libbpg/jctvc/TLibEncoder/TEncSlice.cpp
2015-01-16 13:46:18 +01:00

1224 lines
46 KiB
C++

/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2014, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file TEncSlice.cpp
\brief slice encoder class
*/
#include "TEncTop.h"
#include "TEncSlice.h"
#include <math.h>
//! \ingroup TLibEncoder
//! \{
// ====================================================================================================================
// Constructor / destructor / create / destroy
// ====================================================================================================================
TEncSlice::TEncSlice()
{
m_apcPicYuvPred = NULL;
m_apcPicYuvResi = NULL;
m_pdRdPicLambda = NULL;
m_pdRdPicQp = NULL;
m_piRdPicQp = NULL;
}
TEncSlice::~TEncSlice()
{
}
Void TEncSlice::create( Int iWidth, Int iHeight, ChromaFormat chromaFormat, UInt iMaxCUWidth, UInt iMaxCUHeight, UChar uhTotalDepth )
{
// create prediction picture
if ( m_apcPicYuvPred == NULL )
{
m_apcPicYuvPred = new TComPicYuv;
m_apcPicYuvPred->create( iWidth, iHeight, chromaFormat, iMaxCUWidth, iMaxCUHeight, uhTotalDepth );
}
// create residual picture
if( m_apcPicYuvResi == NULL )
{
m_apcPicYuvResi = new TComPicYuv;
m_apcPicYuvResi->create( iWidth, iHeight, chromaFormat, iMaxCUWidth, iMaxCUHeight, uhTotalDepth );
}
}
Void TEncSlice::destroy()
{
// destroy prediction picture
if ( m_apcPicYuvPred )
{
m_apcPicYuvPred->destroy();
delete m_apcPicYuvPred;
m_apcPicYuvPred = NULL;
}
// destroy residual picture
if ( m_apcPicYuvResi )
{
m_apcPicYuvResi->destroy();
delete m_apcPicYuvResi;
m_apcPicYuvResi = NULL;
}
// free lambda and QP arrays
if ( m_pdRdPicLambda ) { xFree( m_pdRdPicLambda ); m_pdRdPicLambda = NULL; }
if ( m_pdRdPicQp ) { xFree( m_pdRdPicQp ); m_pdRdPicQp = NULL; }
if ( m_piRdPicQp ) { xFree( m_piRdPicQp ); m_piRdPicQp = NULL; }
}
Void TEncSlice::init( TEncTop* pcEncTop )
{
m_pcCfg = pcEncTop;
m_pcListPic = pcEncTop->getListPic();
m_pcGOPEncoder = pcEncTop->getGOPEncoder();
m_pcCuEncoder = pcEncTop->getCuEncoder();
m_pcPredSearch = pcEncTop->getPredSearch();
m_pcEntropyCoder = pcEncTop->getEntropyCoder();
m_pcSbacCoder = pcEncTop->getSbacCoder();
m_pcBinCABAC = pcEncTop->getBinCABAC();
m_pcTrQuant = pcEncTop->getTrQuant();
m_pcRdCost = pcEncTop->getRdCost();
m_pppcRDSbacCoder = pcEncTop->getRDSbacCoder();
m_pcRDGoOnSbacCoder = pcEncTop->getRDGoOnSbacCoder();
// create lambda and QP arrays
m_pdRdPicLambda = (Double*)xMalloc( Double, m_pcCfg->getDeltaQpRD() * 2 + 1 );
m_pdRdPicQp = (Double*)xMalloc( Double, m_pcCfg->getDeltaQpRD() * 2 + 1 );
m_piRdPicQp = (Int* )xMalloc( Int, m_pcCfg->getDeltaQpRD() * 2 + 1 );
m_pcRateCtrl = pcEncTop->getRateCtrl();
}
Void
TEncSlice::setUpLambda(TComSlice* slice, const Double dLambda, Int iQP)
{
// store lambda
m_pcRdCost ->setLambda( dLambda );
// for RDO
// in RdCost there is only one lambda because the luma and chroma bits are not separated, instead we weight the distortion of chroma.
Double dLambdas[MAX_NUM_COMPONENT] = { dLambda };
for(UInt compIdx=1; compIdx<MAX_NUM_COMPONENT; compIdx++)
{
const ComponentID compID=ComponentID(compIdx);
Int chromaQPOffset = slice->getPPS()->getQpOffset(compID) + slice->getSliceChromaQpDelta(compID);
Int qpc=(iQP + chromaQPOffset < 0) ? iQP : getScaledChromaQP(iQP + chromaQPOffset, m_pcCfg->getChromaFormatIdc());
Double tmpWeight = pow( 2.0, (iQP-qpc)/3.0 ); // takes into account of the chroma qp mapping and chroma qp Offset
m_pcRdCost->setDistortionWeight(compID, tmpWeight);
dLambdas[compIdx]=dLambda/tmpWeight;
}
#if RDOQ_CHROMA_LAMBDA
// for RDOQ
m_pcTrQuant->setLambdas( dLambdas );
#else
m_pcTrQuant->setLambda( dLambda );
#endif
// For SAO
slice ->setLambdas( dLambdas );
}
/**
- non-referenced frame marking
- QP computation based on temporal structure
- lambda computation based on QP
- set temporal layer ID and the parameter sets
.
