
|
|
{
|
|
m_isSceneTransition = true;
|
|
/* Frame Predictors and Row predictors used in vbv */
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
m_pred[i].coeff = 1.0;
|
|
m_pred[i].count = 1.0;
|
|
m_pred[i].decay = 0.5;
|
|
m_pred[i].offset = 0.0;
|
|
}
|
|
m_pred[0].coeff = m_pred[3].coeff = 0.75;
|
|
}
|
|
else if (m_sliceType != B_SLICE && !isframeAfterKeyframe)
|
|
m_isSceneTransition = false;
|
|
|
|
rce->bLastMiniGopBFrame = curFrame->m_lowres.bLastMiniGopBFrame;
|
|
rce->bufferRate = m_bufferRate;
|
|
rce->rowCplxrSum = 0.0;
|
|
rce->rowTotalBits = 0;
|
|
if (m_isVbv)
|
|
{
|
|
if (rce->rowPreds[0][0].count == 0)
|
|
{
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
for (int j = 0; j < 2; j++)
|
|
{
|
|
rce->rowPreds[i][j].coeff = 0.25;
|
|
rce->rowPreds[i][j].count = 1.0;
|
|
rce->rowPreds[i][j].decay = 0.5;
|
|
rce->rowPreds[i][j].offset = 0.0;
|
|
}
|
|
}
|
|
}
|
|
rce->rowPred[0] = &rce->rowPreds[m_sliceType][0];
|
|
rce->rowPred[1] = &rce->rowPreds[m_sliceType][1];
|
|
m_predictedBits = m_totalBits;
|
|
updateVbvPlan(enc);
|
|
rce->bufferFill = m_bufferFill;
|
|
|
|
int mincr = enc->m_vps.ptl.minCrForLevel;
|
|
/* Profiles above Main10 don't require maxAU size check, so just set the maximum to a large value. */
|
|
if (enc->m_vps.ptl.profileIdc > Profile::MAIN10 || enc->m_vps.ptl.levelIdc == Level::NONE)
|
|
rce->frameSizeMaximum = 1e9;
|
|
else
|
|
{
|
|
/* The spec has a special case for the first frame. */
|
|
if (rce->encodeOrder == 0)
|
|
{
|
|
/* 1.5 * (Max( PicSizeInSamplesY, fR * MaxLumaSr) + MaxLumaSr * (AuCpbRemovalTime[ 0 ] -AuNominalRemovalTime[ 0 ])) ? MinCr */
|
|
double fr = 1. / 300;
|
|
int picSizeInSamplesY = m_param->sourceWidth * m_param->sourceHeight;
|
|
rce->frameSizeMaximum = 8 * 1.5 * X265_MAX(picSizeInSamplesY, fr * enc->m_vps.ptl.maxLumaSrForLevel) / mincr;
|
|
}
|
|
else
|
|
{
|
|
/* 1.5 * MaxLumaSr * (AuCpbRemovalTime[ n ] - AuCpbRemovalTime[ n - 1 ]) / MinCr */
|
|
rce->frameSizeMaximum = 8 * 1.5 * enc->m_vps.ptl.maxLumaSrForLevel * m_frameDuration / mincr;
|
|
}
|
|
}
|
|
}
|
|
if (m_isAbr || m_2pass) // ABR,CRF
|
|
{
|
|
if (m_isAbr || m_isVbv)
|
|
{
|
|
m_currentSatd = curFrame->m_lowres.satdCost >> (X265_DEPTH - 8);
|
|
/* Update rce for use in rate control VBV later */
|
|
rce->lastSatd = m_currentSatd;
|
|
X265_CHECK(rce->lastSatd, "satdcost cannot be zero\n");
|
|
/* Detect a pattern for B frames with same SATDcost to identify a series of static frames
|
|
* and the P frame at the end of the series marks a possible case for ABR reset logic */
|
|
if (m_param->bframes)
|
|
{
|
|
if (m_sliceType != B_SLICE && m_numBframesInPattern > m_param->bframes)
|
|
{
|
|
m_isPatternPresent = true;
|
|
}
|
|
else if (m_sliceType == B_SLICE && !IS_REFERENCED(curFrame))
|
|
{
|
|
if (m_currentSatd != m_lastBsliceSatdCost && !rce->bLastMiniGopBFrame)
|
|
{
|
|
m_isPatternPresent = false;
|
|
m_lastBsliceSatdCost = m_currentSatd;
|
|
m_numBframesInPattern = 0;
|
|
}
|
|
else if (m_currentSatd == m_lastBsliceSatdCost)
|
|
m_numBframesInPattern++;
|
|
}
|
|
}
|
|
}
|
|
/* For a scenecut that occurs within the mini-gop, enable scene transition
|
|
* switch until the next mini-gop to ensure a min qp for all the frames within
|
|
* the scene-transition mini-gop */
|
|
|
|
double q = x265_qScale2qp(rateEstimateQscale(curFrame, rce));
|
|
q = x265_clip3((double)QP_MIN, (double)QP_MAX_MAX, q);
|
|
m_qp = int(q + 0.5);
|
|
rce->qpaRc = curEncData.m_avgQpRc = curEncData.m_avgQpAq = q;
|
|
/* copy value of lastRceq into thread local rce struct *to be used in RateControlEnd() */
|
|
rce->qRceq = m_lastRceq;
|
|
accumPQpUpdate();
|
|
}
|
|
else // CQP
|
|
{
|
|
if (m_sliceType == B_SLICE && IS_REFERENCED(curFrame))
|
|
m_qp = (m_qpConstant[B_SLICE] + m_qpConstant[P_SLICE]) / 2;
|
|
else
|
|
m_qp = m_qpConstant[m_sliceType];
|
|
curEncData.m_avgQpAq = curEncData.m_avgQpRc = m_qp;
|
|
|
|
x265_zone* zone = getZone();
|
|
if (zone)
|
|
{
|
|
if (zone->bForceQp)
|
|
m_qp += zone->qp - m_qpConstant[P_SLICE];
|
|
else
|
|
m_qp -= (int)(6.0 * X265_LOG2(zone->bitrateFactor));
|
|
}
|
|
}
|
|
if (m_sliceType != B_SLICE)
|
|
{
|
|
m_lastNonBPictType = m_sliceType;
|
|
m_leadingNoBSatd = m_currentSatd;
|
|
}
|
|
rce->leadingNoBSatd = m_leadingNoBSatd;
|
|
if (curFrame->m_forceqp)
|
|
{
|
|
m_qp = (int32_t)(curFrame->m_forceqp + 0.5) - 1;
|
|
m_qp = x265_clip3(QP_MIN, QP_MAX_MAX, m_qp);
|
|
rce->qpaRc = curEncData.m_avgQpRc = curEncData.m_avgQpAq = m_qp;
|
|
if (m_isAbr || m_2pass)
|
|
{
|
|
rce->qpNoVbv = rce->qpaRc;
|
|
m_lastQScaleFor[m_sliceType] = x265_qp2qScale(rce->qpaRc);
|
|
if (rce->poc == 0)
|
|
m_lastQScaleFor[P_SLICE] = m_lastQScaleFor[m_sliceType] * fabs(m_param->rc.ipFactor);
|
|
rce->frameSizePlanned = predictSize(&m_pred[m_predType], m_qp, (double)m_currentSatd);
|
|
}
|
|
}
|
|
m_framesDone++;
|
|
|
|
return m_qp;
|
|
}
|
|
|
|
void RateControl::accumPQpUpdate()
|
|
{
|
|
m_accumPQp *= .95;
|
|
m_accumPNorm *= .95;
|
|
m_accumPNorm += 1;
|
|
if (m_sliceType == I_SLICE)
|
|
m_accumPQp += m_qp + m_ipOffset;
|
|
else
|
|
m_accumPQp += m_qp;
|
|
}
|
|
|
|
int RateControl::getPredictorType(int lowresSliceType, int sliceType)
|
|
{
|
|
/* Use a different predictor for B Ref and B frames for vbv frame size predictions */
|
|
if (lowresSliceType == X265_TYPE_BREF)
|
|
return 3;
|
|
return sliceType;
|
|
}
|
|
|
|
double RateControl::getDiffLimitedQScale(RateControlEntry *rce, double q)
|
|
{
|
|
// force I/B quants as a function of P quants
|
|
const double lastPqScale = m_lastQScaleFor[P_SLICE];
|
|
const double lastNonBqScale = m_lastQScaleFor[m_lastNonBPictType];
|
|
if (rce->sliceType == I_SLICE)
|
|
{
|
|
double iq = q;
|
|
double pq = x265_qp2qScale(m_accumPQp / m_accumPNorm);
|
|
double ipFactor = fabs(m_param->rc.ipFactor);
|
|
/* don't apply ipFactor if the following frame is also I */
|
|
if (m_accumPNorm <= 0)
|
|
q = iq;
|
|
else if (m_param->rc.ipFactor < 0)
|
|
q = iq / ipFactor;
|
|
else if (m_accumPNorm >= 1)
|
|
q = pq / ipFactor;
|
|
else
|
|
q = m_accumPNorm * pq / ipFactor + (1 - m_accumPNorm) * iq;
|
|
}
|
|
else if (rce->sliceType == B_SLICE)
|
|
{
|
|
if (m_param->rc.pbFactor > 0)
|
|
q = lastNonBqScale;
|
|
if (!rce->keptAsRef)
|
|
q *= fabs(m_param->rc.pbFactor);
|
|
}
|
|
else if (rce->sliceType == P_SLICE
|
|
&& m_lastNonBPictType == P_SLICE
|
|
&& rce->coeffBits == 0)
|
|
{
|
|
q = lastPqScale;
|
|
}
|
|
|
|
/* last qscale / qdiff stuff */
|
|
if (m_lastNonBPictType == rce->sliceType &&
|
|
(rce->sliceType != I_SLICE || m_lastAccumPNorm < 1))
|
|
{
|
|
double maxQscale = m_lastQScaleFor[rce->sliceType] * m_lstep;
