1
0
Fork 0
mirror of https://github.com/anrieff/libcpuid synced 2024-12-16 16:35:45 +00:00

RDMSR: add an internal structure to pass arguments

This commit is contained in:
Xorg 2017-02-12 20:10:36 +01:00
parent d5c892e002
commit e7bfcc3651

View file

@ -587,6 +587,13 @@ static const uint32_t intel_msr[] = {
CPU_INVALID_VALUE CPU_INVALID_VALUE
}; };
struct msr_info_t {
int cpu_clock;
struct msr_driver_t *handle;
struct cpu_id_t *id;
struct internal_id_info_t *internal;
};
static int rdmsr_supported(void) static int rdmsr_supported(void)
{ {
struct cpu_id_t* id = get_cached_cpuid(); struct cpu_id_t* id = get_cached_cpuid();
@ -608,27 +615,24 @@ static int perfmsr_measure(struct msr_driver_t* handle, int msr)
return (int) ((y - x) / (b - a)); return (int) ((y - x) / (b - a));
} }
static int get_amd_multipliers(struct msr_driver_t* handle, struct cpu_id_t *id, static int get_amd_multipliers(struct msr_info_t *info, uint32_t pstate, uint64_t *multiplier)
struct internal_id_info_t *internal,
uint32_t pstate, uint64_t *multiplier)
{ {
int i, err; int i, err;
int divisor = 1; int divisor = 1;
int magic_constant = 0x10; int magic_constant = 0x10;
static int clock = 0;
uint64_t CpuFid, CpuDid, CpuDidLSD; uint64_t CpuFid, CpuDid, CpuDidLSD;
if (pstate < MSR_PSTATE_0 || MSR_PSTATE_7 < pstate) if (pstate < MSR_PSTATE_0 || MSR_PSTATE_7 < pstate)
return 1; return 1;
switch (id->ext_family) { switch (info->id->ext_family) {
case 0x12: case 0x12:
/* BKDG 12h, page 469 /* BKDG 12h, page 469
MSRC001_00[6B:64][8:4] is CpuFid MSRC001_00[6B:64][8:4] is CpuFid
MSRC001_00[6B:64][3:0] is CpuDid MSRC001_00[6B:64][3:0] is CpuDid
CPU COF is (100MHz * (CpuFid + 10h) / (divisor specified by CpuDid)) */ CPU COF is (100MHz * (CpuFid + 10h) / (divisor specified by CpuDid)) */
err = cpu_rdmsr_range(handle, pstate, 8, 4, &CpuFid); err = cpu_rdmsr_range(info->handle, pstate, 8, 4, &CpuFid);
err += cpu_rdmsr_range(handle, pstate, 3, 0, &CpuDid); err += cpu_rdmsr_range(info->handle, pstate, 3, 0, &CpuDid);
const struct { uint64_t did; double divisor; } divisor_t[] = { const struct { uint64_t did; double divisor; } divisor_t[] = {
{ 0x0, 1 }, { 0x0, 1 },
{ 0x1, 1.5 }, { 0x1, 1.5 },
@ -656,11 +660,9 @@ static int get_amd_multipliers(struct msr_driver_t* handle, struct cpu_id_t *id,
PLL COF is (100 MHz * (D18F3xD4[MainPllOpFreqId] + 10h)) PLL COF is (100 MHz * (D18F3xD4[MainPllOpFreqId] + 10h))
Divisor is (CpuDidMSD + (CpuDidLSD * 0.25) + 1) Divisor is (CpuDidMSD + (CpuDidLSD * 0.25) + 1)
CPU COF is (main PLL frequency specified by D18F3xD4[MainPllOpFreqId]) / (core clock divisor specified by CpuDidMSD and CpuDidLSD) */ CPU COF is (main PLL frequency specified by D18F3xD4[MainPllOpFreqId]) / (core clock divisor specified by CpuDidMSD and CpuDidLSD) */
err = cpu_rdmsr_range(handle, pstate, 8, 4, &CpuDid); err = cpu_rdmsr_range(info->handle, pstate, 8, 4, &CpuDid);
err += cpu_rdmsr_range(handle, pstate, 3, 0, &CpuDidLSD); err += cpu_rdmsr_range(info->handle, pstate, 3, 0, &CpuDidLSD);