\param pcPic picture class
\param pocLast POC of last picture
\param pocCurr current POC
\param iNumPicRcvd number of received pictures
\param iTimeOffset POC offset for hierarchical structure
\param iDepth temporal layer depth
\param rpcSlice slice header class
\param pSPS SPS associated with the slice
\param pPPS PPS associated with the slice
*/
Void TEncSlice::initEncSlice( TComPic* pcPic, Int pocLast, Int pocCurr, Int iNumPicRcvd, Int iGOPid, TComSlice*& rpcSlice, TComSPS* pSPS, TComPPS *pPPS, Bool isField )
{
Double dQP;
Double dLambda;
rpcSlice = pcPic->getSlice(0);
rpcSlice->setSPS( pSPS );
rpcSlice->setPPS( pPPS );
rpcSlice->setSliceBits(0);
rpcSlice->setPic( pcPic );
rpcSlice->initSlice();
rpcSlice->setPicOutputFlag( true );
rpcSlice->setPOC( pocCurr );
// depth computation based on GOP size
Int depth;
{
Int poc = rpcSlice->getPOC();
if(isField)
{
poc = (poc/2) % (m_pcCfg->getGOPSize()/2);
}
else
{
poc = poc % m_pcCfg->getGOPSize();
}
if ( poc == 0 )
{
depth = 0;
}
else
{
Int step = m_pcCfg->getGOPSize();
depth = 0;
for( Int i=step>>1; i>=1; i>>=1 )
{
for ( Int j=i; j<m_pcCfg->getGOPSize(); j+=step )
{
if ( j == poc )
{
i=0;
break;
}
}
step >>= 1;
depth++;
}
}
#if HARMONIZE_GOP_FIRST_FIELD_COUPLE
if(poc != 0)
{
#endif
if (isField && ((rpcSlice->getPOC() % 2) == 1))
{
depth ++;
}
#if HARMONIZE_GOP_FIRST_FIELD_COUPLE
}
#endif
}
// slice type
SliceType eSliceType;
eSliceType=B_SLICE;
#if EFFICIENT_FIELD_IRAP
if(!(isField && pocLast == 1))
{
#endif // EFFICIENT_FIELD_IRAP
#if ALLOW_RECOVERY_POINT_AS_RAP
if(m_pcCfg->getDecodingRefreshType() == 3)
{
eSliceType = (pocLast == 0 || pocCurr % m_pcCfg->getIntraPeriod() == 0 || m_pcGOPEncoder->getGOPSize() == 0) ? I_SLICE : eSliceType;
}
else
{
#endif
eSliceType = (pocLast == 0 || (pocCurr - (isField ? 1 : 0)) % m_pcCfg->getIntraPeriod() == 0 || m_pcGOPEncoder->getGOPSize() == 0) ? I_SLICE : eSliceType;
#if ALLOW_RECOVERY_POINT_AS_RAP
}
#endif
#if EFFICIENT_FIELD_IRAP
}
#endif
rpcSlice->setSliceType ( eSliceType );
// ------------------------------------------------------------------------------------------------------------------
// Non-referenced frame marking
// ------------------------------------------------------------------------------------------------------------------
if(pocLast == 0)
{
rpcSlice->setTemporalLayerNonReferenceFlag(false);
}
else
{
rpcSlice->setTemporalLayerNonReferenceFlag(!m_pcCfg->getGOPEntry(iGOPid).m_refPic);
}
rpcSlice->setReferenced(true);
// ------------------------------------------------------------------------------------------------------------------
// QP setting
// ------------------------------------------------------------------------------------------------------------------
dQP = m_pcCfg->getQP();
if(eSliceType!=I_SLICE)
{
if (!(( m_pcCfg->getMaxDeltaQP() == 0 ) && (dQP == -rpcSlice->getSPS()->getQpBDOffset(CHANNEL_TYPE_LUMA) ) && (rpcSlice->getPPS()->getTransquantBypassEnableFlag())))
{
dQP += m_pcCfg->getGOPEntry(iGOPid).m_QPOffset;
}
}
// modify QP
Int* pdQPs = m_pcCfg->getdQPs();
if ( pdQPs )
{
dQP += pdQPs[ rpcSlice->getPOC() ];
}
if (m_pcCfg->getCostMode()==COST_LOSSLESS_CODING)
{
dQP=LOSSLESS_AND_MIXED_LOSSLESS_RD_COST_TEST_QP;
m_pcCfg->setDeltaQpRD(0);
}
// ------------------------------------------------------------------------------------------------------------------
// Lambda computation
// ------------------------------------------------------------------------------------------------------------------
Int iQP;
Double dOrigQP = dQP;
// pre-compute lambda and QP values for all possible QP candidates
for ( Int iDQpIdx = 0; iDQpIdx < 2 * m_pcCfg->getDeltaQpRD() + 1; iDQpIdx++ )
{
// compute QP value
dQP = dOrigQP + ((iDQpIdx+1)>>1)*(iDQpIdx%2 ? -1 : 1);
// compute lambda value
Int NumberBFrames = ( m_pcCfg->getGOPSize() - 1 );
Int SHIFT_QP = 12;
Double dLambda_scale = 1.0 - Clip3( 0.0, 0.5, 0.05*(Double)(isField ? NumberBFrames/2 : NumberBFrames) );
#if FULL_NBIT
Int bitdepth_luma_qp_scale = 6 * (g_bitDepth[CHANNEL_TYPE_LUMA] - 8);
#else
Int bitdepth_luma_qp_scale = 0;
#endif
Double qp_temp = (Double) dQP + bitdepth_luma_qp_scale - SHIFT_QP;
#if FULL_NBIT
Double qp_temp_orig = (Double) dQP - SHIFT_QP;
#endif
// Case #1: I or P-slices (key-frame)
Double dQPFactor = m_pcCfg->getGOPEntry(iGOPid).m_QPFactor;
if ( eSliceType==I_SLICE )
{
dQPFactor=0.57*dLambda_scale;
}
dLambda = dQPFactor*pow( 2.0, qp_temp/3.0 );
if ( depth>0 )
{
#if FULL_NBIT
dLambda *= Clip3( 2.00, 4.00, (qp_temp_orig / 6.0) ); // (j == B_SLICE && p_cur_frm->layer != 0 )
#else
dLambda *= Clip3( 2.00, 4.00, (qp_temp / 6.0) ); // (j == B_SLICE && p_cur_frm->layer != 0 )
#endif
}
// if hadamard is used in ME process
if ( !m_pcCfg->getUseHADME() && rpcSlice->getSliceType( ) != I_SLICE )
{
dLambda *= 0.95;
}
iQP = max( -pSPS->getQpBDOffset(CHANNEL_TYPE_LUMA), min( MAX_QP, (Int) floor( dQP + 0.5 ) ) );
m_pdRdPicLambda[iDQpIdx] = dLambda;
m_pdRdPicQp [iDQpIdx] = dQP;
m_piRdPicQp [iDQpIdx] = iQP;
}
// obtain dQP = 0 case
dLambda = m_pdRdPicLambda[0];
dQP = m_pdRdPicQp [0];
iQP = m_piRdPicQp [0];
if( rpcSlice->getSliceType( ) != I_SLICE )
{
dLambda *= m_pcCfg->getLambdaModifier( m_pcCfg->getGOPEntry(iGOPid).m_temporalId );
}
setUpLambda(rpcSlice, dLambda, iQP);
