1
0
Fork 0
mirror of https://github.com/anrieff/libcpuid synced 2025-01-23 20:06:41 +00:00

Merge pull request #83 from X0rg/master

Various changes for RDMSR
This commit is contained in:
Veselin Georgiev 2017-02-15 01:44:51 +00:00 committed by GitHub
commit c96ae6f8fc

View file

@ -587,6 +587,13 @@ static const uint32_t intel_msr[] = {
CPU_INVALID_VALUE
};
struct msr_info_t {
int cpu_clock;
struct msr_driver_t *handle;
struct cpu_id_t *id;
struct internal_id_info_t *internal;
};
static int rdmsr_supported(void)
{
struct cpu_id_t* id = get_cached_cpuid();
@ -608,58 +615,41 @@ static int perfmsr_measure(struct msr_driver_t* handle, int msr)
return (int) ((y - x) / (b - a));
}
static int get_amd_multipliers(struct msr_driver_t* handle, struct cpu_id_t *id,
struct internal_id_info_t *internal,
uint32_t pstate, uint64_t *multiplier)
static int get_amd_multipliers(struct msr_info_t *info, uint32_t pstate, uint64_t *multiplier)
{
int err;
static int clock = 0;
int i, err;
int divisor = 1;
int magic_constant = 0x10;
uint64_t CpuFid, CpuDid, CpuDidLSD;
double divisor;
if (pstate < MSR_PSTATE_0 || MSR_PSTATE_7 < pstate)
return 1;
switch (id->ext_family) {
case 0x11:
/* BKDG 11h, page 236
MSRC001_00[6B:64][8:6] is CpuDid
MSRC001_00[6B:64][5:0] is CpuFid
CPU COF is ((100 MHz * (CpuFid + 08h)) / (2^CpuDid)) */
err = cpu_rdmsr_range(handle, pstate, 8, 6, &CpuDid);
err += cpu_rdmsr_range(handle, pstate, 5, 0, &CpuFid);
*multiplier = (uint64_t) ((CpuFid + 0x8) / (1ull << CpuDid));
break;
switch (info->id->ext_family) {
case 0x12:
/* BKDG 12h, page 469
MSRC001_00[6B:64][8:4] is CpuFid
MSRC001_00[6B:64][3:0] is CpuDid
CPU COF is (100MHz * (CpuFid + 10h) / (divisor specified by CpuDid)) */
err = cpu_rdmsr_range(handle, pstate, 8, 4, &CpuFid);
err += cpu_rdmsr_range(handle, pstate, 3, 0, &CpuDid);
if (CpuDid == 0x0)
divisor = 1;
else if (CpuDid == 0x1)
divisor = 1.5;
else if (CpuDid == 0x2)
divisor = 2;
else if (CpuDid == 0x3)
divisor = 3;
else if (CpuDid == 0x4)
divisor = 4;
else if (CpuDid == 0x5)
divisor = 6;
else if (CpuDid == 0x6)
divisor = 8;
else if (CpuDid == 0x7)
divisor = 12;
else if (CpuDid == 0x8)
divisor = 16;
else
divisor = 0;
if (divisor > 0)
*multiplier = (uint64_t) ((CpuFid + 0x10) / divisor);
err = cpu_rdmsr_range(info->handle, pstate, 8, 4, &CpuFid);
err += cpu_rdmsr_range(info->handle, pstate, 3, 0, &CpuDid);
const struct { uint64_t did; double divisor; } divisor_t[] = {
{ 0x0, 1 },
{ 0x1, 1.5 },
{ 0x2, 2 },
{ 0x3, 3 },
{ 0x4, 4 },