if (clock == 0) *multiplier = (uint64_t) (((info->cpu_clock + 5) / 100 + 0x10) / (CpuDid + CpuDidLSD * 0.25 + 1));
clock = cpu_clock_measure(100, 1) + 5; // Fake round
*multiplier = (uint64_t) ((clock / 100 + 0x10) / (CpuDid + CpuDidLSD * 0.25 + 1));
break; break;
case 0x11: case 0x11:
/* BKDG 11h, page 236 /* BKDG 11h, page 236
@ -685,8 +687,8 @@ static int get_amd_multipliers(struct msr_driver_t* handle, struct cpu_id_t *id,
MSRC001_00[6B:64][8:6] is CpuDid MSRC001_00[6B:64][8:6] is CpuDid
MSRC001_00[6B:64][5:0] is CpuFid MSRC001_00[6B:64][5:0] is CpuFid
CoreCOF is (100 * (MSRC001_00[6B:64][CpuFid] + 10h) / (2^MSRC001_00[6B:64][CpuDid])) */ CoreCOF is (100 * (MSRC001_00[6B:64][CpuFid] + 10h) / (2^MSRC001_00[6B:64][CpuDid])) */
err = cpu_rdmsr_range(handle, pstate, 8, 6, &CpuDid); err = cpu_rdmsr_range(info->handle, pstate, 8, 6, &CpuDid);
err += cpu_rdmsr_range(handle, pstate, 5, 0, &CpuFid); err += cpu_rdmsr_range(info->handle, pstate, 5, 0, &CpuFid);
*multiplier = (uint64_t) ((CpuFid + magic_constant) / (1ull << CpuDid)) / divisor; *multiplier = (uint64_t) ((CpuFid + magic_constant) / (1ull << CpuDid)) / divisor;
break; break;
default: default:
@ -697,14 +699,13 @@ static int get_amd_multipliers(struct msr_driver_t* handle, struct cpu_id_t *id,
return err; return err;
} }
static double get_info_min_multiplier(struct msr_driver_t* handle, struct cpu_id_t *id, static double get_info_min_multiplier(struct msr_info_t *info)
struct internal_id_info_t *internal)
{ {
int err; int err;
uint32_t addr = MSR_PSTATE_7 + 1; uint32_t addr = MSR_PSTATE_7 + 1;
uint64_t reg; uint64_t reg;
if(id->vendor == VENDOR_INTEL) { if(info->id->vendor == VENDOR_INTEL) {
/* Refer links above /* Refer links above
Table 35-12. MSRs in Next Generation Intel Atom Processors Based on the Goldmont Microarchitecture Table 35-12. MSRs in Next Generation Intel Atom Processors Based on the Goldmont Microarchitecture
Table 35-13. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem Table 35-13. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem
@ -716,64 +717,62 @@ static double get_info_min_multiplier(struct msr_driver_t* handle, struct cpu_id
Table 35-40. Selected MSRs Supported by Next Generation Intel® Xeon Phi Processors with DisplayFamily_DisplayModel Signature 06_57H Table 35-40. Selected MSRs Supported by Next Generation Intel® Xeon Phi Processors with DisplayFamily_DisplayModel Signature 06_57H
MSR_PLATFORM_INFO[47:40] is Maximum Efficiency Ratio MSR_PLATFORM_INFO[47:40] is Maximum Efficiency Ratio
Maximum Efficiency Ratio is the minimum ratio that the processor can operates */ Maximum Efficiency Ratio is the minimum ratio that the processor can operates */
err = cpu_rdmsr_range(handle, MSR_PLATFORM_INFO, 47, 40, &reg); err = cpu_rdmsr_range(info->handle, MSR_PLATFORM_INFO, 47, 40, &reg);
if (!err) return (double) reg; if (!err) return (double) reg;
} }
else if(id->vendor == VENDOR_AMD) { else if(info->id->vendor == VENDOR_AMD) {