#if HB_LAMBDA_FOR_LDC
// restore original slice type
#if EFFICIENT_FIELD_IRAP
if(!(isField && pocLast == 1))
{
#endif // EFFICIENT_FIELD_IRAP
#if ALLOW_RECOVERY_POINT_AS_RAP
if(m_pcCfg->getDecodingRefreshType() == 3)
{
eSliceType = (pocLast == 0 || (pocCurr) % m_pcCfg->getIntraPeriod() == 0 || m_pcGOPEncoder->getGOPSize() == 0) ? I_SLICE : eSliceType;
}
else
{
#endif
eSliceType = (pocLast == 0 || (pocCurr - (isField ? 1 : 0)) % m_pcCfg->getIntraPeriod() == 0 || m_pcGOPEncoder->getGOPSize() == 0) ? I_SLICE : eSliceType;
#if ALLOW_RECOVERY_POINT_AS_RAP
}
#endif
#if EFFICIENT_FIELD_IRAP
}
#endif // EFFICIENT_FIELD_IRAP
rpcSlice->setSliceType ( eSliceType );
#endif
if (m_pcCfg->getUseRecalculateQPAccordingToLambda())
{
dQP = xGetQPValueAccordingToLambda( dLambda );
iQP = max( -pSPS->getQpBDOffset(CHANNEL_TYPE_LUMA), min( MAX_QP, (Int) floor( dQP + 0.5 ) ) );
}
rpcSlice->setSliceQp ( iQP );
#if ADAPTIVE_QP_SELECTION
rpcSlice->setSliceQpBase ( iQP );
#endif
rpcSlice->setSliceQpDelta ( 0 );
rpcSlice->setSliceChromaQpDelta( COMPONENT_Cb, 0 );
rpcSlice->setSliceChromaQpDelta( COMPONENT_Cr, 0 );
rpcSlice->setUseChromaQpAdj( pPPS->getChromaQpAdjTableSize() > 0 );
rpcSlice->setNumRefIdx(REF_PIC_LIST_0,m_pcCfg->getGOPEntry(iGOPid).m_numRefPicsActive);
rpcSlice->setNumRefIdx(REF_PIC_LIST_1,m_pcCfg->getGOPEntry(iGOPid).m_numRefPicsActive);
if ( m_pcCfg->getDeblockingFilterMetric() )
{
rpcSlice->setDeblockingFilterOverrideFlag(true);
rpcSlice->setDeblockingFilterDisable(false);
rpcSlice->setDeblockingFilterBetaOffsetDiv2( 0 );
rpcSlice->setDeblockingFilterTcOffsetDiv2( 0 );
}
else if (rpcSlice->getPPS()->getDeblockingFilterControlPresentFlag())
{
rpcSlice->getPPS()->setDeblockingFilterOverrideEnabledFlag( !m_pcCfg->getLoopFilterOffsetInPPS() );
rpcSlice->setDeblockingFilterOverrideFlag( !m_pcCfg->getLoopFilterOffsetInPPS() );
rpcSlice->getPPS()->setPicDisableDeblockingFilterFlag( m_pcCfg->getLoopFilterDisable() );
rpcSlice->setDeblockingFilterDisable( m_pcCfg->getLoopFilterDisable() );
if ( !rpcSlice->getDeblockingFilterDisable())
{
if ( !m_pcCfg->getLoopFilterOffsetInPPS() && eSliceType!=I_SLICE)
{
rpcSlice->getPPS()->setDeblockingFilterBetaOffsetDiv2( m_pcCfg->getGOPEntry(iGOPid).m_betaOffsetDiv2 + m_pcCfg->getLoopFilterBetaOffset() );
rpcSlice->getPPS()->setDeblockingFilterTcOffsetDiv2( m_pcCfg->getGOPEntry(iGOPid).m_tcOffsetDiv2 + m_pcCfg->getLoopFilterTcOffset() );
rpcSlice->setDeblockingFilterBetaOffsetDiv2( m_pcCfg->getGOPEntry(iGOPid).m_betaOffsetDiv2 + m_pcCfg->getLoopFilterBetaOffset() );
rpcSlice->setDeblockingFilterTcOffsetDiv2( m_pcCfg->getGOPEntry(iGOPid).m_tcOffsetDiv2 + m_pcCfg->getLoopFilterTcOffset() );
}
else
{
rpcSlice->getPPS()->setDeblockingFilterBetaOffsetDiv2( m_pcCfg->getLoopFilterBetaOffset() );
rpcSlice->getPPS()->setDeblockingFilterTcOffsetDiv2( m_pcCfg->getLoopFilterTcOffset() );
rpcSlice->setDeblockingFilterBetaOffsetDiv2( m_pcCfg->getLoopFilterBetaOffset() );
rpcSlice->setDeblockingFilterTcOffsetDiv2( m_pcCfg->getLoopFilterTcOffset() );
}
}
}
else
{
rpcSlice->setDeblockingFilterOverrideFlag( false );
rpcSlice->setDeblockingFilterDisable( false );
rpcSlice->setDeblockingFilterBetaOffsetDiv2( 0 );
rpcSlice->setDeblockingFilterTcOffsetDiv2( 0 );
}
rpcSlice->setDepth ( depth );
pcPic->setTLayer( m_pcCfg->getGOPEntry(iGOPid).m_temporalId );
if(eSliceType==I_SLICE)
{
pcPic->setTLayer(0);
}
rpcSlice->setTLayer( pcPic->getTLayer() );
assert( m_apcPicYuvPred );
assert( m_apcPicYuvResi );
pcPic->setPicYuvPred( m_apcPicYuvPred );
pcPic->setPicYuvResi( m_apcPicYuvResi );
rpcSlice->setSliceMode ( m_pcCfg->getSliceMode() );
rpcSlice->setSliceArgument ( m_pcCfg->getSliceArgument() );
rpcSlice->setSliceSegmentMode ( m_pcCfg->getSliceSegmentMode() );
rpcSlice->setSliceSegmentArgument ( m_pcCfg->getSliceSegmentArgument() );
rpcSlice->setMaxNumMergeCand ( m_pcCfg->getMaxNumMergeCand() );
xStoreWPparam( pPPS->getUseWP(), pPPS->getWPBiPred() );
}
Void TEncSlice::resetQP( TComPic* pic, Int sliceQP, Double lambda )
{
TComSlice* slice = pic->getSlice(0);
// store lambda
slice->setSliceQp( sliceQP );
#if ADAPTIVE_QP_SELECTION
slice->setSliceQpBase ( sliceQP );
#endif
setUpLambda(slice, lambda, sliceQP);
}
// ====================================================================================================================
// Public member functions
// ====================================================================================================================
Void TEncSlice::setSearchRange( TComSlice* pcSlice )
{
Int iCurrPOC = pcSlice->getPOC();
Int iRefPOC;
Int iGOPSize = m_pcCfg->getGOPSize();
Int iOffset = (iGOPSize >> 1);
Int iMaxSR = m_pcCfg->getSearchRange();
Int iNumPredDir = pcSlice->isInterP() ? 1 : 2;
for (Int iDir = 0; iDir <= iNumPredDir; iDir++)
{
//RefPicList e = (RefPicList)iDir;
RefPicList e = ( iDir ? REF_PIC_LIST_1 : REF_PIC_LIST_0 );
for (Int iRefIdx = 0; iRefIdx < pcSlice->getNumRefIdx(e); iRefIdx++)
{
iRefPOC = pcSlice->getRefPic(e, iRefIdx)->getPOC();
Int iNewSR = Clip3(8, iMaxSR, (iMaxSR*ADAPT_SR_SCALE*abs(iCurrPOC - iRefPOC)+iOffset)/iGOPSize);
m_pcPredSearch->setAdaptiveSearchRange(iDir, iRefIdx, iNewSR);
}
}
}
/**
- multi-loop slice encoding for different slice QP
.