{ 0x5, 6 },
{ 0x6, 8 },
{ 0x7, 12 },
{ 0x8, 16 },
{ CpuDid, 0 },
};
i = 0;
while(divisor_t[i].did != CpuDid)
i++;
if (divisor_t[i].divisor > 0)
*multiplier = (uint64_t) ((CpuFid + 0x10) / divisor_t[i].divisor);
else
err++;
break;
@ -670,17 +660,23 @@ static int get_amd_multipliers(struct msr_driver_t* handle, struct cpu_id_t *id,
PLL COF is (100 MHz * (D18F3xD4[MainPllOpFreqId] + 10h))
Divisor is (CpuDidMSD + (CpuDidLSD * 0.25) + 1)
CPU COF is (main PLL frequency specified by D18F3xD4[MainPllOpFreqId]) / (core clock divisor specified by CpuDidMSD and CpuDidLSD) */
err = cpu_rdmsr_range(handle, pstate, 8, 4, &CpuDid);
err += cpu_rdmsr_range(handle, pstate, 3, 0, &CpuDidLSD);
if (clock == 0)
clock = cpu_clock_measure(100, 1) + 5; // Fake round
*multiplier = (uint64_t) ((clock / 100 + 0x10) / (CpuDid + CpuDidLSD * 0.25 + 1));
err = cpu_rdmsr_range(info->handle, pstate, 8, 4, &CpuDid);
err += cpu_rdmsr_range(info->handle, pstate, 3, 0, &CpuDidLSD);
*multiplier = (uint64_t) (((info->cpu_clock + 5) / 100 + 0x10) / (CpuDid + CpuDidLSD * 0.25 + 1));
break;
case 0x11:
/* BKDG 11h, page 236
MSRC001_00[6B:64][8:6] is CpuDid
MSRC001_00[6B:64][5:0] is CpuFid
CPU COF is ((100 MHz * (CpuFid + 08h)) / (2^CpuDid)) */
magic_constant = 0x8;
case 0x10:
/* BKDG 10h, page 429
MSRC001_00[6B:64][8:6] is CpuDid
MSRC001_00[6B:64][5:0] is CpuFid
CPU COF is (100 MHz * (CpuFid + 10h) / (2^CpuDid)) */
CPU COF is (100 MHz * (CpuFid + 10h) / (2^CpuDid))
N.B.: The (stock) bus speed is 200MHz on AMD 10h & 11h families, we need to divid by 2 */
divisor = 2;
case 0x15:
/* BKDG 15h, page 570/580/635/692 (00h-0Fh/10h-1Fh/30h-3Fh/60h-6Fh)
MSRC001_00[6B:64][8:6] is CpuDid
@ -691,9 +687,9 @@ static int get_amd_multipliers(struct msr_driver_t* handle, struct cpu_id_t *id,
MSRC001_00[6B:64][8:6] is CpuDid
MSRC001_00[6B:64][5:0] is CpuFid
CoreCOF is (100 * (MSRC001_00[6B:64][CpuFid] + 10h) / (2^MSRC001_00[6B:64][CpuDid])) */
err = cpu_rdmsr_range(handle, pstate, 8, 6, &CpuDid);
err += cpu_rdmsr_range(handle, pstate, 5, 0, &CpuFid);
*multiplier = (uint64_t) ((CpuFid + 0x10) / (1ull << CpuDid));
err = cpu_rdmsr_range(info->handle, pstate, 8, 6, &CpuDid);
err += cpu_rdmsr_range(info->handle, pstate, 5, 0, &CpuFid);
*multiplier = (uint64_t) ((CpuFid + magic_constant) / (1ull << CpuDid)) / divisor;
break;
default:
err = 1;
@ -703,13 +699,13 @@ static int get_amd_multipliers(struct msr_driver_t* handle, struct cpu_id_t *id,
return err;
}