|
|
double minQscale = m_lastQScaleFor[rce->sliceType] / m_lstep;
|
|
q = x265_clip3(minQscale, maxQscale, q);
|
|
}
|
|
|
|
m_lastQScaleFor[rce->sliceType] = q;
|
|
if (rce->sliceType != B_SLICE)
|
|
m_lastNonBPictType = rce->sliceType;
|
|
if (rce->sliceType == I_SLICE)
|
|
{
|
|
m_lastAccumPNorm = m_accumPNorm;
|
|
m_accumPNorm = 0;
|
|
m_accumPQp = 0;
|
|
}
|
|
if (rce->sliceType == P_SLICE)
|
|
{
|
|
double mask = 1 - pow(rce->iCuCount / m_ncu, 2);
|
|
m_accumPQp = mask * (x265_qScale2qp(q) + m_accumPQp);
|
|
m_accumPNorm = mask * (1 + m_accumPNorm);
|
|
}
|
|
|
|
x265_zone* zone = getZone();
|
|
if (zone)
|
|
{
|
|
if (zone->bForceQp)
|
|
q = x265_qp2qScale(zone->qp);
|
|
else
|
|
q /= zone->bitrateFactor;
|
|
}
|
|
return q;
|
|
}
|
|
|
|
double RateControl::countExpectedBits()
|
|
{
|
|
double expectedBits = 0;
|
|
for( int i = 0; i < m_numEntries; i++ )
|
|
{
|
|
RateControlEntry *rce = &m_rce2Pass[i];
|
|
rce->expectedBits = (uint64_t)expectedBits;
|
|
expectedBits += qScale2bits(rce, rce->newQScale);
|
|
}
|
|
return expectedBits;
|
|
}
|
|
|
|
bool RateControl::findUnderflow(double *fills, int *t0, int *t1, int over)
|
|
{
|
|
/* find an interval ending on an overflow or underflow (depending on whether
|
|
* we're adding or removing bits), and starting on the earliest frame that
|
|
* can influence the buffer fill of that end frame. */
|
|
const double bufferMin = .1 * m_bufferSize;
|
|
const double bufferMax = .9 * m_bufferSize;
|
|
double fill = fills[*t0 - 1];
|
|
double parity = over ? 1. : -1.;
|
|
int start = -1, end = -1;
|
|
for (int i = *t0; i < m_numEntries; i++)
|
|
{
|
|
fill += (m_frameDuration * m_vbvMaxRate -
|
|
qScale2bits(&m_rce2Pass[i], m_rce2Pass[i].newQScale)) * parity;
|
|
fill = x265_clip3(0.0, m_bufferSize, fill);
|
|
fills[i] = fill;
|
|
if (fill <= bufferMin || i == 0)
|
|
{
|
|
if (end >= 0)
|
|
break;
|
|
start = i;
|
|
}
|
|
else if (fill >= bufferMax && start >= 0)
|
|
end = i;
|
|
}
|
|
*t0 = start;
|
|
*t1 = end;
|
|
return start >= 0 && end >= 0;
|
|
}
|
|
|
|
bool RateControl::fixUnderflow(int t0, int t1, double adjustment, double qscaleMin, double qscaleMax)
|
|
{
|
|
double qscaleOrig, qscaleNew;
|
|
bool adjusted = false;
|
|
if (t0 > 0)
|
|
t0++;
|
|
for (int i = t0; i <= t1; i++)
|
|
{
|
|
qscaleOrig = m_rce2Pass[i].newQScale;
|
|
qscaleOrig = x265_clip3(qscaleMin, qscaleMax, qscaleOrig);
|
|
qscaleNew = qscaleOrig * adjustment;
|
|
qscaleNew = x265_clip3(qscaleMin, qscaleMax, qscaleNew);
|
|
m_rce2Pass[i].newQScale = qscaleNew;
|
|
adjusted = adjusted || (qscaleNew != qscaleOrig);
|
|
}
|
|
return adjusted;
|
|
}
|
|
|
|
bool RateControl::cuTreeReadFor2Pass(Frame* frame)
|
|
{
|
|
uint8_t sliceTypeActual = (uint8_t)m_rce2Pass[frame->m_poc].sliceType;
|
|
|
|
if (m_rce2Pass[frame->m_poc].keptAsRef)
|
|
{
|
|
/* TODO: We don't need pre-lookahead to measure AQ offsets, but there is currently
|
|
* no way to signal this */
|
|
uint8_t type;
|
|
if (m_cuTreeStats.qpBufPos < 0)
|
|
{
|
|
do
|
|
{
|
|
m_cuTreeStats.qpBufPos++;
|
|
|
|
if (!fread(&type, 1, 1, m_cutreeStatFileIn))
|
|
goto fail;
|
|
if (fread(m_cuTreeStats.qpBuffer[m_cuTreeStats.qpBufPos], sizeof(uint16_t), m_ncu, m_cutreeStatFileIn) != (size_t)m_ncu)
|
|
goto fail;
|
|
|
|
if (type != sliceTypeActual && m_cuTreeStats.qpBufPos == 1)
|
|
{
|
|
x265_log(m_param, X265_LOG_ERROR, "CU-tree frametype %d doesn't match actual frametype %d.\n", type, sliceTypeActual);
|
|
return false;
|
|
}
|
|
}
|
|
while(type != sliceTypeActual);
|
|
}
|
|
for (int i = 0; i < m_ncu; i++)
|
|
{
|
|
int16_t qpFix8 = m_cuTreeStats.qpBuffer[m_cuTreeStats.qpBufPos][i];
|
|
frame->m_lowres.qpCuTreeOffset[i] = (double)(qpFix8) / 256.0;
|
|
frame->m_lowres.invQscaleFactor[i] = x265_exp2fix8(frame->m_lowres.qpCuTreeOffset[i]);
|
|
}
|
|
m_cuTreeStats.qpBufPos--;
|
|
}
|
|
return true;
|
|
|
|
fail:
|
|
x265_log(m_param, X265_LOG_ERROR, "Incomplete CU-tree stats file.\n");
|
|
return false;
|
|
}
|
|
|
|
double RateControl::tuneAbrQScaleFromFeedback(double qScale)
|
|
{
|
|
double abrBuffer = 2 * m_rateTolerance * m_bitrate;
|
|
if (m_currentSatd)
|
|
{
|
|
/* use framesDone instead of POC as poc count is not serial with bframes enabled */
|
|
double overflow = 1.0;
|
|
double timeDone = (double)(m_framesDone - m_param->frameNumThreads + 1) * m_frameDuration;
|
|
double wantedBits = timeDone * m_bitrate;
|
|
int64_t encodedBits = m_totalBits;
|
|
if (m_param->totalFrames && m_param->totalFrames <= 2 * m_fps)
|
|
{
|
|
abrBuffer = m_param->totalFrames * (m_bitrate / m_fps);
|
|
encodedBits = m_encodedBits;
|
|
}
|
|
|
|
if (wantedBits > 0 && encodedBits > 0 && (!m_partialResidualFrames ||
|
|
m_param->rc.bStrictCbr))
|
|
{
|
|
abrBuffer *= X265_MAX(1, sqrt(timeDone));
|
|
overflow = x265_clip3(.5, 2.0, 1.0 + (encodedBits - wantedBits) / abrBuffer);
|
|
qScale *= overflow;
|
|
}
|
|
}
|
|
return qScale;
|
|
}
|
|
|
|
double RateControl::rateEstimateQscale(Frame* curFrame, RateControlEntry *rce)
|
|
{
|
|
double q;
|
|
|
|
if (m_2pass)
|
|
{
|
|
if (m_sliceType != rce->sliceType)
|
|
{
|
|
x265_log(m_param, X265_LOG_ERROR, "slice=%c but 2pass stats say %c\n",
|
|
g_sliceTypeToChar[m_sliceType], g_sliceTypeToChar[rce->sliceType]);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (m_isAbr)
|
|
{
|
|
double slidingWindowCplxSum = 0;
|
|
int start = m_sliderPos > s_slidingWindowFrames ? m_sliderPos : 0;
|
|
for (int cnt = 0; cnt < s_slidingWindowFrames; cnt++, start++)
|
|
{
|
|
int pos = start % s_slidingWindowFrames;
|
|
slidingWindowCplxSum *= 0.5;
|
|
if (!m_satdCostWindow[pos])
|
|
break;
|
|
slidingWindowCplxSum += m_satdCostWindow[pos];
|
|
}
|
|
rce->movingAvgSum = slidingWindowCplxSum;
|
|
m_satdCostWindow[m_sliderPos % s_slidingWindowFrames] = rce->lastSatd;
|
|
m_sliderPos++;
|
|
}
|
|
}
|
|
|
|
if (m_sliceType == B_SLICE)
|
|
{
|
|
/* B-frames don't have independent rate control, but rather get the
|
|
* average QP of the two adjacent P-frames + an offset */
|
|
Slice* prevRefSlice = m_curSlice->m_refFrameList[0][0]->m_encData->m_slice;
|
|
Slice* nextRefSlice = m_curSlice->m_refFrameList[1][0]->m_encData->m_slice;
|
|
double q0 = m_curSlice->m_refFrameList[0][0]->m_encData->m_avgQpRc;
|
|
double q1 = m_curSlice->m_refFrameList[1][0]->m_encData->m_avgQpRc;
|
|
bool i0 = prevRefSlice->m_sliceType == I_SLICE;
|
|
bool i1 = nextRefSlice->m_sliceType == I_SLICE;
|
|
int dt0 = abs(m_curSlice->m_poc - prevRefSlice->m_poc);
|
|
int dt1 = abs(m_curSlice->m_poc - nextRefSlice->m_poc);
|
|
|
|
// Skip taking a reference frame before the Scenecut if ABR has been reset.