/* N.B.: Find the last P-state /* N.B.: Find the last P-state
MSRC001_00[6B:64][8:0] is { CpuDid, CpuFid } MSRC001_00[6B:64][8:0] is { CpuDid, CpuFid }
If all bits are 0 in a given P-state, we can consider the P-state is unused */ If all bits are 0 in a given P-state, we can consider the P-state is unused */
do { do {
addr--; addr--;
cpu_rdmsr_range(handle, addr, 8, 0, &reg); cpu_rdmsr_range(info->handle, addr, 8, 0, &reg);
} while((reg == 0x0) && (addr > MSR_PSTATE_0)); } while((reg == 0x0) && (addr > MSR_PSTATE_0));
err = get_amd_multipliers(handle, id, internal, addr, &reg); err = get_amd_multipliers(info, addr, &reg);
if (!err) return (double) reg; if (!err) return (double) reg;
} }
return (double) CPU_INVALID_VALUE / 100; return (double) CPU_INVALID_VALUE / 100;
} }
static double get_info_cur_multiplier(struct msr_driver_t* handle, struct cpu_id_t *id, static double get_info_cur_multiplier(struct msr_info_t *info)
struct internal_id_info_t *internal)
{ {
int err; int err;
uint64_t reg; uint64_t reg;
if(id->vendor == VENDOR_INTEL && internal->code.intel == PENTIUM) { if(info->id->vendor == VENDOR_INTEL && info->internal->code.intel == PENTIUM) {
err = cpu_rdmsr(handle, MSR_EBL_CR_POWERON, &reg); err = cpu_rdmsr(info->handle, MSR_EBL_CR_POWERON, &reg);
if (!err) return (double) ((reg>>22) & 0x1f); if (!err) return (double) ((reg>>22) & 0x1f);
} }
else if(id->vendor == VENDOR_INTEL && internal->code.intel != PENTIUM) { else if(info->id->vendor == VENDOR_INTEL && info->internal->code.intel != PENTIUM) {
/* Refer links above /* Refer links above
Table 35-2. IA-32 Architectural MSRs (Contd.) Table 35-2. IA-32 Architectural MSRs (Contd.)
IA32_PERF_STATUS[15:0] is Current performance State Value IA32_PERF_STATUS[15:0] is Current performance State Value
[7:0] is 0x0, [15:8] looks like current ratio */ [7:0] is 0x0, [15:8] looks like current ratio */
err = cpu_rdmsr_range(handle, IA32_PERF_STATUS, 15, 8, &reg); err = cpu_rdmsr_range(info->handle, IA32_PERF_STATUS, 15, 8, &reg);
if (!err) return (double) reg; if (!err) return (double) reg;
} }
else if(id->vendor == VENDOR_AMD) { else if(info->id->vendor == VENDOR_AMD) {
/* Refer links above /* Refer links above
MSRC001_0063[2:0] is CurPstate */ MSRC001_0063[2:0] is CurPstate */
err = cpu_rdmsr_range(handle, MSR_PSTATE_S, 2, 0, &reg); err = cpu_rdmsr_range(info->handle, MSR_PSTATE_S, 2, 0, &reg);
err += get_amd_multipliers(handle, id, internal, MSR_PSTATE_0 + (uint32_t) reg, &reg); err += get_amd_multipliers(info, MSR_PSTATE_0 + (uint32_t) reg, &reg);
if (!err) return (double) reg; if (!err) return (double) reg;
} }
return (double) CPU_INVALID_VALUE / 100; return (double) CPU_INVALID_VALUE / 100;
} }
static double get_info_max_multiplier(struct msr_driver_t* handle, struct cpu_id_t *id, static double get_info_max_multiplier(struct msr_info_t *info)
struct internal_id_info_t *internal)
{ {
int err; int err;
uint64_t reg; uint64_t reg;