static double get_info_min_multiplier(struct msr_driver_t* handle, struct cpu_id_t *id,
struct internal_id_info_t *internal)
static double get_info_min_multiplier(struct msr_info_t *info)
{
int err;
uint32_t addr = MSR_PSTATE_7 + 1;
uint64_t reg;
if(id->vendor == VENDOR_INTEL) {
if(info->id->vendor == VENDOR_INTEL) {
/* Refer links above
Table 35-12. MSRs in Next Generation Intel Atom Processors Based on the Goldmont Microarchitecture
Table 35-13. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem
@ -721,61 +717,62 @@ static double get_info_min_multiplier(struct msr_driver_t* handle, struct cpu_id
Table 35-40. Selected MSRs Supported by Next Generation Intel® Xeon Phi Processors with DisplayFamily_DisplayModel Signature 06_57H
MSR_PLATFORM_INFO[47:40] is Maximum Efficiency Ratio
Maximum Efficiency Ratio is the minimum ratio that the processor can operates */
err = cpu_rdmsr_range(handle, MSR_PLATFORM_INFO, 47, 40, &reg);
err = cpu_rdmsr_range(info->handle, MSR_PLATFORM_INFO, 47, 40, &reg);
if (!err) return (double) reg;
}
else if(id->vendor == VENDOR_AMD) {
/* Refer links above
MSRC001_0061[6:4] is PstateMaxVal
PstateMaxVal is the lowest-performance non-boosted P-state */
err = cpu_rdmsr_range(handle, MSR_PSTATE_L, 6, 4, &reg);
err += get_amd_multipliers(handle, id, internal, MSR_PSTATE_0 + (uint32_t) reg, &reg);
else if(info->id->vendor == VENDOR_AMD) {
/* N.B.: Find the last P-state
MSRC001_00[6B:64][8:0] is { CpuDid, CpuFid }
If all bits are 0 in a given P-state, we can consider the P-state is unused */
do {
addr--;
cpu_rdmsr_range(info->handle, addr, 8, 0, &reg);
} while((reg == 0x0) && (addr > MSR_PSTATE_0));
err = get_amd_multipliers(info, addr, &reg);
if (!err) return (double) reg;
}
return (double) CPU_INVALID_VALUE / 100;
}
static double get_info_cur_multiplier(struct msr_driver_t* handle, struct cpu_id_t *id,
struct internal_id_info_t *internal)
static double get_info_cur_multiplier(struct msr_info_t *info)
{
int err;
uint64_t reg;
if(id->vendor == VENDOR_INTEL && internal->code.intel == PENTIUM) {
err = cpu_rdmsr(handle, MSR_EBL_CR_POWERON, &reg);
if(info->id->vendor == VENDOR_INTEL && info->internal->code.intel == PENTIUM) {
err = cpu_rdmsr(info->handle, MSR_EBL_CR_POWERON, &reg);
if (!err) return (double) ((reg>>22) & 0x1f);
}
else if(id->vendor == VENDOR_INTEL && internal->code.intel != PENTIUM) {
else if(info->id->vendor == VENDOR_INTEL && info->internal->code.intel != PENTIUM) {
/* Refer links above
Table 35-2. IA-32 Architectural MSRs (Contd.)