\param rpcPic picture class
*/
Void TEncSlice::precompressSlice( TComPic* pcPic )
{
// if deltaQP RD is not used, simply return
if ( m_pcCfg->getDeltaQpRD() == 0 )
{
return;
}
if ( m_pcCfg->getUseRateCtrl() )
{
printf( "\nMultiple QP optimization is not allowed when rate control is enabled." );
assert(0);
}
TComSlice* pcSlice = pcPic->getSlice(getSliceIdx());
Double dPicRdCostBest = MAX_DOUBLE;
UInt uiQpIdxBest = 0;
Double dFrameLambda;
#if FULL_NBIT
Int SHIFT_QP = 12 + 6 * (g_bitDepth[CHANNEL_TYPE_LUMA] - 8);
#else
Int SHIFT_QP = 12;
#endif
// set frame lambda
if (m_pcCfg->getGOPSize() > 1)
{
dFrameLambda = 0.68 * pow (2, (m_piRdPicQp[0] - SHIFT_QP) / 3.0) * (pcSlice->isInterB()? 2 : 1);
}
else
{
dFrameLambda = 0.68 * pow (2, (m_piRdPicQp[0] - SHIFT_QP) / 3.0);
}
m_pcRdCost ->setFrameLambda(dFrameLambda);
const UInt initialSliceQp=pcSlice->getSliceQp();
// for each QP candidate
for ( UInt uiQpIdx = 0; uiQpIdx < 2 * m_pcCfg->getDeltaQpRD() + 1; uiQpIdx++ )
{
pcSlice ->setSliceQp ( m_piRdPicQp [uiQpIdx] );
#if ADAPTIVE_QP_SELECTION
pcSlice ->setSliceQpBase ( m_piRdPicQp [uiQpIdx] );
#endif
setUpLambda(pcSlice, m_pdRdPicLambda[uiQpIdx], m_piRdPicQp [uiQpIdx]);
// try compress
compressSlice ( pcPic );
Double dPicRdCost;
UInt64 uiPicDist = m_uiPicDist;
// TODO: will this work if multiple slices are being used? There may not be any reconstruction data yet.
// Will this also be ideal if a byte-restriction is placed on the slice?
// - what if the last CTU was sometimes included, sometimes not, and that had all the distortion?
m_pcGOPEncoder->preLoopFilterPicAll( pcPic, uiPicDist );
// compute RD cost and choose the best
dPicRdCost = m_pcRdCost->calcRdCost64( m_uiPicTotalBits, uiPicDist, true, DF_SSE_FRAME);
if ( dPicRdCost < dPicRdCostBest )
{
uiQpIdxBest = uiQpIdx;
dPicRdCostBest = dPicRdCost;
}
}
if (pcSlice->getDependentSliceSegmentFlag() && initialSliceQp!=m_piRdPicQp[uiQpIdxBest] )
{
// TODO: this won't work with dependent slices: they do not have their own QP.
fprintf(stderr,"ERROR - attempt to change QP for a dependent slice-segment, having already coded the slice\n");
assert(pcSlice->getDependentSliceSegmentFlag()==false || initialSliceQp==m_piRdPicQp[uiQpIdxBest]);
}
// set best values
pcSlice ->setSliceQp ( m_piRdPicQp [uiQpIdxBest] );
#if ADAPTIVE_QP_SELECTION
pcSlice ->setSliceQpBase ( m_piRdPicQp [uiQpIdxBest] );
#endif
setUpLambda(pcSlice, m_pdRdPicLambda[uiQpIdxBest], m_piRdPicQp [uiQpIdxBest]);
}
Void TEncSlice::calCostSliceI(TComPic* pcPic)
{
UInt ctuRsAddr;
UInt startCtuTsAddr;
UInt boundingCtuTsAddr;
Int iSumHad, shift = g_bitDepth[CHANNEL_TYPE_LUMA]-8, offset = (shift>0)?(1<<(shift-1)):0;;
Double iSumHadSlice = 0;
pcPic->getSlice(getSliceIdx())->setSliceSegmentBits(0);
TComSlice* pcSlice = pcPic->getSlice(getSliceIdx());
xDetermineStartAndBoundingCtuTsAddr ( startCtuTsAddr, boundingCtuTsAddr, pcPic, false );
UInt ctuTsAddr;
ctuRsAddr = pcPic->getPicSym()->getCtuTsToRsAddrMap( startCtuTsAddr);
for( ctuTsAddr = startCtuTsAddr; ctuTsAddr < boundingCtuTsAddr; ctuRsAddr = pcPic->getPicSym()->getCtuTsToRsAddrMap(++ctuTsAddr) )
{
// initialize CU encoder
TComDataCU* pCtu = pcPic->getCtu( ctuRsAddr );
pCtu->initCtu( pcPic, ctuRsAddr );
Int height = min( pcSlice->getSPS()->getMaxCUHeight(),pcSlice->getSPS()->getPicHeightInLumaSamples() - ctuRsAddr / pcPic->getFrameWidthInCtus() * pcSlice->getSPS()->getMaxCUHeight() );
Int width = min( pcSlice->getSPS()->getMaxCUWidth(),pcSlice->getSPS()->getPicWidthInLumaSamples() - ctuRsAddr % pcPic->getFrameWidthInCtus() * pcSlice->getSPS()->getMaxCUWidth() );
iSumHad = m_pcCuEncoder->updateCtuDataISlice(pCtu, width, height);
(m_pcRateCtrl->getRCPic()->getLCU(ctuRsAddr)).m_costIntra=(iSumHad+offset)>>shift;
iSumHadSlice += (m_pcRateCtrl->getRCPic()->getLCU(ctuRsAddr)).m_costIntra;
}
m_pcRateCtrl->getRCPic()->setTotalIntraCost(iSumHadSlice);
}
/** \param rpcPic picture class
*/
Void TEncSlice::compressSlice( TComPic* pcPic )
{
UInt startCtuTsAddr;
UInt boundingCtuTsAddr;
TComSlice* pcSlice = pcPic->getSlice(getSliceIdx());
pcSlice->setSliceSegmentBits(0);
xDetermineStartAndBoundingCtuTsAddr ( startCtuTsAddr, boundingCtuTsAddr, pcPic, false );
// initialize cost values - these are used by precompressSlice (they should be parameters).
m_uiPicTotalBits = 0;
m_dPicRdCost = 0; // NOTE: This is a write-only variable!
m_uiPicDist = 0;
m_pcEntropyCoder->setEntropyCoder ( m_pppcRDSbacCoder[0][CI_CURR_BEST], pcSlice );
m_pcEntropyCoder->resetEntropy ();
TEncBinCABAC* pRDSbacCoder = (TEncBinCABAC *) m_pppcRDSbacCoder[0][CI_CURR_BEST]->getEncBinIf();
pRDSbacCoder->setBinCountingEnableFlag( false );
pRDSbacCoder->setBinsCoded( 0 );
TComBitCounter tempBitCounter;
const UInt frameWidthInCtus = pcPic->getPicSym()->getFrameWidthInCtus();
//------------------------------------------------------------------------------
// Weighted Prediction parameters estimation.
//------------------------------------------------------------------------------
// calculate AC/DC values for current picture
if( pcSlice->getPPS()->getUseWP() || pcSlice->getPPS()->getWPBiPred() )
{
xCalcACDCParamSlice(pcSlice);
}
const Bool bWp_explicit = (pcSlice->getSliceType()==P_SLICE && pcSlice->getPPS()->getUseWP()) || (pcSlice->getSliceType()==B_SLICE && pcSlice->getPPS()->getWPBiPred());
if ( bWp_explicit )
{
//------------------------------------------------------------------------------
// Weighted Prediction implemented at Slice level. SliceMode=2 is not supported yet.