if(id->vendor == VENDOR_INTEL && internal->code.intel == PENTIUM) { if(info->id->vendor == VENDOR_INTEL && info->internal->code.intel == PENTIUM) {
err = cpu_rdmsr(handle, IA32_PERF_STATUS, &reg); err = cpu_rdmsr(info->handle, IA32_PERF_STATUS, &reg);
if (!err) return (double) ((reg >> 40) & 0x1f); if (!err) return (double) ((reg >> 40) & 0x1f);
} }
else if(id->vendor == VENDOR_INTEL && internal->code.intel != PENTIUM) { else if(info->id->vendor == VENDOR_INTEL && info->internal->code.intel != PENTIUM) {
/* Refer links above /* Refer links above
Table 35-10. Specific MSRs Supported by Intel® Atom Processor C2000 Series with CPUID Signature 06_4DH Table 35-10. Specific MSRs Supported by Intel® Atom Processor C2000 Series with CPUID Signature 06_4DH
Table 35-12. MSRs in Next Generation Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.) Table 35-12. MSRs in Next Generation Intel Atom Processors Based on the Goldmont Microarchitecture (Contd.)
@ -789,27 +788,26 @@ static double get_info_max_multiplier(struct msr_driver_t* handle, struct cpu_id
Table 35-37. Additional MSRs Supported by 6th Generation Intel® Core Processors Based on Skylake Microarchitecture Table 35-37. Additional MSRs Supported by 6th Generation Intel® Core Processors Based on Skylake Microarchitecture
Table 35-40. Selected MSRs Supported by Next Generation Intel® Xeon Phi Processors with DisplayFamily_DisplayModel Signature 06_57H Table 35-40. Selected MSRs Supported by Next Generation Intel® Xeon Phi Processors with DisplayFamily_DisplayModel Signature 06_57H
MSR_TURBO_RATIO_LIMIT[7:0] is Maximum Ratio Limit for 1C */ MSR_TURBO_RATIO_LIMIT[7:0] is Maximum Ratio Limit for 1C */
err = cpu_rdmsr_range(handle, MSR_TURBO_RATIO_LIMIT, 7, 0, &reg); err = cpu_rdmsr_range(info->handle, MSR_TURBO_RATIO_LIMIT, 7, 0, &reg);
if (!err) return (double) reg; if (!err) return (double) reg;
} }
else if(id->vendor == VENDOR_AMD) { else if(info->id->vendor == VENDOR_AMD) {
/* Refer links above /* Refer links above
MSRC001_0064 is Pb0 MSRC001_0064 is Pb0
Pb0 is the highest-performance boosted P-state */ Pb0 is the highest-performance boosted P-state */
err = get_amd_multipliers(handle, id, internal, MSR_PSTATE_0, &reg); err = get_amd_multipliers(info, MSR_PSTATE_0, &reg);
if (!err) return (double) reg; if (!err) return (double) reg;
} }
return (double) CPU_INVALID_VALUE / 100; return (double) CPU_INVALID_VALUE / 100;
} }
static int get_info_temperature(struct msr_driver_t* handle, struct cpu_id_t *id, static int get_info_temperature(struct msr_info_t *info)
struct internal_id_info_t *internal)
{ {
int err; int err;
uint64_t DigitalReadout, ReadingValid, TemperatureTarget; uint64_t DigitalReadout, ReadingValid, TemperatureTarget;
if(id->vendor == VENDOR_INTEL) { if(info->id->vendor == VENDOR_INTEL) {
/* Refer links above /* Refer links above
Table 35-2. IA-32 Architectural MSRs Table 35-2. IA-32 Architectural MSRs
IA32_THERM_STATUS[22:16] is Digital Readout IA32_THERM_STATUS[22:16] is Digital Readout