IA32_PERF_STATUS[15:0] is Current performance State Value
[7:0] is 0x0, [15:8] looks like current ratio */
err = cpu_rdmsr_range(handle, IA32_PERF_STATUS, 15, 8, &reg);
err = cpu_rdmsr_range(info->handle, IA32_PERF_STATUS, 15, 8, &reg);
if (!err) return (double) reg;
}
else if(id->vendor == VENDOR_AMD) {
else if(info->id->vendor == VENDOR_AMD) {
/* Refer links above
MSRC001_0063[2:0] is CurPstate */
err = cpu_rdmsr_range(handle, MSR_PSTATE_S, 2, 0, &reg);
err += get_amd_multipliers(handle, id, internal, MSR_PSTATE_0 + (uint32_t) reg, &reg);
err = cpu_rdmsr_range(info->handle, MSR_PSTATE_S, 2, 0, &reg);
err += get_amd_multipliers(info, MSR_PSTATE_0 + (uint32_t) reg, &reg);
if (!err) return (double) reg;
}
return (double) CPU_INVALID_VALUE / 100;
}
static double get_info_max_multiplier(struct msr_driver_t* handle, struct cpu_id_t *id,
struct internal_id_info_t *internal)
static double get_info_max_multiplier(struct msr_info_t *info)
{
int err;
uint64_t reg;
if(id->vendor == VENDOR_INTEL && internal->code.intel == PENTIUM) {
err = cpu_rdmsr(handle, IA32_PERF_STATUS, &reg);
if(info->id->vendor == VENDOR_INTEL && info->internal->code.intel == PENTIUM) {
err = cpu_rdmsr(info->handle, IA32_PERF_STATUS, &reg);
if (!err) return (double) ((reg >> 40) & 0x1f);
}
else if(id->vendor == VENDOR_INTEL && internal->code.intel != PENTIUM) {
else if(info->id->vendor == VENDOR_INTEL && info->internal->code.intel != PENTIUM) {
/* Refer links above
Table 35-10. Specific MSRs Supported by Intel® Atom Processor C2000 Series with CPUID Signature 06_4DH
Table 35-12. MSRs in Next Generation Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)
@ -791,27 +788,26 @@ static double get_info_max_multiplier(struct msr_driver_t* handle, struct cpu_id
Table 35-37. Additional MSRs Supported by 6th Generation Intel® Core Processors Based on Skylake Microarchitecture
Table 35-40. Selected MSRs Supported by Next Generation Intel® Xeon Phi Processors with DisplayFamily_DisplayModel Signature 06_57H
MSR_TURBO_RATIO_LIMIT[7:0] is Maximum Ratio Limit for 1C */
err = cpu_rdmsr_range(handle, MSR_TURBO_RATIO_LIMIT, 7, 0, &reg);
err = cpu_rdmsr_range(info->handle, MSR_TURBO_RATIO_LIMIT, 7, 0, &reg);
if (!err) return (double) reg;
}
else if(id->vendor == VENDOR_AMD) {
else if(info->id->vendor == VENDOR_AMD) {
/* Refer links above
MSRC001_0064 is Pb0
Pb0 is the highest-performance boosted P-state */
err = get_amd_multipliers(handle, id, internal, MSR_PSTATE_0, &reg);
err = get_amd_multipliers(info, MSR_PSTATE_0, &reg);
if (!err) return (double) reg;
}
return (double) CPU_INVALID_VALUE / 100;
}
static int get_info_temperature(struct msr_driver_t* handle, struct cpu_id_t *id,
struct internal_id_info_t *internal)
static int get_info_temperature(struct msr_info_t *info)
{
int err;
uint64_t DigitalReadout, ReadingValid, TemperatureTarget;
if(id->vendor == VENDOR_INTEL) {
if(info->id->vendor == VENDOR_INTEL) {
/* Refer links above
Table 35-2. IA-32 Architectural MSRs
IA32_THERM_STATUS[22:16] is Digital Readout
@ -824,53 +820,48 @@ static int get_info_temperature(struct msr_driver_t* handle, struct cpu_id_t *id
Table 35-34. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family Based on the Broadwell Microarchitecture
Table 35-40. Selected MSRs Supported by Next Generation Intel® Xeon Phi Processors with DisplayFamily_DisplayModel Signature 06_57H
MSR_TEMPERATURE_TARGET[23:16] is Temperature Target */
err = cpu_rdmsr_range(handle, IA32_THERM_STATUS, 22, 16, &DigitalReadout);
err += cpu_rdmsr_range(handle, IA32_THERM_STATUS, 31, 31, &ReadingValid);
err += cpu_rdmsr_range(handle, MSR_TEMPERATURE_TARGET, 23, 16, &TemperatureTarget);
err = cpu_rdmsr_range(info->handle, IA32_THERM_STATUS, 22, 16, &DigitalReadout);
err += cpu_rdmsr_range(info->handle, IA32_THERM_STATUS, 31, 31, &ReadingValid);
err += cpu_rdmsr_range(info->handle, MSR_TEMPERATURE_TARGET, 23, 16, &TemperatureTarget);
if(!err && ReadingValid) return (int) (TemperatureTarget - DigitalReadout);
}
return CPU_INVALID_VALUE;
}
static double get_info_voltage(struct msr_driver_t* handle, struct cpu_id_t *id,
struct internal_id_info_t *internal)
static double get_info_voltage(struct msr_info_t *info)
{
int err;
uint64_t reg, CpuVid;
if(id->vendor == VENDOR_INTEL) {
if(info->id->vendor == VENDOR_INTEL) {
/* Refer links above
Table 35-18. MSRs Supported by Intel® Processors based on Intel® microarchitecture code name Sandy Bridge (Contd.)