|
|
if (m_lastAbrResetPoc >= 0)
|
|
{
|
|
if (prevRefSlice->m_sliceType == P_SLICE && prevRefSlice->m_poc < m_lastAbrResetPoc)
|
|
{
|
|
i0 = i1;
|
|
dt0 = dt1;
|
|
q0 = q1;
|
|
}
|
|
}
|
|
if (prevRefSlice->m_sliceType == B_SLICE && IS_REFERENCED(m_curSlice->m_refFrameList[0][0]))
|
|
q0 -= m_pbOffset / 2;
|
|
if (nextRefSlice->m_sliceType == B_SLICE && IS_REFERENCED(m_curSlice->m_refFrameList[1][0]))
|
|
q1 -= m_pbOffset / 2;
|
|
if (i0 && i1)
|
|
q = (q0 + q1) / 2 + m_ipOffset;
|
|
else if (i0)
|
|
q = q1;
|
|
else if (i1)
|
|
q = q0;
|
|
else
|
|
q = (q0 * dt1 + q1 * dt0) / (dt0 + dt1);
|
|
|
|
if (IS_REFERENCED(curFrame))
|
|
q += m_pbOffset / 2;
|
|
else
|
|
q += m_pbOffset;
|
|
|
|
/* Set a min qp at scenechanges and transitions */
|
|
if (m_isSceneTransition)
|
|
{
|
|
q = X265_MAX(ABR_SCENECUT_INIT_QP_MIN, q);
|
|
double minScenecutQscale =x265_qp2qScale(ABR_SCENECUT_INIT_QP_MIN);
|
|
m_lastQScaleFor[P_SLICE] = X265_MAX(minScenecutQscale, m_lastQScaleFor[P_SLICE]);
|
|
}
|
|
double qScale = x265_qp2qScale(q);
|
|
rce->qpNoVbv = q;
|
|
double lmin = 0, lmax = 0;
|
|
if (m_isVbv)
|
|
{
|
|
lmin = m_lastQScaleFor[P_SLICE] / m_lstep;
|
|
lmax = m_lastQScaleFor[P_SLICE] * m_lstep;
|
|
if (m_isCbr)
|
|
{
|
|
qScale = tuneAbrQScaleFromFeedback(qScale);
|
|
if (!m_isAbrReset)
|
|
qScale = x265_clip3(lmin, lmax, qScale);
|
|
q = x265_qScale2qp(qScale);
|
|
}
|
|
if (!m_2pass)
|
|
{
|
|
qScale = clipQscale(curFrame, rce, qScale);
|
|
/* clip qp to permissible range after vbv-lookahead estimation to avoid possible
|
|
* mispredictions by initial frame size predictors */
|
|
if (m_pred[m_predType].count == 1)
|
|
qScale = x265_clip3(lmin, lmax, qScale);
|
|
m_lastQScaleFor[m_sliceType] = qScale;
|
|
rce->frameSizePlanned = predictSize(&m_pred[m_predType], qScale, (double)m_currentSatd);
|
|
}
|
|
else
|
|
rce->frameSizePlanned = qScale2bits(rce, qScale);
|
|
|
|
/* Limit planned size by MinCR */
|
|
rce->frameSizePlanned = X265_MIN(rce->frameSizePlanned, rce->frameSizeMaximum);
|
|
rce->frameSizeEstimated = rce->frameSizePlanned;
|
|
}
|
|
rce->newQScale = qScale;
|
|
return qScale;
|
|
}
|
|
else
|
|
{
|
|
double abrBuffer = 2 * m_rateTolerance * m_bitrate;
|
|
if (m_2pass)
|
|
{
|
|
int64_t diff;
|
|
if (!m_isVbv)
|
|
{
|
|
m_predictedBits = m_totalBits;
|
|
if (rce->encodeOrder < m_param->frameNumThreads)
|
|
m_predictedBits += (int64_t)(rce->encodeOrder * m_bitrate / m_fps);
|
|
else
|
|
m_predictedBits += (int64_t)(m_param->frameNumThreads * m_bitrate / m_fps);
|
|
}
|
|
/* Adjust ABR buffer based on distance to the end of the video. */
|
|
if (m_numEntries > rce->encodeOrder)
|
|
{
|
|
uint64_t finalBits = m_rce2Pass[m_numEntries - 1].expectedBits;
|
|
double videoPos = (double)rce->expectedBits / finalBits;
|
|
double scaleFactor = sqrt((1 - videoPos) * m_numEntries);
|
|
abrBuffer *= 0.5 * X265_MAX(scaleFactor, 0.5);
|
|
}
|
|
diff = m_predictedBits - (int64_t)rce->expectedBits;
|
|
q = rce->newQScale;
|
|
q /= x265_clip3(0.5, 2.0, (double)(abrBuffer - diff) / abrBuffer);
|
|
if (m_expectedBitsSum > 0)
|
|
{
|
|
/* Adjust quant based on the difference between
|
|
* achieved and expected bitrate so far */
|
|
double curTime = (double)rce->encodeOrder / m_numEntries;
|
|
double w = x265_clip3(0.0, 1.0, curTime * 100);
|
|
q *= pow((double)m_totalBits / m_expectedBitsSum, w);
|
|
}
|
|
rce->qpNoVbv = x265_qScale2qp(q);
|
|
if (m_isVbv)
|
|
{
|
|
/* Do not overflow vbv */
|
|
double expectedSize = qScale2bits(rce, q);
|
|
double expectedVbv = m_bufferFill + m_bufferRate - expectedSize;
|
|
double expectedFullness = rce->expectedVbv / m_bufferSize;
|
|
double qmax = q * (2 - expectedFullness);
|
|
double sizeConstraint = 1 + expectedFullness;
|
|
qmax = X265_MAX(qmax, rce->newQScale);
|
|
if (expectedFullness < .05)
|
|
qmax = MAX_MAX_QPSCALE;
|
|
qmax = X265_MIN(qmax, MAX_MAX_QPSCALE);
|
|
while (((expectedVbv < rce->expectedVbv/sizeConstraint) && (q < qmax)) ||
|
|
((expectedVbv < 0) && (q < MAX_MAX_QPSCALE)))
|
|
{
|
|
q *= 1.05;
|
|
expectedSize = qScale2bits(rce, q);
|
|
expectedVbv = m_bufferFill + m_bufferRate - expectedSize;
|
|
}
|
|
}
|
|
q = x265_clip3(MIN_QPSCALE, MAX_MAX_QPSCALE, q);
|
|
}
|
|
else
|
|
{
|
|
/* 1pass ABR */
|
|
|
|
/* Calculate the quantizer which would have produced the desired
|
|
* average bitrate if it had been applied to all frames so far.
|
|
* Then modulate that quant based on the current frame's complexity
|
|
* relative to the average complexity so far (using the 2pass RCEQ).
|
|
* Then bias the quant up or down if total size so far was far from
|
|
* the target.