@ -822,53 +820,47 @@ static int get_info_temperature(struct msr_driver_t* handle, struct cpu_id_t *id
Table 35-34. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family Based on the Broadwell Microarchitecture Table 35-34. Additional MSRs Common to Intel® Xeon® Processor D and Intel Xeon Processors E5 v4 Family Based on the Broadwell Microarchitecture
Table 35-40. Selected MSRs Supported by Next Generation Intel® Xeon Phi Processors with DisplayFamily_DisplayModel Signature 06_57H Table 35-40. Selected MSRs Supported by Next Generation Intel® Xeon Phi Processors with DisplayFamily_DisplayModel Signature 06_57H
MSR_TEMPERATURE_TARGET[23:16] is Temperature Target */ MSR_TEMPERATURE_TARGET[23:16] is Temperature Target */
err = cpu_rdmsr_range(handle, IA32_THERM_STATUS, 22, 16, &DigitalReadout); err = cpu_rdmsr_range(info->handle, IA32_THERM_STATUS, 22, 16, &DigitalReadout);
err += cpu_rdmsr_range(handle, IA32_THERM_STATUS, 31, 31, &ReadingValid); err += cpu_rdmsr_range(info->handle, IA32_THERM_STATUS, 31, 31, &ReadingValid);
err += cpu_rdmsr_range(handle, MSR_TEMPERATURE_TARGET, 23, 16, &TemperatureTarget); err += cpu_rdmsr_range(info->handle, MSR_TEMPERATURE_TARGET, 23, 16, &TemperatureTarget);
if(!err && ReadingValid) return (int) (TemperatureTarget - DigitalReadout); if(!err && ReadingValid) return (int) (TemperatureTarget - DigitalReadout);
} }
return CPU_INVALID_VALUE; return CPU_INVALID_VALUE;
} }
static double get_info_voltage(struct msr_driver_t* handle, struct cpu_id_t *id, static double get_info_voltage(struct msr_info_t *info)
struct internal_id_info_t *internal)
{ {
int err; int err;
uint64_t reg, CpuVid; uint64_t reg, CpuVid;
if(id->vendor == VENDOR_INTEL) { if(info->id->vendor == VENDOR_INTEL) {
/* Refer links above /* Refer links above
Table 35-18. MSRs Supported by Intel® Processors based on Intel® microarchitecture code name Sandy Bridge (Contd.) Table 35-18. MSRs Supported by Intel® Processors based on Intel® microarchitecture code name Sandy Bridge (Contd.)
MSR_PERF_STATUS[47:32] is Core Voltage MSR_PERF_STATUS[47:32] is Core Voltage
P-state core voltage can be computed by MSR_PERF_STATUS[37:32] * (float) 1/(2^13). */ P-state core voltage can be computed by MSR_PERF_STATUS[37:32] * (float) 1/(2^13). */
err = cpu_rdmsr_range(handle, MSR_PERF_STATUS, 47, 32, &reg); err = cpu_rdmsr_range(info->handle, MSR_PERF_STATUS, 47, 32, &reg);
if (!err) return (double) reg / (1 << 13); if (!err) return (double) reg / (1 << 13);
} }
else if(id->vendor == VENDOR_AMD) { else if(info->id->vendor == VENDOR_AMD) {
/* Refer links above /* Refer links above
MSRC001_00[6B:64][15:9] is CpuVid MSRC001_00[6B:64][15:9] is CpuVid
MSRC001_0063[2:0] is P-state Status MSRC001_0063[2:0] is P-state Status
2.4.1.6.3 Serial VID (SVI) Encodings: voltage = 1.550V - 0.0125V * SviVid[6:0] */ 2.4.1.6.3 Serial VID (SVI) Encodings: voltage = 1.550V - 0.0125V * SviVid[6:0] */
err = cpu_rdmsr_range(handle, MSR_PSTATE_S, 2, 0, &reg); err = cpu_rdmsr_range(info->handle, MSR_PSTATE_S, 2, 0, &reg);