MSR_PERF_STATUS[47:32] is Core Voltage
P-state core voltage can be computed by MSR_PERF_STATUS[37:32] * (float) 1/(2^13). */
err = cpu_rdmsr_range(handle, MSR_PERF_STATUS, 47, 32, &reg);
err = cpu_rdmsr_range(info->handle, MSR_PERF_STATUS, 47, 32, &reg);
if (!err) return (double) reg / (1 << 13);
}
else if(id->vendor == VENDOR_AMD) {
else if(info->id->vendor == VENDOR_AMD) {
/* Refer links above
MSRC001_00[6B:64][15:9] is CpuVid
MSRC001_0063[2:0] is P-state Status
2.4.1.6.3 Serial VID (SVI) Encodings: voltage = 1.550V - 0.0125V * SviVid[6:0] */
err = cpu_rdmsr_range(handle, MSR_PSTATE_S, 2, 0, &reg);
err += cpu_rdmsr_range(handle, MSR_PSTATE_0 + (uint32_t) reg, 15, 9, &CpuVid);
err = cpu_rdmsr_range(info->handle, MSR_PSTATE_S, 2, 0, &reg);
err += cpu_rdmsr_range(info->handle, MSR_PSTATE_0 + (uint32_t) reg, 15, 9, &CpuVid);
if (!err && MSR_PSTATE_0 + (uint32_t) reg <= MSR_PSTATE_7) return 1.550 - 0.0125 * CpuVid;
}
return (double) CPU_INVALID_VALUE / 100;
}
static double get_info_bus_clock(struct msr_driver_t* handle, struct cpu_id_t *id,
struct internal_id_info_t *internal)
static double get_info_bus_clock(struct msr_info_t *info)
{
int err;
static int clock = 0;
uint32_t addr = MSR_PSTATE_7 + 1;
uint64_t reg;
if(clock == 0)
clock = cpu_clock_measure(100, 1);
if(id->vendor == VENDOR_INTEL) {
if(info->id->vendor == VENDOR_INTEL) {
/* Refer links above
Table 35-12. MSRs in Next Generation Intel Atom Processors Based on the Goldmont Microarchitecture
Table 35-13. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem
@ -880,16 +871,20 @@ static double get_info_bus_clock(struct msr_driver_t* handle, struct cpu_id_t *i
Table 35-27. Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures
Table 35-40. Selected MSRs Supported by Next Generation Intel® Xeon Phi Processors with DisplayFamily_DisplayModel Signature 06_57H
MSR_PLATFORM_INFO[15:8] is Maximum Non-Turbo Ratio */
err = cpu_rdmsr_range(handle, MSR_PLATFORM_INFO, 15, 8, &reg);
if (!err) return (double) clock / reg;
err = cpu_rdmsr_range(info->handle, MSR_PLATFORM_INFO, 15, 8, &reg);
if (!err) return (double) info->cpu_clock / reg;
}
else if(id->vendor == VENDOR_AMD) {
else if(info->id->vendor == VENDOR_AMD) {
/* Refer links above
MSRC001_0061[2:0] is CurPstateLimit
CurPstateLimit is the highest-performance non-boosted P-state */
err = cpu_rdmsr_range(handle, MSR_PSTATE_L, 2, 0, &reg);
err += get_amd_multipliers(handle, id, internal, MSR_PSTATE_0 + (uint32_t) reg, &reg);
if (!err) return (double) clock / reg;
MSRC001_0061[6:4] is PstateMaxVal
PstateMaxVal is the the lowest-performance non-boosted P-state */
do {
addr--;
cpu_rdmsr_range(info->handle, addr, 8, 0, &reg);