|
|
* Result: Depending on the value of rate_tolerance, there is a
|
|
* trade-off between quality and bitrate precision. But at large
|
|
* tolerances, the bit distribution approaches that of 2pass. */
|
|
|
|
double overflow = 1;
|
|
double lqmin = MIN_QPSCALE, lqmax = MAX_MAX_QPSCALE;
|
|
m_shortTermCplxSum *= 0.5;
|
|
m_shortTermCplxCount *= 0.5;
|
|
m_shortTermCplxSum += m_currentSatd / (CLIP_DURATION(m_frameDuration) / BASE_FRAME_DURATION);
|
|
m_shortTermCplxCount++;
|
|
/* coeffBits to be used in 2-pass */
|
|
rce->coeffBits = (int)m_currentSatd;
|
|
rce->blurredComplexity = m_shortTermCplxSum / m_shortTermCplxCount;
|
|
rce->mvBits = 0;
|
|
rce->sliceType = m_sliceType;
|
|
|
|
if (m_param->rc.rateControlMode == X265_RC_CRF)
|
|
{
|
|
q = getQScale(rce, m_rateFactorConstant);
|
|
}
|
|
else
|
|
{
|
|
if (!m_param->rc.bStatRead)
|
|
checkAndResetABR(rce, false);
|
|
double initialQScale = getQScale(rce, m_wantedBitsWindow / m_cplxrSum);
|
|
q = tuneAbrQScaleFromFeedback(initialQScale);
|
|
overflow = q / initialQScale;
|
|
}
|
|
if (m_sliceType == I_SLICE && m_param->keyframeMax > 1
|
|
&& m_lastNonBPictType != I_SLICE && !m_isAbrReset)
|
|
{
|
|
if (!m_param->rc.bStrictCbr)
|
|
q = x265_qp2qScale(m_accumPQp / m_accumPNorm);
|
|
q /= fabs(m_param->rc.ipFactor);
|
|
}
|
|
else if (m_framesDone > 0)
|
|
{
|
|
if (m_param->rc.rateControlMode != X265_RC_CRF)
|
|
{
|
|
lqmin = m_lastQScaleFor[m_sliceType] / m_lstep;
|
|
lqmax = m_lastQScaleFor[m_sliceType] * m_lstep;
|
|
if (!m_partialResidualFrames)
|
|
{
|
|
if (overflow > 1.1 && m_framesDone > 3)
|
|
lqmax *= m_lstep;
|
|
else if (overflow < 0.9)
|
|
lqmin /= m_lstep;
|
|
}
|
|
q = x265_clip3(lqmin, lqmax, q);
|
|
}
|
|
}
|
|
else if (m_qCompress != 1 && m_param->rc.rateControlMode == X265_RC_CRF)
|
|
{
|
|
q = x265_qp2qScale(CRF_INIT_QP) / fabs(m_param->rc.ipFactor);
|
|
}
|
|
else if (m_framesDone == 0 && !m_isVbv && m_param->rc.rateControlMode == X265_RC_ABR)
|
|
{
|
|
/* for ABR alone, clip the first I frame qp */
|
|
lqmax = x265_qp2qScale(ABR_INIT_QP_MAX) * m_lstep;
|
|
q = X265_MIN(lqmax, q);
|
|
}
|
|
q = x265_clip3(MIN_QPSCALE, MAX_MAX_QPSCALE, q);
|
|
/* Set a min qp at scenechanges and transitions */
|
|
if (m_isSceneTransition)
|
|
{
|
|
double minScenecutQscale =x265_qp2qScale(ABR_SCENECUT_INIT_QP_MIN);
|
|
q = X265_MAX(minScenecutQscale, q);
|
|
m_lastQScaleFor[P_SLICE] = X265_MAX(minScenecutQscale, m_lastQScaleFor[P_SLICE]);
|
|
}
|
|
rce->qpNoVbv = x265_qScale2qp(q);
|
|
q = clipQscale(curFrame, rce, q);
|
|
/* clip qp to permissible range after vbv-lookahead estimation to avoid possible
|
|
* mispredictions by initial frame size predictors */
|
|
if (!m_2pass && m_isVbv && m_pred[m_predType].count == 1)
|
|
q = x265_clip3(lqmin, lqmax, q);
|
|
}
|
|
m_lastQScaleFor[m_sliceType] = q;
|
|
if ((m_curSlice->m_poc == 0 || m_lastQScaleFor[P_SLICE] < q) && !(m_2pass && !m_isVbv))
|
|
m_lastQScaleFor[P_SLICE] = q * fabs(m_param->rc.ipFactor);
|
|
|
|
if (m_2pass && m_isVbv)
|
|
rce->frameSizePlanned = qScale2bits(rce, q);
|
|
else
|
|
rce->frameSizePlanned = predictSize(&m_pred[m_predType], q, (double)m_currentSatd);
|
|
|
|
/* Always use up the whole VBV in this case. */
|
|
if (m_singleFrameVbv)
|
|
rce->frameSizePlanned = m_bufferRate;
|
|
/* Limit planned size by MinCR */
|
|
if (m_isVbv)
|
|
rce->frameSizePlanned = X265_MIN(rce->frameSizePlanned, rce->frameSizeMaximum);
|
|
rce->frameSizeEstimated = rce->frameSizePlanned;
|
|
rce->newQScale = q;
|
|
return q;
|
|
}
|
|
}
|
|
|
|
void RateControl::rateControlUpdateStats(RateControlEntry* rce)
|
|
{
|
|
if (!m_param->rc.bStatWrite && !m_param->rc.bStatRead)
|
|
{
|
|
if (rce->sliceType == I_SLICE)
|
|
{
|
|
/* previous I still had a residual; roll it into the new loan */
|
|
if (m_partialResidualFrames)
|
|
rce->rowTotalBits += m_partialResidualCost * m_partialResidualFrames;
|
|
if ((m_param->totalFrames != 0) && (m_amortizeFrames > (m_param->totalFrames - m_framesDone)))
|
|
{
|
|
m_amortizeFrames = 0;
|
|
m_amortizeFraction = 0;
|
|
}
|
|
else
|
|
{
|
|
double depreciateRate = 1.1;
|
|
m_amortizeFrames = (int)(m_amortizeFrames / depreciateRate);
|
|
m_amortizeFraction /= depreciateRate;
|
|
m_amortizeFrames = X265_MAX(m_amortizeFrames, MIN_AMORTIZE_FRAME);
|
|
m_amortizeFraction = X265_MAX(m_amortizeFraction, MIN_AMORTIZE_FRACTION);
|
|
}
|
|
rce->amortizeFrames = m_amortizeFrames;
|
|
rce->amortizeFraction = m_amortizeFraction;
|
|
m_partialResidualFrames = X265_MIN((int)rce->amortizeFrames, m_param->keyframeMax);
|
|
m_partialResidualCost = (int)((rce->rowTotalBits * rce->amortizeFraction) / m_partialResidualFrames);
|
|
rce->rowTotalBits -= m_partialResidualCost * m_partialResidualFrames;
|
|
}
|
|
else if (m_partialResidualFrames)
|
|
{
|
|
rce->rowTotalBits += m_partialResidualCost;
|
|
m_partialResidualFrames--;
|
|
}
|
|
}
|
|
if (rce->sliceType != B_SLICE)
|
|
rce->rowCplxrSum = rce->rowTotalBits * x265_qp2qScale(rce->qpaRc) / rce->qRceq;
|
|
else
|
|
rce->rowCplxrSum = rce->rowTotalBits * x265_qp2qScale(rce->qpaRc) / (rce->qRceq * fabs(m_param->rc.pbFactor));
|
|
|
|
m_cplxrSum += rce->rowCplxrSum;
|
|
m_totalBits += rce->rowTotalBits;
|
|
|
|
/* do not allow the next frame to enter rateControlStart() until this
|
|
* frame has updated its mid-frame statistics */
|
|
if (m_param->rc.rateControlMode == X265_RC_ABR || m_isVbv)
|
|
{
|
|
m_startEndOrder.incr();
|
|
|
|
if (rce->encodeOrder < m_param->frameNumThreads - 1)
|
|
m_startEndOrder.incr(); // faked rateControlEnd calls for negative frames
|
|
}
|
|
}
|
|
|
|
void RateControl::checkAndResetABR(RateControlEntry* rce, bool isFrameDone)
|
|
{
|
|
double abrBuffer = 2 * m_rateTolerance * m_bitrate;
|
|
|
|
// Check if current Slice is a scene cut that follows low detailed/blank frames
|
|
if (rce->lastSatd > 4 * rce->movingAvgSum)
|
|
{
|
|
if (!m_isAbrReset && rce->movingAvgSum > 0
|
|
&& (m_isPatternPresent || !m_param->bframes))
|
|
{
|
|
int pos = X265_MAX(m_sliderPos - m_param->frameNumThreads, 0);
|
|
int64_t shrtTermWantedBits = (int64_t) (X265_MIN(pos, s_slidingWindowFrames) * m_bitrate * m_frameDuration);
|
|
int64_t shrtTermTotalBitsSum = 0;
|
|
// Reset ABR if prev frames are blank to prevent further sudden overflows/ high bit rate spikes.
|
|
for (int i = 0; i < s_slidingWindowFrames ; i++)
|
|
shrtTermTotalBitsSum += m_encodedBitsWindow[i];
|
|
double underflow = (shrtTermTotalBitsSum - shrtTermWantedBits) / abrBuffer;
|
|
const double epsilon = 0.0001f;
|
|
if (underflow < epsilon && !isFrameDone)
|
|
{
|
|
init(*m_curSlice->m_sps);
|
|
m_shortTermCplxSum = rce->lastSatd / (CLIP_DURATION(m_frameDuration) / BASE_FRAME_DURATION);
|
|
m_shortTermCplxCount = 1;
|
|
m_isAbrReset = true;
|
|
m_lastAbrResetPoc = rce->poc;
|
|
}
|
|
}
|
|
else if (m_isAbrReset && isFrameDone)
|
|
{
|
|
// Clear flag to reset ABR and continue as usual.