//------------------------------------------------------------------------------
if ( pcSlice->getSliceMode()==FIXED_NUMBER_OF_BYTES || pcSlice->getSliceSegmentMode()==FIXED_NUMBER_OF_BYTES )
{
printf("Weighted Prediction is not supported with slice mode determined by max number of bins.\n"); exit(0);
}
xEstimateWPParamSlice( pcSlice );
pcSlice->initWpScaling();
// check WP on/off
xCheckWPEnable( pcSlice );
}
#if ADAPTIVE_QP_SELECTION
if( m_pcCfg->getUseAdaptQpSelect() && !(pcSlice->getDependentSliceSegmentFlag()))
{
// TODO: this won't work with dependent slices: they do not have their own QP. Check fix to mask clause execution with && !(pcSlice->getDependentSliceSegmentFlag())
m_pcTrQuant->clearSliceARLCnt();
if(pcSlice->getSliceType()!=I_SLICE)
{
Int qpBase = pcSlice->getSliceQpBase();
pcSlice->setSliceQp(qpBase + m_pcTrQuant->getQpDelta(qpBase));
}
}
#endif
// Adjust initial state if this is the start of a dependent slice.
{
const UInt ctuRsAddr = pcPic->getPicSym()->getCtuTsToRsAddrMap( startCtuTsAddr);
const UInt currentTileIdx = pcPic->getPicSym()->getTileIdxMap(ctuRsAddr);
const TComTile *pCurrentTile = pcPic->getPicSym()->getTComTile(currentTileIdx);
const UInt firstCtuRsAddrOfTile = pCurrentTile->getFirstCtuRsAddr();
if( pcSlice->getDependentSliceSegmentFlag() && ctuRsAddr != firstCtuRsAddrOfTile )
{
// This will only occur if dependent slice-segments (m_entropyCodingSyncContextState=true) are being used.
if( pCurrentTile->getTileWidthInCtus() >= 2 || !m_pcCfg->getWaveFrontsynchro() )
{
m_pppcRDSbacCoder[0][CI_CURR_BEST]->loadContexts( &m_lastSliceSegmentEndContextState );
}
}
}
// for every CTU in the slice segment (may terminate sooner if there is a byte limit on the slice-segment)
for( UInt ctuTsAddr = startCtuTsAddr; ctuTsAddr < boundingCtuTsAddr; ++ctuTsAddr )
{
const UInt ctuRsAddr = pcPic->getPicSym()->getCtuTsToRsAddrMap(ctuTsAddr);
// initialize CTU encoder
TComDataCU* pCtu = pcPic->getCtu( ctuRsAddr );
pCtu->initCtu( pcPic, ctuRsAddr );
// update CABAC state
const UInt firstCtuRsAddrOfTile = pcPic->getPicSym()->getTComTile(pcPic->getPicSym()->getTileIdxMap(ctuRsAddr))->getFirstCtuRsAddr();
const UInt tileXPosInCtus = firstCtuRsAddrOfTile % frameWidthInCtus;
const UInt ctuXPosInCtus = ctuRsAddr % frameWidthInCtus;
if (ctuRsAddr == firstCtuRsAddrOfTile)
{
m_pppcRDSbacCoder[0][CI_CURR_BEST]->resetEntropy();
}
else if ( ctuXPosInCtus == tileXPosInCtus && m_pcCfg->getWaveFrontsynchro())
{
// reset and then update contexts to the state at the end of the top-right CTU (if within current slice and tile).
m_pppcRDSbacCoder[0][CI_CURR_BEST]->resetEntropy();
// Sync if the Top-Right is available.
TComDataCU *pCtuUp = pCtu->getCtuAbove();
if ( pCtuUp && ((ctuRsAddr%frameWidthInCtus+1) < frameWidthInCtus) )
{
TComDataCU *pCtuTR = pcPic->getCtu( ctuRsAddr - frameWidthInCtus + 1 );
if ( pCtu->CUIsFromSameSliceAndTile(pCtuTR) )
{
// Top-Right is available, we use it.
m_pppcRDSbacCoder[0][CI_CURR_BEST]->loadContexts( &m_entropyCodingSyncContextState );
}
}
}
// set go-on entropy coder (used for all trial encodings - the cu encoder and encoder search also have a copy of the same pointer)
m_pcEntropyCoder->setEntropyCoder ( m_pcRDGoOnSbacCoder, pcSlice );
m_pcEntropyCoder->setBitstream( &tempBitCounter );
tempBitCounter.resetBits();
m_pcRDGoOnSbacCoder->load( m_pppcRDSbacCoder[0][CI_CURR_BEST] ); // this copy is not strictly necessary here, but indicates that the GoOnSbacCoder
// is reset to a known state before every decision process.
((TEncBinCABAC*)m_pcRDGoOnSbacCoder->getEncBinIf())->setBinCountingEnableFlag(true);
Double oldLambda = m_pcRdCost->getLambda();
if ( m_pcCfg->getUseRateCtrl() )
{
Int estQP = pcSlice->getSliceQp();
Double estLambda = -1.0;
Double bpp = -1.0;
if ( ( pcPic->getSlice( 0 )->getSliceType() == I_SLICE && m_pcCfg->getForceIntraQP() ) || !m_pcCfg->getLCULevelRC() )
{
estQP = pcSlice->getSliceQp();
}
else
{
bpp = m_pcRateCtrl->getRCPic()->getLCUTargetBpp(pcSlice->getSliceType());
if ( pcPic->getSlice( 0 )->getSliceType() == I_SLICE)
{
estLambda = m_pcRateCtrl->getRCPic()->getLCUEstLambdaAndQP(bpp, pcSlice->getSliceQp(), &estQP);
}
else
{
estLambda = m_pcRateCtrl->getRCPic()->getLCUEstLambda( bpp );
estQP = m_pcRateCtrl->getRCPic()->getLCUEstQP ( estLambda, pcSlice->getSliceQp() );
}
estQP = Clip3( -pcSlice->getSPS()->getQpBDOffset(CHANNEL_TYPE_LUMA), MAX_QP, estQP );
m_pcRdCost->setLambda(estLambda);
#if RDOQ_CHROMA_LAMBDA
// set lambda for RDOQ
const Double chromaLambda = estLambda / m_pcRdCost->getChromaWeight();
const Double lambdaArray[MAX_NUM_COMPONENT] = { estLambda, chromaLambda, chromaLambda };
m_pcTrQuant->setLambdas( lambdaArray );
#else
m_pcTrQuant->setLambda( estLambda );
#endif
}
m_pcRateCtrl->setRCQP( estQP );
#if ADAPTIVE_QP_SELECTION
pCtu->getSlice()->setSliceQpBase( estQP );
#endif
}
// run CTU trial encoder
m_pcCuEncoder->compressCtu( pCtu );
// All CTU decisions have now been made. Restore entropy coder to an initial stage, ready to make a true encode,
// which will result in the state of the contexts being correct. It will also count up the number of bits coded,
// which is used if there is a limit of the number of bytes per slice-segment.
m_pcEntropyCoder->setEntropyCoder ( m_pppcRDSbacCoder[0][CI_CURR_BEST], pcSlice );
m_pcEntropyCoder->setBitstream( &tempBitCounter );
pRDSbacCoder->setBinCountingEnableFlag( true );
m_pppcRDSbacCoder[0][CI_CURR_BEST]->resetBits();
pRDSbacCoder->setBinsCoded( 0 );
// encode CTU and calculate the true bit counters.
m_pcCuEncoder->encodeCtu( pCtu );
pRDSbacCoder->setBinCountingEnableFlag( false );
const Int numberOfWrittenBits = m_pcEntropyCoder->getNumberOfWrittenBits();
// Calculate if this CTU puts us over slice bit size.