} while((reg == 0x0) && (addr > MSR_PSTATE_0));
err = cpu_rdmsr_range(info->handle, MSR_PSTATE_L, 6, 4, &reg);
err += get_amd_multipliers(info, MSR_PSTATE_0 + (addr - MSR_PSTATE_0 - (uint32_t) reg), &reg);
if (!err) return (double) info->cpu_clock / reg;
}
return (double) CPU_INVALID_VALUE / 100;
@ -917,39 +912,50 @@ int cpu_rdmsr_range(struct msr_driver_t* handle, uint32_t msr_index, uint8_t hig
int cpu_msrinfo(struct msr_driver_t* handle, cpu_msrinfo_request_t which)
{
static int err = 0, init = 0;
struct cpu_raw_data_t raw;
static struct cpu_id_t id;
static struct internal_id_info_t internal;
internal.score = -1;
static struct msr_info_t info;
if (handle == NULL)
return set_error(ERR_HANDLE);
if (handle == NULL) {
set_error(ERR_HANDLE);
return CPU_INVALID_VALUE;
}
if (internal.score == -1) {
cpuid_get_raw_data(&raw);
cpu_ident_internal(&raw, &id, &internal);
if (!init) {
err = cpuid_get_raw_data(&raw);
err += cpu_ident_internal(&raw, &id, &internal);
info.cpu_clock = cpu_clock_measure(250, 1);
info.handle = handle;
info.id = &id;
info.internal = &internal;
init = 1;
}
if (err)
return CPU_INVALID_VALUE;
switch (which) {
case INFO_MPERF:
return perfmsr_measure(handle, IA32_MPERF);
case INFO_APERF:
return perfmsr_measure(handle, IA32_APERF);
case INFO_MIN_MULTIPLIER:
return (int) (get_info_min_multiplier(handle, &id, &internal) * 100);
return (int) (get_info_min_multiplier(&info) * 100);
case INFO_CUR_MULTIPLIER:
return (int) (get_info_cur_multiplier(handle, &id, &internal) * 100);
return (int) (get_info_cur_multiplier(&info) * 100);
case INFO_MAX_MULTIPLIER:
return (int) (get_info_max_multiplier(handle, &id, &internal) * 100);
return (int) (get_info_max_multiplier(&info) * 100);
case INFO_TEMPERATURE:
return get_info_temperature(handle, &id, &internal);
return get_info_temperature(&info);
case INFO_THROTTLING:
return CPU_INVALID_VALUE;
case INFO_VOLTAGE:
return (int) (get_info_voltage(handle, &id, &internal) * 100);
return (int) (get_info_voltage(&info) * 100);
case INFO_BCLK:
case INFO_BUS_CLOCK:
return (int) (get_info_bus_clock(handle, &id, &internal) * 100);
return (int) (get_info_bus_clock(&info) * 100);
default:
return CPU_INVALID_VALUE;
}
@ -977,7 +983,7 @@ int msr_serialize_raw_data(struct msr_driver_t* handle, const char* filename)
if (cpuid_get_raw_data(&raw) || cpu_ident_internal(&raw, &id, &internal))
return -1;
fprintf(f, "CPU is %s %s, stock clock is %dMHz.\n", id.vendor_str, id.brand_str, cpu_clock_measure(100, 1));
fprintf(f, "CPU is %s %s, stock clock is %dMHz.\n", id.vendor_str, id.brand_str, cpu_clock_measure(250, 1));
if (id.vendor == VENDOR_INTEL)
msr = intel_msr;
else if (id.vendor == VENDOR_AMD)