|
|
m_isAbrReset = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
void RateControl::hrdFullness(SEIBufferingPeriod *seiBP)
|
|
{
|
|
const VUI* vui = &m_curSlice->m_sps->vuiParameters;
|
|
const HRDInfo* hrd = &vui->hrdParameters;
|
|
int num = 90000;
|
|
int denom = hrd->bitRateValue << (hrd->bitRateScale + BR_SHIFT);
|
|
reduceFraction(&num, &denom);
|
|
int64_t cpbState = (int64_t)m_bufferFillFinal;
|
|
int64_t cpbSize = (int64_t)hrd->cpbSizeValue << (hrd->cpbSizeScale + CPB_SHIFT);
|
|
|
|
if (cpbState < 0 || cpbState > cpbSize)
|
|
{
|
|
x265_log(m_param, X265_LOG_WARNING, "CPB %s: %.0lf bits in a %.0lf-bit buffer\n",
|
|
cpbState < 0 ? "underflow" : "overflow", (float)cpbState/denom, (float)cpbSize/denom);
|
|
}
|
|
|
|
seiBP->m_initialCpbRemovalDelay = (uint32_t)(num * cpbState + denom) / denom;
|
|
seiBP->m_initialCpbRemovalDelayOffset = (uint32_t)(num * cpbSize + denom) / denom - seiBP->m_initialCpbRemovalDelay;
|
|
}
|
|
|
|
void RateControl::updateVbvPlan(Encoder* enc)
|
|
{
|
|
m_bufferFill = m_bufferFillFinal;
|
|
enc->updateVbvPlan(this);
|
|
}
|
|
|
|
double RateControl::predictSize(Predictor *p, double q, double var)
|
|
{
|
|
return (p->coeff * var + p->offset) / (q * p->count);
|
|
}
|
|
|
|
double RateControl::clipQscale(Frame* curFrame, RateControlEntry* rce, double q)
|
|
{
|
|
// B-frames are not directly subject to VBV,
|
|
// since they are controlled by referenced P-frames' QPs.
|
|
double q0 = q;
|
|
if (m_isVbv && m_currentSatd > 0 && curFrame)
|
|
{
|
|
if (m_param->lookaheadDepth || m_param->rc.cuTree ||
|
|
m_param->scenecutThreshold ||
|
|
(m_param->bFrameAdaptive && m_param->bframes))
|
|
{
|
|
/* Lookahead VBV: If lookahead is done, raise the quantizer as necessary
|
|
* such that no frames in the lookahead overflow and such that the buffer
|
|
* is in a reasonable state by the end of the lookahead. */
|
|
int loopTerminate = 0;
|
|
/* Avoid an infinite loop. */
|
|
for (int iterations = 0; iterations < 1000 && loopTerminate != 3; iterations++)
|
|
{
|
|
double frameQ[3];
|
|
double curBits;
|
|
curBits = predictSize(&m_pred[m_predType], q, (double)m_currentSatd);
|
|
double bufferFillCur = m_bufferFill - curBits;
|
|
double targetFill;
|
|
double totalDuration = m_frameDuration;
|
|
frameQ[P_SLICE] = m_sliceType == I_SLICE ? q * m_param->rc.ipFactor : (m_sliceType == B_SLICE ? q / m_param->rc.pbFactor : q);
|
|
frameQ[B_SLICE] = frameQ[P_SLICE] * m_param->rc.pbFactor;
|
|
frameQ[I_SLICE] = frameQ[P_SLICE] / m_param->rc.ipFactor;
|
|
/* Loop over the planned future frames. */
|
|
for (int j = 0; bufferFillCur >= 0; j++)
|
|
{
|
|
int type = curFrame->m_lowres.plannedType[j];
|
|
if (type == X265_TYPE_AUTO || totalDuration >= 1.0)
|
|
break;
|
|
totalDuration += m_frameDuration;
|
|
double wantedFrameSize = m_vbvMaxRate * m_frameDuration;
|
|
if (bufferFillCur + wantedFrameSize <= m_bufferSize)
|
|
bufferFillCur += wantedFrameSize;
|
|
int64_t satd = curFrame->m_lowres.plannedSatd[j] >> (X265_DEPTH - 8);
|
|
type = IS_X265_TYPE_I(type) ? I_SLICE : IS_X265_TYPE_B(type) ? B_SLICE : P_SLICE;
|
|
int predType = getPredictorType(curFrame->m_lowres.plannedType[j], type);
|
|
curBits = predictSize(&m_pred[predType], frameQ[type], (double)satd);
|
|
bufferFillCur -= curBits;
|
|
}
|
|
|
|
/* Try to get the buffer at least 50% filled, but don't set an impossible goal. */
|
|
double finalDur = 1;
|
|
if (m_param->rc.bStrictCbr)
|
|
{
|
|
finalDur = x265_clip3(0.4, 1.0, totalDuration);
|
|
}
|
|
targetFill = X265_MIN(m_bufferFill + totalDuration * m_vbvMaxRate * 0.5 , m_bufferSize * (1 - 0.5 * finalDur));
|
|
if (bufferFillCur < targetFill)
|
|
{
|
|
q *= 1.01;
|
|
loopTerminate |= 1;
|
|
continue;
|
|
}
|
|
/* Try to get the buffer not more than 80% filled, but don't set an impossible goal. */
|
|
targetFill = x265_clip3(m_bufferSize * (1 - 0.2 * finalDur), m_bufferSize, m_bufferFill - totalDuration * m_vbvMaxRate * 0.5);
|
|
if (m_isCbr && bufferFillCur > targetFill && !m_isSceneTransition)
|
|
{
|
|
q /= 1.01;
|
|
loopTerminate |= 2;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
q = X265_MAX(q0 / 2, q);
|
|
}
|
|
else
|
|
{
|
|
/* Fallback to old purely-reactive algorithm: no lookahead. */
|
|
if ((m_sliceType == P_SLICE || m_sliceType == B_SLICE ||
|
|
(m_sliceType == I_SLICE && m_lastNonBPictType == I_SLICE)) &&
|
|
m_bufferFill / m_bufferSize < 0.5)
|
|
{
|
|
q /= x265_clip3(0.5, 1.0, 2.0 * m_bufferFill / m_bufferSize);
|
|
}
|
|
// Now a hard threshold to make sure the frame fits in VBV.
|
|
// This one is mostly for I-frames.
|
|
double bits = predictSize(&m_pred[m_predType], q, (double)m_currentSatd);
|
|
|
|
// For small VBVs, allow the frame to use up the entire VBV.
|
|
double maxFillFactor;
|
|
maxFillFactor = m_bufferSize >= 5 * m_bufferRate ? 2 : 1;
|
|
// For single-frame VBVs, request that the frame use up the entire VBV.
|
|
double minFillFactor = m_singleFrameVbv ? 1 : 2;
|
|
|
|
for (int iterations = 0; iterations < 10; iterations++)
|
|
{
|
|
double qf = 1.0;
|
|
if (bits > m_bufferFill / maxFillFactor)
|
|
qf = x265_clip3(0.2, 1.0, m_bufferFill / (maxFillFactor * bits));
|
|
q /= qf;
|
|
bits *= qf;
|
|
if (bits < m_bufferRate / minFillFactor)
|
|
q *= bits * minFillFactor / m_bufferRate;
|
|
bits = predictSize(&m_pred[m_predType], q, (double)m_currentSatd);
|
|
}
|
|
|
|
q = X265_MAX(q0, q);
|
|
}
|
|
|
|
/* Apply MinCR restrictions */
|
|
double pbits = predictSize(&m_pred[m_predType], q, (double)m_currentSatd);
|
|
if (pbits > rce->frameSizeMaximum)
|
|
q *= pbits / rce->frameSizeMaximum;
|
|
/* To detect frames that are more complex in SATD costs compared to prev window, yet
|
|
* lookahead vbv reduces its qscale by half its value. Be on safer side and avoid drastic
|
|
* qscale reductions for frames high in complexity */
|
|
bool mispredCheck = rce->movingAvgSum && m_currentSatd >= rce->movingAvgSum && q <= q0 / 2;
|
|
if (!m_isCbr || (m_isAbr && mispredCheck))
|
|
q = X265_MAX(q0, q);
|
|
|
|
if (m_rateFactorMaxIncrement)
|
|
{
|
|
double qpNoVbv = x265_qScale2qp(q0);
|
|
double qmax = X265_MIN(MAX_MAX_QPSCALE,x265_qp2qScale(qpNoVbv + m_rateFactorMaxIncrement));
|
|
return x265_clip3(MIN_QPSCALE, qmax, q);
|
|
}
|
|
}
|
|
if (m_2pass)
|
|
{
|
|
double min = log(MIN_QPSCALE);
|
|
double max = log(MAX_MAX_QPSCALE);
|
|
q = (log(q) - min) / (max - min) - 0.5;
|
|
q = 1.0 / (1.0 + exp(-4 * q));
|
|
q = q*(max - min) + min;
|
|
return exp(q);
|
|
}
|
|
return x265_clip3(MIN_QPSCALE, MAX_MAX_QPSCALE, q);
|
|
}
|
|
|
|
double RateControl::predictRowsSizeSum(Frame* curFrame, RateControlEntry* rce, double qpVbv, int32_t& encodedBitsSoFar)
|
|
{
|
|
uint32_t rowSatdCostSoFar = 0, totalSatdBits = 0;
|
|
encodedBitsSoFar = 0;
|
|
|
|
double qScale = x265_qp2qScale(qpVbv);
|
|
FrameData& curEncData = *curFrame->m_encData;
|
|
int picType = curEncData.m_slice->m_sliceType;
|
|
Frame* refFrame = curEncData.m_slice->m_refFrameList[0][0];
|
|
|
|
uint32_t maxRows = curEncData.m_slice->m_sps->numCuInHeight;
|
|
uint32_t maxCols = curEncData.m_slice->m_sps->numCuInWidth;
|
|
|
|
for (uint32_t row = 0; row < maxRows; row++)
|
|
{
|
|
encodedBitsSoFar += curEncData.m_rowStat[row].encodedBits;
|
|
rowSatdCostSoFar = curEncData.m_rowStat[row].diagSatd;
|
|
uint32_t satdCostForPendingCus = curEncData.m_rowStat[row].satdForVbv - rowSatdCostSoFar;
|
|
satdCostForPendingCus >>= X265_DEPTH - 8;
|
|
if (satdCostForPendingCus > 0)
|
|
{
|
|
double pred_s = predictSize(rce->rowPred[0], qScale, satdCostForPendingCus);
|
|
uint32_t refRowSatdCost = 0, refRowBits = 0, intraCostForPendingCus = 0;
|
|
double refQScale = 0;
|
|
|
|
if (picType != I_SLICE)
|
|
{
|
|
FrameData& refEncData = *refFrame->m_encData;
|
|
uint32_t endCuAddr = maxCols * (row + 1);
|
|
uint32_t startCuAddr = curEncData.m_rowStat[row].numEncodedCUs;
|
|
if (startCuAddr)
|
|
{
|
|
for (uint32_t cuAddr = startCuAddr + 1 ; cuAddr < endCuAddr; cuAddr++)