// cannot terminate if current slice/slice-segment would be 0 Ctu in size,
const UInt validEndOfSliceCtuTsAddr = ctuTsAddr + (ctuTsAddr == startCtuTsAddr ? 1 : 0);
// Set slice end parameter
if(pcSlice->getSliceMode()==FIXED_NUMBER_OF_BYTES && pcSlice->getSliceBits()+numberOfWrittenBits > (pcSlice->getSliceArgument()<<3))
{
pcSlice->setSliceSegmentCurEndCtuTsAddr(validEndOfSliceCtuTsAddr);
pcSlice->setSliceCurEndCtuTsAddr(validEndOfSliceCtuTsAddr);
boundingCtuTsAddr=validEndOfSliceCtuTsAddr;
}
else if(pcSlice->getSliceSegmentMode()==FIXED_NUMBER_OF_BYTES && pcSlice->getSliceSegmentBits()+numberOfWrittenBits > (pcSlice->getSliceSegmentArgument()<<3))
{
pcSlice->setSliceSegmentCurEndCtuTsAddr(validEndOfSliceCtuTsAddr);
boundingCtuTsAddr=validEndOfSliceCtuTsAddr;
}
if (boundingCtuTsAddr <= ctuTsAddr)
break;
pcSlice->setSliceBits( (UInt)(pcSlice->getSliceBits() + numberOfWrittenBits) );
pcSlice->setSliceSegmentBits(pcSlice->getSliceSegmentBits()+numberOfWrittenBits);
// Store probabilities of second CTU in line into buffer - used only if wavefront-parallel-processing is enabled.
if ( ctuXPosInCtus == tileXPosInCtus+1 && m_pcCfg->getWaveFrontsynchro())
{
m_entropyCodingSyncContextState.loadContexts(m_pppcRDSbacCoder[0][CI_CURR_BEST]);
}
if ( m_pcCfg->getUseRateCtrl() )
{
Int actualQP = g_RCInvalidQPValue;
Double actualLambda = m_pcRdCost->getLambda();
Int actualBits = pCtu->getTotalBits();
Int numberOfEffectivePixels = 0;
for ( Int idx = 0; idx < pcPic->getNumPartitionsInCtu(); idx++ )
{
if ( pCtu->getPredictionMode( idx ) != NUMBER_OF_PREDICTION_MODES && ( !pCtu->isSkipped( idx ) ) )
{
numberOfEffectivePixels = numberOfEffectivePixels + 16;
break;
}
}
if ( numberOfEffectivePixels == 0 )
{
actualQP = g_RCInvalidQPValue;
}
else
{
actualQP = pCtu->getQP( 0 );
}
m_pcRdCost->setLambda(oldLambda);
m_pcRateCtrl->getRCPic()->updateAfterCTU( m_pcRateCtrl->getRCPic()->getLCUCoded(), actualBits, actualQP, actualLambda,
pCtu->getSlice()->getSliceType() == I_SLICE ? 0 : m_pcCfg->getLCULevelRC() );
}
m_uiPicTotalBits += pCtu->getTotalBits();
m_dPicRdCost += pCtu->getTotalCost();
m_uiPicDist += pCtu->getTotalDistortion();
}
// store context state at the end of this slice-segment, in case the next slice is a dependent slice and continues using the CABAC contexts.
if( pcSlice->getPPS()->getDependentSliceSegmentsEnabledFlag() )
{
m_lastSliceSegmentEndContextState.loadContexts( m_pppcRDSbacCoder[0][CI_CURR_BEST] );//ctx end of dep.slice
}
xRestoreWPparam( pcSlice );
// stop use of temporary bit counter object.
m_pppcRDSbacCoder[0][CI_CURR_BEST]->setBitstream(NULL);
m_pcRDGoOnSbacCoder->setBitstream(NULL); // stop use of tempBitCounter.
}
/**
\param rpcPic picture class
\retval rpcBitstream bitstream class
*/
Void TEncSlice::encodeSlice ( TComPic* pcPic, TComOutputBitstream* pcSubstreams, UInt &numBinsCoded )
{
TComSlice* pcSlice = pcPic->getSlice(getSliceIdx());
const UInt startCtuTsAddr = pcSlice->getSliceSegmentCurStartCtuTsAddr();
const UInt boundingCtuTsAddr = pcSlice->getSliceSegmentCurEndCtuTsAddr();
const UInt frameWidthInCtus = pcPic->getPicSym()->getFrameWidthInCtus();
const Bool depSliceSegmentsEnabled = pcSlice->getPPS()->getDependentSliceSegmentsEnabledFlag();
const Bool wavefrontsEnabled = pcSlice->getPPS()->getEntropyCodingSyncEnabledFlag();
// initialise entropy coder for the slice
m_pcSbacCoder->init( (TEncBinIf*)m_pcBinCABAC );
m_pcEntropyCoder->setEntropyCoder ( m_pcSbacCoder, pcSlice );
m_pcEntropyCoder->resetEntropy ();
numBinsCoded = 0;
m_pcBinCABAC->setBinCountingEnableFlag( true );
m_pcBinCABAC->setBinsCoded(0);
#if ENC_DEC_TRACE
g_bJustDoIt = g_bEncDecTraceEnable;
#endif
DTRACE_CABAC_VL( g_nSymbolCounter++ );
DTRACE_CABAC_T( "\tPOC: " );
DTRACE_CABAC_V( pcPic->getPOC() );
DTRACE_CABAC_T( "\n" );
#if ENC_DEC_TRACE
g_bJustDoIt = g_bEncDecTraceDisable;
#endif
if (depSliceSegmentsEnabled)
{
// modify initial contexts with previous slice segment if this is a dependent slice.
const UInt ctuRsAddr = pcPic->getPicSym()->getCtuTsToRsAddrMap( startCtuTsAddr );
const UInt currentTileIdx=pcPic->getPicSym()->getTileIdxMap(ctuRsAddr);
const TComTile *pCurrentTile=pcPic->getPicSym()->getTComTile(currentTileIdx);
const UInt firstCtuRsAddrOfTile = pCurrentTile->getFirstCtuRsAddr();
if( pcSlice->getDependentSliceSegmentFlag() && ctuRsAddr != firstCtuRsAddrOfTile )
{
if( pCurrentTile->getTileWidthInCtus() >= 2 || !wavefrontsEnabled )
{
m_pcSbacCoder->loadContexts(&m_lastSliceSegmentEndContextState);
}
}
}
// for every CTU in the slice segment...