err += cpu_rdmsr_range(handle, MSR_PSTATE_0 + (uint32_t) reg, 15, 9, &CpuVid); err += cpu_rdmsr_range(info->handle, MSR_PSTATE_0 + (uint32_t) reg, 15, 9, &CpuVid);
if (!err && MSR_PSTATE_0 + (uint32_t) reg <= MSR_PSTATE_7) return 1.550 - 0.0125 * CpuVid; if (!err && MSR_PSTATE_0 + (uint32_t) reg <= MSR_PSTATE_7) return 1.550 - 0.0125 * CpuVid;
} }
return (double) CPU_INVALID_VALUE / 100; return (double) CPU_INVALID_VALUE / 100;
} }
static double get_info_bus_clock(struct msr_driver_t* handle, struct cpu_id_t *id, static double get_info_bus_clock(struct msr_info_t *info)
struct internal_id_info_t *internal)
{ {
int err; int err;
static int clock = 0;
uint64_t reg; uint64_t reg;
if(clock == 0) if(info->id->vendor == VENDOR_INTEL) {
clock = cpu_clock_measure(100, 1);
if(id->vendor == VENDOR_INTEL) {
/* Refer links above /* Refer links above
Table 35-12. MSRs in Next Generation Intel Atom Processors Based on the Goldmont Microarchitecture Table 35-12. MSRs in Next Generation Intel Atom Processors Based on the Goldmont Microarchitecture
Table 35-13. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem Table 35-13. MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem
@ -878,16 +870,16 @@ static double get_info_bus_clock(struct msr_driver_t* handle, struct cpu_id_t *i
Table 35-27. Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures Table 35-27. Additional MSRs Supported by Processors based on the Haswell or Haswell-E microarchitectures
Table 35-40. Selected MSRs Supported by Next Generation Intel® Xeon Phi Processors with DisplayFamily_DisplayModel Signature 06_57H Table 35-40. Selected MSRs Supported by Next Generation Intel® Xeon Phi Processors with DisplayFamily_DisplayModel Signature 06_57H
MSR_PLATFORM_INFO[15:8] is Maximum Non-Turbo Ratio */ MSR_PLATFORM_INFO[15:8] is Maximum Non-Turbo Ratio */
err = cpu_rdmsr_range(handle, MSR_PLATFORM_INFO, 15, 8, &reg); err = cpu_rdmsr_range(info->handle, MSR_PLATFORM_INFO, 15, 8, &reg);
if (!err) return (double) clock / reg; if (!err) return (double) info->cpu_clock / reg;
} }
else if(id->vendor == VENDOR_AMD) { else if(info->id->vendor == VENDOR_AMD) {
/* Refer links above /* Refer links above
MSRC001_0061[6:4] is PstateMaxVal MSRC001_0061[6:4] is PstateMaxVal
PstateMaxVal is the the lowest-performance non-boosted P-state */ PstateMaxVal is the the lowest-performance non-boosted P-state */
err = cpu_rdmsr_range(handle, MSR_PSTATE_L, 6, 4, &reg); err = cpu_rdmsr_range(info->handle, MSR_PSTATE_L, 6, 4, &reg);
err += get_amd_multipliers(handle, id, internal, MSR_PSTATE_0 + (uint32_t) reg, &reg); err += get_amd_multipliers(info, MSR_PSTATE_0 + (uint32_t) reg, &reg);
if (!err) return (double) clock / reg; if (!err) return (double) info->cpu_clock / reg;
} }
return (double) CPU_INVALID_VALUE / 100; return (double) CPU_INVALID_VALUE / 100;
@ -915,39 +907,48 @@ int cpu_rdmsr_range(struct msr_driver_t* handle, uint32_t msr_index, uint8_t hig