|
|
{
|
|
refRowSatdCost += refEncData.m_cuStat[cuAddr].vbvCost;
|
|
refRowBits += refEncData.m_cuStat[cuAddr].totalBits;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
refRowBits = refEncData.m_rowStat[row].encodedBits;
|
|
refRowSatdCost = refEncData.m_rowStat[row].satdForVbv;
|
|
}
|
|
|
|
refRowSatdCost >>= X265_DEPTH - 8;
|
|
refQScale = refEncData.m_rowStat[row].diagQpScale;
|
|
}
|
|
|
|
if (picType == I_SLICE || qScale >= refQScale)
|
|
{
|
|
if (picType == P_SLICE
|
|
&& refFrame
|
|
&& refFrame->m_encData->m_slice->m_sliceType == picType
|
|
&& refQScale > 0
|
|
&& refRowSatdCost > 0)
|
|
{
|
|
if (abs((int32_t)(refRowSatdCost - satdCostForPendingCus)) < (int32_t)satdCostForPendingCus / 2)
|
|
{
|
|
double predTotal = refRowBits * satdCostForPendingCus / refRowSatdCost * refQScale / qScale;
|
|
totalSatdBits += (int32_t)((pred_s + predTotal) * 0.5);
|
|
continue;
|
|
}
|
|
}
|
|
totalSatdBits += (int32_t)pred_s;
|
|
}
|
|
else if (picType == P_SLICE)
|
|
{
|
|
intraCostForPendingCus = curEncData.m_rowStat[row].intraSatdForVbv - curEncData.m_rowStat[row].diagIntraSatd;
|
|
/* Our QP is lower than the reference! */
|
|
double pred_intra = predictSize(rce->rowPred[1], qScale, intraCostForPendingCus);
|
|
/* Sum: better to overestimate than underestimate by using only one of the two predictors. */
|
|
totalSatdBits += (int32_t)(pred_intra + pred_s);
|
|
}
|
|
else
|
|
totalSatdBits += (int32_t)pred_s;
|
|
}
|
|
}
|
|
|
|
return totalSatdBits + encodedBitsSoFar;
|
|
}
|
|
|
|
int RateControl::rowDiagonalVbvRateControl(Frame* curFrame, uint32_t row, RateControlEntry* rce, double& qpVbv)
|
|
{
|
|
FrameData& curEncData = *curFrame->m_encData;
|
|
double qScaleVbv = x265_qp2qScale(qpVbv);
|
|
uint64_t rowSatdCost = curEncData.m_rowStat[row].diagSatd;
|
|
double encodedBits = curEncData.m_rowStat[row].encodedBits;
|
|
|
|
if (row == 1)
|
|
{
|
|
rowSatdCost += curEncData.m_rowStat[0].diagSatd;
|
|
encodedBits += curEncData.m_rowStat[0].encodedBits;
|
|
}
|
|
rowSatdCost >>= X265_DEPTH - 8;
|
|
updatePredictor(rce->rowPred[0], qScaleVbv, (double)rowSatdCost, encodedBits);
|
|
if (curEncData.m_slice->m_sliceType == P_SLICE)
|
|
{
|
|
Frame* refFrame = curEncData.m_slice->m_refFrameList[0][0];
|
|
if (qpVbv < refFrame->m_encData->m_rowStat[row].diagQp)
|
|
{
|
|
uint64_t intraRowSatdCost = curEncData.m_rowStat[row].diagIntraSatd;
|
|
if (row == 1)
|
|
intraRowSatdCost += curEncData.m_rowStat[0].diagIntraSatd;
|
|
|
|
updatePredictor(rce->rowPred[1], qScaleVbv, (double)intraRowSatdCost, encodedBits);
|
|
}
|
|
}
|
|
|
|
int canReencodeRow = 1;
|
|
/* tweak quality based on difference from predicted size */
|
|
double prevRowQp = qpVbv;
|
|
double qpAbsoluteMax = QP_MAX_MAX;
|
|
double qpAbsoluteMin = QP_MIN;
|
|
if (m_rateFactorMaxIncrement)
|
|
qpAbsoluteMax = X265_MIN(qpAbsoluteMax, rce->qpNoVbv + m_rateFactorMaxIncrement);
|
|
|
|
if (m_rateFactorMaxDecrement)
|
|
qpAbsoluteMin = X265_MAX(qpAbsoluteMin, rce->qpNoVbv - m_rateFactorMaxDecrement);
|
|
|
|
double qpMax = X265_MIN(prevRowQp + m_param->rc.qpStep, qpAbsoluteMax);
|
|
double qpMin = X265_MAX(prevRowQp - m_param->rc.qpStep, qpAbsoluteMin);
|
|
double stepSize = 0.5;
|
|
double bufferLeftPlanned = rce->bufferFill - rce->frameSizePlanned;
|
|
|
|
const SPS& sps = *curEncData.m_slice->m_sps;
|
|
double maxFrameError = X265_MAX(0.05, 1.0 / sps.numCuInHeight);
|
|
|
|
if (row < sps.numCuInHeight - 1)
|
|
{
|
|
/* More threads means we have to be more cautious in letting ratecontrol use up extra bits. */
|
|
double rcTol = bufferLeftPlanned / m_param->frameNumThreads * m_rateTolerance;
|
|
int32_t encodedBitsSoFar = 0;
|
|
double accFrameBits = predictRowsSizeSum(curFrame, rce, qpVbv, encodedBitsSoFar);
|
|
|
|
/* * Don't increase the row QPs until a sufficent amount of the bits of
|
|
* the frame have been processed, in case a flat area at the top of the
|
|
* frame was measured inaccurately. */
|
|
if (encodedBitsSoFar < 0.05f * rce->frameSizePlanned)
|
|
qpMax = qpAbsoluteMax = prevRowQp;
|
|
|
|
if (rce->sliceType != I_SLICE || (m_param->rc.bStrictCbr && rce->poc > 0))
|
|
rcTol *= 0.5;
|
|
|
|
if (!m_isCbr)
|
|
qpMin = X265_MAX(qpMin, rce->qpNoVbv);
|
|
|
|
double totalBitsNeeded = m_wantedBitsWindow;
|
|
if (m_param->totalFrames)
|
|
totalBitsNeeded = (m_param->totalFrames * m_bitrate) / m_fps;
|
|
double abrOvershoot = (accFrameBits + m_totalBits - m_wantedBitsWindow) / totalBitsNeeded;
|
|
|
|
while (qpVbv < qpMax
|
|
&& (((accFrameBits > rce->frameSizePlanned + rcTol) ||
|
|
(rce->bufferFill - accFrameBits < bufferLeftPlanned * 0.5) ||
|
|
(accFrameBits > rce->frameSizePlanned && qpVbv < rce->qpNoVbv))
|
|
&& (!m_param->rc.bStrictCbr ? 1 : abrOvershoot > 0.1)))
|
|
{
|
|
qpVbv += stepSize;
|
|
accFrameBits = predictRowsSizeSum(curFrame, rce, qpVbv, encodedBitsSoFar);
|
|
abrOvershoot = (accFrameBits + m_totalBits - m_wantedBitsWindow) / totalBitsNeeded;
|
|
}
|
|
|
|
while (qpVbv > qpMin
|
|
&& (qpVbv > curEncData.m_rowStat[0].diagQp || m_singleFrameVbv)
|
|
&& (((accFrameBits < rce->frameSizePlanned * 0.8f && qpVbv <= prevRowQp)
|
|
|| accFrameBits < (rce->bufferFill - m_bufferSize + m_bufferRate) * 1.1)
|
|
&& (!m_param->rc.bStrictCbr ? 1 : abrOvershoot < 0)))
|
|
{
|
|
qpVbv -= stepSize;
|
|
accFrameBits = predictRowsSizeSum(curFrame, rce, qpVbv, encodedBitsSoFar);
|
|
abrOvershoot = (accFrameBits + m_totalBits - m_wantedBitsWindow) / totalBitsNeeded;
|
|
}
|
|
|
|
if (m_param->rc.bStrictCbr && m_param->totalFrames)
|
|
{
|
|
double timeDone = (double)(m_framesDone) / m_param->totalFrames;
|
|
while (qpVbv < qpMax && (qpVbv < rce->qpNoVbv + (m_param->rc.qpStep * timeDone)) &&
|
|
(timeDone > 0.75 && abrOvershoot > 0))
|
|
{
|
|
qpVbv += stepSize;
|
|
accFrameBits = predictRowsSizeSum(curFrame, rce, qpVbv, encodedBitsSoFar);
|
|
abrOvershoot = (accFrameBits + m_totalBits - m_wantedBitsWindow) / totalBitsNeeded;
|
|
}
|
|
if (qpVbv > curEncData.m_rowStat[0].diagQp &&
|
|
abrOvershoot < -0.1 && timeDone > 0.5 && accFrameBits < rce->frameSizePlanned - rcTol)
|
|
{
|
|
qpVbv -= stepSize;
|
|
accFrameBits = predictRowsSizeSum(curFrame, rce, qpVbv, encodedBitsSoFar);
|
|
}
|
|
}
|
|
|
|
/* avoid VBV underflow or MinCr violation */
|
|
while ((qpVbv < qpAbsoluteMax)
|
|
&& ((rce->bufferFill - accFrameBits < m_bufferRate * maxFrameError) ||
|
|
(rce->frameSizeMaximum - accFrameBits < rce->frameSizeMaximum * maxFrameError)))
|
|
{
|
|
qpVbv += stepSize;
|
|
accFrameBits = predictRowsSizeSum(curFrame, rce, qpVbv, encodedBitsSoFar);
|
|
}
|
|
|
|
rce->frameSizeEstimated = accFrameBits;
|
|
|
|
/* If the current row was large enough to cause a large QP jump, try re-encoding it. */
|
|
if (qpVbv > qpMax && prevRowQp < qpMax && canReencodeRow)
|
|
{
|
|
/* Bump QP to halfway in between... close enough. */
|
|
qpVbv = x265_clip3(prevRowQp + 1.0f, qpMax, (prevRowQp + qpVbv) * 0.5);
|
|
return -1;
|
|
}
|
|
|
|
if (m_param->rc.rfConstantMin)
|
|
{
|
|
if (qpVbv < qpMin && prevRowQp > qpMin && canReencodeRow)
|
|
{
|
|
qpVbv = x265_clip3(qpMin, prevRowQp, (prevRowQp + qpVbv) * 0.5);
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int32_t encodedBitsSoFar = 0;
|
|
rce->frameSizeEstimated = predictRowsSizeSum(curFrame, rce, qpVbv, encodedBitsSoFar);
|
|
|
|
/* Last-ditch attempt: if the last row of the frame underflowed the VBV,
|
|
* try again. */
|
|
if ((rce->frameSizeEstimated > (rce->bufferFill - m_bufferRate * maxFrameError) &&
|
|
qpVbv < qpMax && canReencodeRow))
|
|
{
|
|
qpVbv = qpMax;
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* modify the bitrate curve from pass1 for one frame */
|
|
double RateControl::getQScale(RateControlEntry *rce, double rateFactor)
|
|
{
|
|
double q;
|
|
|
|
if (m_param->rc.cuTree)
|
|
{
|
|
// Scale and units are obtained from rateNum and rateDenom for videos with fixed frame rates.