for( UInt ctuTsAddr = startCtuTsAddr; ctuTsAddr < boundingCtuTsAddr; ++ctuTsAddr )
{
const UInt ctuRsAddr = pcPic->getPicSym()->getCtuTsToRsAddrMap(ctuTsAddr);
const TComTile &currentTile = *(pcPic->getPicSym()->getTComTile(pcPic->getPicSym()->getTileIdxMap(ctuRsAddr)));
const UInt firstCtuRsAddrOfTile = currentTile.getFirstCtuRsAddr();
const UInt tileXPosInCtus = firstCtuRsAddrOfTile % frameWidthInCtus;
const UInt tileYPosInCtus = firstCtuRsAddrOfTile / frameWidthInCtus;
const UInt ctuXPosInCtus = ctuRsAddr % frameWidthInCtus;
const UInt ctuYPosInCtus = ctuRsAddr / frameWidthInCtus;
const UInt uiSubStrm=pcPic->getSubstreamForCtuAddr(ctuRsAddr, true, pcSlice);
TComDataCU* pCtu = pcPic->getCtu( ctuRsAddr );
m_pcEntropyCoder->setBitstream( &pcSubstreams[uiSubStrm] );
// set up CABAC contexts' state for this CTU
if (ctuRsAddr == firstCtuRsAddrOfTile)
{
if (ctuTsAddr != startCtuTsAddr) // if it is the first CTU, then the entropy coder has already been reset
{
m_pcEntropyCoder->resetEntropy();
}
}
else if (ctuXPosInCtus == tileXPosInCtus && wavefrontsEnabled)
{
// Synchronize cabac probabilities with upper-right CTU if it's available and at the start of a line.
if (ctuTsAddr != startCtuTsAddr) // if it is the first CTU, then the entropy coder has already been reset
{
m_pcEntropyCoder->resetEntropy();
}
TComDataCU *pCtuUp = pCtu->getCtuAbove();
if ( pCtuUp && ((ctuRsAddr%frameWidthInCtus+1) < frameWidthInCtus) )
{
TComDataCU *pCtuTR = pcPic->getCtu( ctuRsAddr - frameWidthInCtus + 1 );
if ( pCtu->CUIsFromSameSliceAndTile(pCtuTR) )
{
// Top-right is available, so use it.
m_pcSbacCoder->loadContexts( &m_entropyCodingSyncContextState );
}
}
}
if ( pcSlice->getSPS()->getUseSAO() )
{
Bool bIsSAOSliceEnabled = false;
Bool sliceEnabled[MAX_NUM_COMPONENT];
for(Int comp=0; comp < MAX_NUM_COMPONENT; comp++)
{
ComponentID compId=ComponentID(comp);
sliceEnabled[compId] = pcSlice->getSaoEnabledFlag(toChannelType(compId)) && (comp < pcPic->getNumberValidComponents());
if (sliceEnabled[compId]) bIsSAOSliceEnabled=true;
}
if (bIsSAOSliceEnabled)
{
SAOBlkParam& saoblkParam = (pcPic->getPicSym()->getSAOBlkParam())[ctuRsAddr];
Bool leftMergeAvail = false;
Bool aboveMergeAvail= false;
//merge left condition
Int rx = (ctuRsAddr % frameWidthInCtus);
if(rx > 0)
{
leftMergeAvail = pcPic->getSAOMergeAvailability(ctuRsAddr, ctuRsAddr-1);
}
//merge up condition
Int ry = (ctuRsAddr / frameWidthInCtus);
if(ry > 0)
{
aboveMergeAvail = pcPic->getSAOMergeAvailability(ctuRsAddr, ctuRsAddr-frameWidthInCtus);
}
m_pcEntropyCoder->encodeSAOBlkParam(saoblkParam, sliceEnabled, leftMergeAvail, aboveMergeAvail);
}
}
#if ENC_DEC_TRACE
g_bJustDoIt = g_bEncDecTraceEnable;
#endif
m_pcCuEncoder->encodeCtu( pCtu );
#if ENC_DEC_TRACE
g_bJustDoIt = g_bEncDecTraceDisable;
#endif
//Store probabilities of second CTU in line into buffer
if ( ctuXPosInCtus == tileXPosInCtus+1 && wavefrontsEnabled)
{
m_entropyCodingSyncContextState.loadContexts( m_pcSbacCoder );
}
// terminate the sub-stream, if required (end of slice-segment, end of tile, end of wavefront-CTU-row):
if (ctuTsAddr+1 == boundingCtuTsAddr ||
( ctuXPosInCtus + 1 == tileXPosInCtus + currentTile.getTileWidthInCtus() &&
( ctuYPosInCtus + 1 == tileYPosInCtus + currentTile.getTileHeightInCtus() || wavefrontsEnabled)
)
)
{
m_pcEntropyCoder->encodeTerminatingBit(1);
m_pcEntropyCoder->encodeSliceFinish();
// Byte-alignment in slice_data() when new tile
pcSubstreams[uiSubStrm].writeByteAlignment();
// write sub-stream size
if (ctuTsAddr+1 != boundingCtuTsAddr)
{
pcSlice->addSubstreamSize( (pcSubstreams[uiSubStrm].getNumberOfWrittenBits() >> 3) + pcSubstreams[uiSubStrm].countStartCodeEmulations() );
}
}
} // CTU-loop
if( depSliceSegmentsEnabled )
{
m_lastSliceSegmentEndContextState.loadContexts( m_pcSbacCoder );//ctx end of dep.slice
}
#if ADAPTIVE_QP_SELECTION
if( m_pcCfg->getUseAdaptQpSelect() )
{
m_pcTrQuant->storeSliceQpNext(pcSlice);
}
#endif
if (pcSlice->getPPS()->getCabacInitPresentFlag())
{
if (pcSlice->getPPS()->getDependentSliceSegmentsEnabledFlag())
{
pcSlice->getPPS()->setEncCABACTableIdx( pcSlice->getSliceType() );
}
else
{
m_pcEntropyCoder->determineCabacInitIdx();
}
}
numBinsCoded = m_pcBinCABAC->getBinsCoded();
}
Void TEncSlice::calculateBoundingCtuTsAddrForSlice(UInt &startCtuTSAddrSlice, UInt &boundingCtuTSAddrSlice, Bool &haveReachedTileBoundary,
TComPic* pcPic, const Bool encodingSlice, const Int sliceMode, const Int sliceArgument, const UInt sliceCurEndCtuTSAddr)
{
TComSlice* pcSlice = pcPic->getSlice(getSliceIdx());
const UInt numberOfCtusInFrame = pcPic->getNumberOfCtusInFrame();
boundingCtuTSAddrSlice=0;
haveReachedTileBoundary=false;
switch (sliceMode)
{
case FIXED_NUMBER_OF_CTU:
{
UInt ctuAddrIncrement = sliceArgument;
boundingCtuTSAddrSlice = ((startCtuTSAddrSlice + ctuAddrIncrement) < numberOfCtusInFrame) ? (startCtuTSAddrSlice + ctuAddrIncrement) : numberOfCtusInFrame;
}
break;
case FIXED_NUMBER_OF_BYTES:
if (encodingSlice)
boundingCtuTSAddrSlice = sliceCurEndCtuTSAddr;
else
boundingCtuTSAddrSlice = numberOfCtusInFrame;
break;
case FIXED_NUMBER_OF_TILES:
{
const UInt tileIdx = pcPic->getPicSym()->getTileIdxMap( pcPic->getPicSym()->getCtuTsToRsAddrMap(startCtuTSAddrSlice) );
const UInt tileTotalCount = (pcPic->getPicSym()->getNumTileColumnsMinus1()+1) * (pcPic->getPicSym()->getNumTileRowsMinus1()+1);
UInt ctuAddrIncrement = 0;
for(UInt tileIdxIncrement = 0; tileIdxIncrement < sliceArgument; tileIdxIncrement++)
{
if((tileIdx + tileIdxIncrement) < tileTotalCount)
{
UInt tileWidthInCtus = pcPic->getPicSym()->getTComTile(tileIdx + tileIdxIncrement)->getTileWidthInCtus();
UInt tileHeightInCtus = pcPic->getPicSym()->getTComTile(tileIdx + tileIdxIncrement)->getTileHeightInCtus();
ctuAddrIncrement += (tileWidthInCtus * tileHeightInCtus);
}
}
boundingCtuTSAddrSlice = ((startCtuTSAddrSlice + ctuAddrIncrement) < numberOfCtusInFrame) ? (startCtuTSAddrSlice + ctuAddrIncrement) : numberOfCtusInFrame;
}
break;
default:
boundingCtuTSAddrSlice = numberOfCtusInFrame;
break;
}
// Adjust for tiles and wavefronts.