int cpu_msrinfo(struct msr_driver_t* handle, cpu_msrinfo_request_t which) int cpu_msrinfo(struct msr_driver_t* handle, cpu_msrinfo_request_t which)
{ {
static int err = 0, init = 0;
struct cpu_raw_data_t raw; struct cpu_raw_data_t raw;
static struct cpu_id_t id; static struct cpu_id_t id;
static struct internal_id_info_t internal; static struct internal_id_info_t internal;
internal.score = -1; static struct msr_info_t info;
if (handle == NULL) if (handle == NULL)
return set_error(ERR_HANDLE); return set_error(ERR_HANDLE);
if (internal.score == -1) { if (!init) {
cpuid_get_raw_data(&raw); err = cpuid_get_raw_data(&raw);
cpu_ident_internal(&raw, &id, &internal); err += cpu_ident_internal(&raw, &id, &internal);
info.cpu_clock = cpu_clock_measure(250, 1);
info.handle = handle;
info.id = &id;
info.internal = &internal;
init = 1;
} }
if (err)
return CPU_INVALID_VALUE;
switch (which) { switch (which) {
case INFO_MPERF: case INFO_MPERF:
return perfmsr_measure(handle, IA32_MPERF); return perfmsr_measure(handle, IA32_MPERF);
case INFO_APERF: case INFO_APERF:
return perfmsr_measure(handle, IA32_APERF); return perfmsr_measure(handle, IA32_APERF);
case INFO_MIN_MULTIPLIER: case INFO_MIN_MULTIPLIER:
return (int) (get_info_min_multiplier(handle, &id, &internal) * 100); return (int) (get_info_min_multiplier(&info) * 100);
case INFO_CUR_MULTIPLIER: case INFO_CUR_MULTIPLIER:
return (int) (get_info_cur_multiplier(handle, &id, &internal) * 100); return (int) (get_info_cur_multiplier(&info) * 100);
case INFO_MAX_MULTIPLIER: case INFO_MAX_MULTIPLIER:
return (int) (get_info_max_multiplier(handle, &id, &internal) * 100); return (int) (get_info_max_multiplier(&info) * 100);
case INFO_TEMPERATURE: case INFO_TEMPERATURE:
return get_info_temperature(handle, &id, &internal); return get_info_temperature(&info);
case INFO_THROTTLING: case INFO_THROTTLING:
return CPU_INVALID_VALUE; return CPU_INVALID_VALUE;
case INFO_VOLTAGE: case INFO_VOLTAGE:
return (int) (get_info_voltage(handle, &id, &internal) * 100); return (int) (get_info_voltage(&info) * 100);
case INFO_BCLK: case INFO_BCLK:
case INFO_BUS_CLOCK: case INFO_BUS_CLOCK:
return (int) (get_info_bus_clock(handle, &id, &internal) * 100); return (int) (get_info_bus_clock(&info) * 100);
default: default:
return CPU_INVALID_VALUE; return CPU_INVALID_VALUE;
} }
@ -975,7 +976,7 @@ int msr_serialize_raw_data(struct msr_driver_t* handle, const char* filename)
if (cpuid_get_raw_data(&raw) || cpu_ident_internal(&raw, &id, &internal)) if (cpuid_get_raw_data(&raw) || cpu_ident_internal(&raw, &id, &internal))
return -1; return -1;
fprintf(f, "CPU is %s %s, stock clock is %dMHz.\n", id.vendor_str, id.brand_str, cpu_clock_measure(100, 1)); fprintf(f, "CPU is %s %s, stock clock is %dMHz.\n", id.vendor_str, id.brand_str, cpu_clock_measure(250, 1));
if (id.vendor == VENDOR_INTEL) if (id.vendor == VENDOR_INTEL)
msr = intel_msr; msr = intel_msr;
else if (id.vendor == VENDOR_AMD) else if (id.vendor == VENDOR_AMD)