|
|
double timescale = (double)m_param->fpsDenom / (2 * m_param->fpsNum);
|
|
q = pow(BASE_FRAME_DURATION / CLIP_DURATION(2 * timescale), 1 - m_param->rc.qCompress);
|
|
}
|
|
else
|
|
q = pow(rce->blurredComplexity, 1 - m_param->rc.qCompress);
|
|
// avoid NaN's in the Rceq
|
|
if (rce->coeffBits + rce->mvBits == 0)
|
|
q = m_lastQScaleFor[rce->sliceType];
|
|
else
|
|
{
|
|
m_lastRceq = q;
|
|
q /= rateFactor;
|
|
}
|
|
|
|
x265_zone* zone = getZone();
|
|
if (zone)
|
|
{
|
|
if (zone->bForceQp)
|
|
q = x265_qp2qScale(zone->qp);
|
|
else
|
|
q /= zone->bitrateFactor;
|
|
}
|
|
return q;
|
|
}
|
|
|
|
void RateControl::updatePredictor(Predictor *p, double q, double var, double bits)
|
|
{
|
|
if (var < 10)
|
|
return;
|
|
const double range = 2;
|
|
double old_coeff = p->coeff / p->count;
|
|
double new_coeff = bits * q / var;
|
|
double new_coeff_clipped = x265_clip3(old_coeff / range, old_coeff * range, new_coeff);
|
|
double new_offset = bits * q - new_coeff_clipped * var;
|
|
if (new_offset >= 0)
|
|
new_coeff = new_coeff_clipped;
|
|
else
|
|
new_offset = 0;
|
|
p->count *= p->decay;
|
|
p->coeff *= p->decay;
|
|
p->offset *= p->decay;
|
|
p->count++;
|
|
p->coeff += new_coeff;
|
|
p->offset += new_offset;
|
|
}
|
|
|
|
void RateControl::updateVbv(int64_t bits, RateControlEntry* rce)
|
|
{
|
|
int predType = rce->sliceType;
|
|
predType = rce->sliceType == B_SLICE && rce->keptAsRef ? 3 : predType;
|
|
if (rce->lastSatd >= m_ncu)
|
|
updatePredictor(&m_pred[predType], x265_qp2qScale(rce->qpaRc), (double)rce->lastSatd, (double)bits);
|
|
if (!m_isVbv)
|
|
return;
|
|
|
|
m_bufferFillFinal -= bits;
|
|
|
|
if (m_bufferFillFinal < 0)
|
|
x265_log(m_param, X265_LOG_WARNING, "poc:%d, VBV underflow (%.0f bits)\n", rce->poc, m_bufferFillFinal);
|
|
|
|
m_bufferFillFinal = X265_MAX(m_bufferFillFinal, 0);
|
|
m_bufferFillFinal += m_bufferRate;
|
|
m_bufferFillFinal = X265_MIN(m_bufferFillFinal, m_bufferSize);
|
|
}
|
|
|
|
/* After encoding one frame, update rate control state */
|
|
int RateControl::rateControlEnd(Frame* curFrame, int64_t bits, RateControlEntry* rce)
|
|
{
|
|
int orderValue = m_startEndOrder.get();
|
|
int endOrdinal = (rce->encodeOrder + m_param->frameNumThreads) * 2 - 1;
|
|
while (orderValue < endOrdinal && !m_bTerminated)
|
|
{
|
|
/* no more frames are being encoded, so fake the start event if we would
|
|
* have blocked on it. Note that this does not enforce rateControlEnd()
|
|
* ordering during flush, but this has no impact on the outputs */
|
|
if (m_finalFrameCount && orderValue >= 2 * m_finalFrameCount)
|
|
break;
|
|
orderValue = m_startEndOrder.waitForChange(orderValue);
|
|
}
|
|
|
|
FrameData& curEncData = *curFrame->m_encData;
|
|
int64_t actualBits = bits;
|
|
Slice *slice = curEncData.m_slice;
|
|
|
|
if (m_param->rc.aqMode || m_isVbv)
|
|
{
|
|
if (m_isVbv)
|
|
{
|
|
/* determine avg QP decided by VBV rate control */
|
|
for (uint32_t i = 0; i < slice->m_sps->numCuInHeight; i++)
|
|
curEncData.m_avgQpRc += curEncData.m_rowStat[i].sumQpRc;
|
|
|
|
curEncData.m_avgQpRc /= slice->m_sps->numCUsInFrame;
|
|
rce->qpaRc = curEncData.m_avgQpRc;
|
|
}
|
|
|
|
if (m_param->rc.aqMode)
|
|
{
|
|
/* determine actual avg encoded QP, after AQ/cutree adjustments */
|
|
for (uint32_t i = 0; i < slice->m_sps->numCuInHeight; i++)
|
|
curEncData.m_avgQpAq += curEncData.m_rowStat[i].sumQpAq;
|
|
|
|
curEncData.m_avgQpAq /= (slice->m_sps->numCUsInFrame * NUM_4x4_PARTITIONS);
|
|
}
|
|
else
|
|
curEncData.m_avgQpAq = curEncData.m_avgQpRc;
|
|
}
|
|
|
|
if (m_isAbr)
|
|
{
|
|
if (m_param->rc.rateControlMode == X265_RC_ABR && !m_param->rc.bStatRead)
|
|
checkAndResetABR(rce, true);
|
|
|
|
if (m_param->rc.rateControlMode == X265_RC_CRF)
|
|
{
|
|
if (int(curEncData.m_avgQpRc + 0.5) == slice->m_sliceQp)
|
|
curEncData.m_rateFactor = m_rateFactorConstant;
|
|
else
|
|
{
|
|
/* If vbv changed the frame QP recalculate the rate-factor */
|
|
double baseCplx = m_ncu * (m_param->bframes ? 120 : 80);
|
|
double mbtree_offset = m_param->rc.cuTree ? (1.0 - m_param->rc.qCompress) * 13.5 : 0;
|
|
curEncData.m_rateFactor = pow(baseCplx, 1 - m_qCompress) /
|
|
x265_qp2qScale(int(curEncData.m_avgQpRc + 0.5) + mbtree_offset);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (m_isAbr && !m_isAbrReset)
|
|
{
|
|
/* amortize part of each I slice over the next several frames, up to
|
|
* keyint-max, to avoid over-compensating for the large I slice cost */
|
|
if (!m_param->rc.bStatWrite && !m_param->rc.bStatRead)
|
|
{
|
|
if (rce->sliceType == I_SLICE)
|
|
{
|
|
/* previous I still had a residual; roll it into the new loan */
|
|
if (m_residualFrames)
|
|
bits += m_residualCost * m_residualFrames;
|
|
m_residualFrames = X265_MIN((int)rce->amortizeFrames, m_param->keyframeMax);
|
|
m_residualCost = (int)((bits * rce->amortizeFraction) / m_residualFrames);
|
|
bits -= m_residualCost * m_residualFrames;
|
|
}
|
|
else if (m_residualFrames)
|
|
{
|
|
bits += m_residualCost;
|
|
m_residualFrames--;
|
|
}
|
|
}
|
|
if (rce->sliceType != B_SLICE)
|
|
{
|
|
/* The factor 1.5 is to tune up the actual bits, otherwise the cplxrSum is scaled too low
|
|
* to improve short term compensation for next frame. */
|
|
m_cplxrSum += (bits * x265_qp2qScale(rce->qpaRc) / rce->qRceq) - (rce->rowCplxrSum);
|
|
}
|
|
else
|
|
{
|
|
/* Depends on the fact that B-frame's QP is an offset from the following P-frame's.