if ((sliceMode == FIXED_NUMBER_OF_CTU || sliceMode == FIXED_NUMBER_OF_BYTES) &&
(m_pcCfg->getNumRowsMinus1() > 0 || m_pcCfg->getNumColumnsMinus1() > 0))
{
const UInt ctuRSAddr = pcPic->getPicSym()->getCtuTsToRsAddrMap(startCtuTSAddrSlice);
const UInt startTileIdx = pcPic->getPicSym()->getTileIdxMap(ctuRSAddr);
const Bool wavefrontsAreEnabled = m_pcCfg->getWaveFrontsynchro();
const TComTile *pStartingTile = pcPic->getPicSym()->getTComTile(startTileIdx);
const UInt tileStartTsAddr = pcPic->getPicSym()->getCtuRsToTsAddrMap(pStartingTile->getFirstCtuRsAddr());
const UInt tileStartWidth = pStartingTile->getTileWidthInCtus();
const UInt tileStartHeight = pStartingTile->getTileHeightInCtus();
const UInt tileLastTsAddr_excl = tileStartTsAddr + tileStartWidth*tileStartHeight;
const UInt tileBoundingCtuTsAddrSlice = tileLastTsAddr_excl;
const UInt ctuColumnOfStartingTile = ((startCtuTSAddrSlice-tileStartTsAddr)%tileStartWidth);
if (wavefrontsAreEnabled && ctuColumnOfStartingTile!=0)
{
// WPP: if a slice does not start at the beginning of a CTB row, it must end within the same CTB row
const UInt numberOfCTUsToEndOfRow = tileStartWidth - ctuColumnOfStartingTile;
const UInt wavefrontTileBoundingCtuAddrSlice = startCtuTSAddrSlice + numberOfCTUsToEndOfRow;
if (wavefrontTileBoundingCtuAddrSlice < boundingCtuTSAddrSlice)
{
boundingCtuTSAddrSlice = wavefrontTileBoundingCtuAddrSlice;
}
}
if (tileBoundingCtuTsAddrSlice < boundingCtuTSAddrSlice)
{
boundingCtuTSAddrSlice = tileBoundingCtuTsAddrSlice;
haveReachedTileBoundary = true;
}
}
else if ((sliceMode == FIXED_NUMBER_OF_CTU || sliceMode == FIXED_NUMBER_OF_BYTES) && pcSlice->getPPS()->getEntropyCodingSyncEnabledFlag() && ((startCtuTSAddrSlice % pcPic->getFrameWidthInCtus()) != 0))
{
// Adjust for wavefronts (no tiles).
// WPP: if a slice does not start at the beginning of a CTB row, it must end within the same CTB row
boundingCtuTSAddrSlice = min(boundingCtuTSAddrSlice, startCtuTSAddrSlice - (startCtuTSAddrSlice % pcPic->getFrameWidthInCtus()) + (pcPic->getFrameWidthInCtus()));
}
}
/** Determines the starting and bounding CTU address of current slice / dependent slice
* \param bEncodeSlice Identifies if the calling function is compressSlice() [false] or encodeSlice() [true]
* \returns Updates startCtuTsAddr, boundingCtuTsAddr with appropriate CTU address
*/
Void TEncSlice::xDetermineStartAndBoundingCtuTsAddr ( UInt& startCtuTsAddr, UInt& boundingCtuTsAddr, TComPic* pcPic, const Bool encodingSlice )
{
TComSlice* pcSlice = pcPic->getSlice(getSliceIdx());
// Non-dependent slice
UInt startCtuTsAddrSlice = pcSlice->getSliceCurStartCtuTsAddr();
Bool haveReachedTileBoundarySlice = false;
UInt boundingCtuTsAddrSlice;
calculateBoundingCtuTsAddrForSlice(startCtuTsAddrSlice, boundingCtuTsAddrSlice, haveReachedTileBoundarySlice, pcPic,
encodingSlice, m_pcCfg->getSliceMode(), m_pcCfg->getSliceArgument(), pcSlice->getSliceCurEndCtuTsAddr());
pcSlice->setSliceCurEndCtuTsAddr( boundingCtuTsAddrSlice );
pcSlice->setSliceCurStartCtuTsAddr( startCtuTsAddrSlice );
// Dependent slice
UInt startCtuTsAddrSliceSegment = pcSlice->getSliceSegmentCurStartCtuTsAddr();
Bool haveReachedTileBoundarySliceSegment = false;
UInt boundingCtuTsAddrSliceSegment;
calculateBoundingCtuTsAddrForSlice(startCtuTsAddrSliceSegment, boundingCtuTsAddrSliceSegment, haveReachedTileBoundarySliceSegment, pcPic,
encodingSlice, m_pcCfg->getSliceSegmentMode(), m_pcCfg->getSliceSegmentArgument(), pcSlice->getSliceSegmentCurEndCtuTsAddr());
if (boundingCtuTsAddrSliceSegment>boundingCtuTsAddrSlice)
{
boundingCtuTsAddrSliceSegment = boundingCtuTsAddrSlice;
}
pcSlice->setSliceSegmentCurEndCtuTsAddr( boundingCtuTsAddrSliceSegment );
pcSlice->setSliceSegmentCurStartCtuTsAddr(startCtuTsAddrSliceSegment);
// Make a joint decision based on reconstruction and dependent slice bounds
startCtuTsAddr = max(startCtuTsAddrSlice , startCtuTsAddrSliceSegment );
boundingCtuTsAddr = boundingCtuTsAddrSliceSegment;
}
Double TEncSlice::xGetQPValueAccordingToLambda ( Double lambda )
{
return 4.2005*log(lambda) + 13.7122;
}
//! \}