|
|
* Not perfectly accurate with B-refs, but good enough. */
|
|
m_cplxrSum += (bits * x265_qp2qScale(rce->qpaRc) / (rce->qRceq * fabs(m_param->rc.pbFactor))) - (rce->rowCplxrSum);
|
|
}
|
|
m_wantedBitsWindow += m_frameDuration * m_bitrate;
|
|
m_totalBits += bits - rce->rowTotalBits;
|
|
m_encodedBits += actualBits;
|
|
int pos = m_sliderPos - m_param->frameNumThreads;
|
|
if (pos >= 0)
|
|
m_encodedBitsWindow[pos % s_slidingWindowFrames] = actualBits;
|
|
}
|
|
|
|
if (m_2pass)
|
|
{
|
|
m_expectedBitsSum += qScale2bits(rce, x265_qp2qScale(rce->newQp));
|
|
m_totalBits += bits - rce->rowTotalBits;
|
|
}
|
|
|
|
if (m_isVbv)
|
|
{
|
|
updateVbv(actualBits, rce);
|
|
|
|
if (m_param->bEmitHRDSEI)
|
|
{
|
|
const VUI *vui = &curEncData.m_slice->m_sps->vuiParameters;
|
|
const HRDInfo *hrd = &vui->hrdParameters;
|
|
const TimingInfo *time = &vui->timingInfo;
|
|
if (!curFrame->m_poc)
|
|
{
|
|
// first access unit initializes the HRD
|
|
rce->hrdTiming->cpbInitialAT = 0;
|
|
rce->hrdTiming->cpbRemovalTime = m_nominalRemovalTime = (double)m_bufPeriodSEI.m_initialCpbRemovalDelay / 90000;
|
|
}
|
|
else
|
|
{
|
|
rce->hrdTiming->cpbRemovalTime = m_nominalRemovalTime + (double)rce->picTimingSEI->m_auCpbRemovalDelay * time->numUnitsInTick / time->timeScale;
|
|
double cpbEarliestAT = rce->hrdTiming->cpbRemovalTime - (double)m_bufPeriodSEI.m_initialCpbRemovalDelay / 90000;
|
|
if (!curFrame->m_lowres.bKeyframe)
|
|
cpbEarliestAT -= (double)m_bufPeriodSEI.m_initialCpbRemovalDelayOffset / 90000;
|
|
|
|
rce->hrdTiming->cpbInitialAT = hrd->cbrFlag ? m_prevCpbFinalAT : X265_MAX(m_prevCpbFinalAT, cpbEarliestAT);
|
|
}
|
|
|
|
uint32_t cpbsizeUnscale = hrd->cpbSizeValue << (hrd->cpbSizeScale + CPB_SHIFT);
|
|
rce->hrdTiming->cpbFinalAT = m_prevCpbFinalAT = rce->hrdTiming->cpbInitialAT + actualBits / cpbsizeUnscale;
|
|
rce->hrdTiming->dpbOutputTime = (double)rce->picTimingSEI->m_picDpbOutputDelay * time->numUnitsInTick / time->timeScale + rce->hrdTiming->cpbRemovalTime;
|
|
}
|
|
}
|
|
rce->isActive = false;
|
|
// Allow rateControlStart of next frame only when rateControlEnd of previous frame is over
|
|
m_startEndOrder.incr();
|
|
return 0;
|
|
}
|
|
|
|
/* called to write out the rate control frame stats info in multipass encodes */
|
|
int RateControl::writeRateControlFrameStats(Frame* curFrame, RateControlEntry* rce)
|
|
{
|
|
FrameData& curEncData = *curFrame->m_encData;
|
|
char cType = rce->sliceType == I_SLICE ? (rce->poc > 0 && m_param->bOpenGOP ? 'i' : 'I')
|
|
: rce->sliceType == P_SLICE ? 'P'
|
|
: IS_REFERENCED(curFrame) ? 'B' : 'b';
|
|
if (fprintf(m_statFileOut,
|
|
"in:%d out:%d type:%c q:%.2f q-aq:%.2f tex:%d mv:%d misc:%d icu:%.2f pcu:%.2f scu:%.2f ;\n",
|
|
rce->poc, rce->encodeOrder,
|
|
cType, curEncData.m_avgQpRc, curEncData.m_avgQpAq,
|
|
curFrame->m_encData->m_frameStats.coeffBits,
|
|
curFrame->m_encData->m_frameStats.mvBits,
|
|
curFrame->m_encData->m_frameStats.miscBits,
|
|
curFrame->m_encData->m_frameStats.percent8x8Intra * m_ncu,
|
|
curFrame->m_encData->m_frameStats.percent8x8Inter * m_ncu,
|
|
curFrame->m_encData->m_frameStats.percent8x8Skip * m_ncu) < 0)
|
|
goto writeFailure;
|
|
/* Don't re-write the data in multi-pass mode. */
|
|
if (m_param->rc.cuTree && IS_REFERENCED(curFrame) && !m_param->rc.bStatRead)
|
|
{
|
|
uint8_t sliceType = (uint8_t)rce->sliceType;
|
|
for (int i = 0; i < m_ncu; i++)
|
|
m_cuTreeStats.qpBuffer[0][i] = (uint16_t)(curFrame->m_lowres.qpCuTreeOffset[i] * 256.0);
|
|
if (fwrite(&sliceType, 1, 1, m_cutreeStatFileOut) < 1)
|
|
goto writeFailure;
|
|
if (fwrite(m_cuTreeStats.qpBuffer[0], sizeof(uint16_t), m_ncu, m_cutreeStatFileOut) < (size_t)m_ncu)
|
|
goto writeFailure;
|
|
}
|
|
return 0;
|
|
|
|
writeFailure:
|
|
x265_log(m_param, X265_LOG_ERROR, "RatecontrolEnd: stats file write failure\n");
|
|
return 1;
|
|
}
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(disable: 4996) // POSIX function names are just fine, thank you
|
|
#endif
|
|
|
|
/* called when the encoder is flushing, and thus the final frame count is
|
|
* unambiguously known */
|
|
void RateControl::setFinalFrameCount(int count)
|
|
{
|
|
m_finalFrameCount = count;
|
|
/* unblock waiting threads */
|
|
m_startEndOrder.poke();
|
|
}
|
|
|
|
/* called when the encoder is closing, and no more frames will be output.
|
|
* all blocked functions must finish so the frame encoder threads can be
|
|
* closed */
|
|
void RateControl::terminate()
|
|
{
|
|
m_bTerminated = true;
|
|
/* unblock waiting threads */
|
|
m_startEndOrder.poke();
|
|
}
|
|
|
|
void RateControl::destroy()
|
|
{
|
|
const char *fileName = m_param->rc.statFileName;
|
|
if (!fileName)
|
|
fileName = s_defaultStatFileName;
|
|
|
|
if (m_statFileOut)
|
|
{
|
|
fclose(m_statFileOut);
|
|
char *tmpFileName = strcatFilename(fileName, ".temp");
|
|
int bError = 1;
|
|
if (tmpFileName)
|
|
{
|
|
unlink(fileName);
|
|
bError = rename(tmpFileName, fileName);
|
|
}
|
|
if (bError)
|
|
{
|
|
x265_log(m_param, X265_LOG_ERROR, "failed to rename output stats file to \"%s\"\n",
|
|
fileName);
|
|
}
|
|
X265_FREE(tmpFileName);
|
|
}
|
|
|
|
if (m_cutreeStatFileOut)
|
|
{
|
|
fclose(m_cutreeStatFileOut);
|
|
char *tmpFileName = strcatFilename(fileName, ".cutree.temp");
|
|
char *newFileName = strcatFilename(fileName, ".cutree");
|
|
int bError = 1;
|
|
if (tmpFileName && newFileName)
|
|
{
|
|
unlink(newFileName);
|
|
bError = rename(tmpFileName, newFileName);
|
|
}
|
|
if (bError)
|
|
{
|
|
x265_log(m_param, X265_LOG_ERROR, "failed to rename cutree output stats file to \"%s\"\n",
|
|
newFileName);
|
|
}
|
|
X265_FREE(tmpFileName);
|
|
X265_FREE(newFileName);
|
|
}
|
|
|
|
if (m_cutreeStatFileIn)
|
|
fclose(m_cutreeStatFileIn);
|
|
|
|
X265_FREE(m_rce2Pass);
|
|
for (int i = 0; i < 2; i++)
|
|
X265_FREE(m_cuTreeStats.qpBuffer[i]);
|
|
|
|
X265_FREE(m_param->rc.zones);
|
|
}
|
|
|